
Adder.PPT(10/1/2009) 5.1

Lecture 13

Adder Circuits

Objectives

 Understand how to add both signed and unsigned
numbers

 Appreciate how the delay of an adder circuit depends
on the data values that are being added together

Adder.PPT(10/1/2009) 5.2

Full Adder

P
 P

Q

Output is a 2 bit number counting how many inputs are

C

P

Q

CI

S Q

CI

SC

+

Output is a 2-bit number counting how many inputs are
high

P Q CI C S

0 0 0 0 00 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1

CIQCIPQPC 

S P Q CI  1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

S P Q CI  

 Symmetric function of the inputs

 Self-dual: Invert all inputs  invert all outputs
If k inputs high initially then 3–k high when inverted

Inverting all bits of an n-bit number make x  2n–1–x

N t P  Q  CI (P  Q)  CI P  (Q  CI) Note: P  Q  CI = (P  Q)  CI = P  (Q  CI)

Adder.PPT(10/1/2009) 5.3

Full Adder Circuit

9-gate full-adder NAND implementation (do not memorize)





P

Q

CI
C



 









S

Propagation delays:

From To Delay

P Q or CI S 3P,Q or CI S 3

P,Q or CI C 2

Complexity: 25 gate inputs  50 transistors but use ofComplexity: 25 gate inputs  50 transistors but use of
complex gates can reduce this somewhat.

Adder.PPT(10/1/2009) 5.4

N-bit adder

We can make an adder of arbitrary size by cascading full
adder sections:

C

P

Q



CI

S

P0

Q0

C–1

S0

C

P

Q



CI

S

P1

Q1
S1

C

P

Q



CI

S

P2

Q2
S2

C

P

Q



CI

S

P3

Q3
S3

C3C0 C1 C2

The main reason for using 2’s complement notation for
signed numbers is that:

Signed and unsigned numbers can use identical circuitry

P0

P1
0

P

Q

S0
P2

P3

Q0

Q1

Q2

Q3

3

0

S1

S2

S3


0

3

C3CI
C–1

Q3
3

C3

Adder.PPT(10/1/2009) 5.5

Adder Size Selection

The number of bits needed in an adder is determined by
the range of values that can be taken by its output.

If we add two 4-bit numbers, the answer can be in the
range:

 0 to 30 for unsigned numbers

 -16 to +14 for signed numbersg

In both cases we need a 5-bit adder to avoid any
possibility of overflow:

P0

P

P0

S0

P1

P2

P3

Q0

0

4

0

S1

S2

S3


0

?

C4

Q

CI
C–1

Q1

Q2

Q3

0

4

S3

C4

4

0

S4

?

We need to expand the input numbers to 5 bits. How do
we do this ?

Adder.PPT(10/1/2009) 5.6

Expanding Binary Numbers

Unsigned numbers

Expand an unsigned number by adding the appropriateExpand an unsigned number by adding the appropriate
number of 0’s at the MSB end:

5 0101 00000101

13 1101 00001101

Signed numbers

Expand a signed number by duplicating the MSB the
appropriate number of times:

5 0101 00000101

–3 1101 11111101

This is known as sign extension

Shrinking Binary Numbers

UnsignedU s g ed

Can delete any number of bits from the MSB end so long
as they are all 0’s.

Signed

Can delete any number of bits from the MSB end so longCan delete any number of bits from the MSB end so long
as they are all the same as the MSB that remains.

Adder.PPT(10/1/2009) 5.7

Adding Unsigned Numbers

To avoid overflow, we use a 5-bit adder:

P0

P

P0

S0

P1

P2

P3

Q0

0

4

0

S1

S2

S3


0

0

C4

Q

CI
C–1

Q1

Q2

Q3

0

4

S3

C4

4

0

S4

0

The MSB stage is performing the addition: 0 + 0 + C3.
Thus S4 always equals C3 and C4 always equals 0.

P0
0

P

Q

S0

P1

P2

P3

Q0

Q1

Q2

0

3

0

S1

S2

S3


0

3
S4

We can use a 4-bit adder with C3 as an answer bit.

C3

Q

CI
C–1

Q2

Q3
3

C3
0

S4

Adder.PPT(10/1/2009) 5.8

Adding Signed Numbers

To avoid overflow, we use a 5-bit adder:



P

P0

S0

P1

P2

P3

Q0

0

4
S1

S2


0

C4

Q

CI
C–1

Q0

Q1

Q2

Q3

0

4

S3

C4



4

0

S4

This is different from the unsigned case because P4 and
Q4 are no longer constants. We cannot simplify this circuit

C4CI0

by removing the MSB stage.

If P and Q have different signs then S4 will not equal C3.

e.g. P=0000, Q=1111
Unsigned P+Q=01111 Signed P+Q=11111Unsigned P+Q 01111, Signed P+Q 11111

Some minor simplifications are possible:

 If the C4 output is not required, the circuitry that
generates it can be removed.

 S4 can be generated directly from P3 Q3 and C3 S4 can be generated directly from P3, Q3 and C3
which reduces the circuitry needed for the last stage.

Adder.PPT(10/1/2009) 5.9

Adder Propagation Delay

P0 P1 P2 P3

C

P

Q

CI

S

P0

Q0

C–1

S0

C

P

Q

CI

S

P1

Q1
S1

C

P

Q

CI

S

P2

Q2
S2

C

P

Q

CI

S

P3

Q3
S3

S4C0 C1 C2

P0 C0
2 2 2 3

C0 C1 C1 C2 C2 S3

Delays within each stage (in gate delays):

P, Q, CI  S = 3 P, Q, CI  C = 2

Worst-case delay is:

P0  C0  C1  C2  S3 = 3×2 + 3 = 9

Note: We also have Q0  S3 = 9 and C 1  S3 = 9Note: We also have Q0  S3 = 9 and C–1  S3 = 9

For an N-bit adder, the worst delay is (N–1)×2 + 3 = 2N+1

Example of worst case delay:Example of worst case delay:
 Initially: P3:0=0000, Q3:0=1111  S4:0=01111

 Change to: P3:0=0001, Q3:0=1111  S4:0=10000

Adder.PPT(10/1/2009) 5.10

Delays are Data-Dependent

To determine the delay of a circuit, we need to specify:

1. The circuit

2. The initial value of all the inputs

3. Which of the inputs changes

Example: What is the propagation delay AQ ?Example: What is the propagation delay AQ ?







A
Y

X Q

Answer 1 (B=0):







B
Z

Answer 1 (B=0):

 Initially: A=0, B=0  X=1, Y=0, Z=0, Q=0

 Then: A Y Q 2 gate delays

Answer 2 (B=1):

 Initially: A=0, B=1  X=1, Y=0, Z=1, Q=1

 Then: A X Z Q 3 gate delays

Adder.PPT(10/1/2009) 5.11

Worst-Case Delays

We are normally interested only in the worst-case delay
from a change in any input to any of the outputs.

The worst-case delay determines the maximum clock
speed in a synchronous circuit:

CLOCK

C1

1D

C1

1DLogic
X YW Z

CLOCK

W

X

Y

Z

tp + tg + ts < T

time 0 tp tp+tg T

Since the clock speed must be chosen to ensure that the
circuit always works, it is only the worst-case logic delay
that matters.

Adder.PPT(10/1/2009) 5.12

Quiz

1 In an full adder why is it normally more important to1. In an full adder, why is it normally more important to
reduce the delay from CI to C than to reduce the
delay from P to S ?

2. How many bits are required to represent the number
A+B if A and B are (a) 8-bit unsigned numbers orA+B if A and B are (a) 8-bit unsigned numbers or
alternatively (b) 8-bit signed numbers.

3. How do you convert a 4-bit signed number into an 8-
bit signed number ?

4. How do you convert a 4-bit unsigned number into an
8-bit signed number ?

5. How is it possible for the propagation delay of a circuit
from an input to an output to depend on the value of
the other inp ts ?the other inputs ?

Adder.PPT(10/1/2009) 5.13

Lecture 14

Fast Adder Circuits (1)

Objectives

 Understand how the propagation delay of an adder
can be reduced by inverting alternate bits.

 Understand how the propagation delay of an adder
can be reduced still further by means of carry
lookahead.

Adder.PPT(10/1/2009) 5.14

Standard N-bit Adder

Delay of standard N-bit adder = 2N+1

C

P

Q



CI

S

P0

Q0

C–1

S0

C

P

Q



CI

S

P1

Q1
S1

C

P

Q



CI

S

P2

Q2
S2

C

P

Q



CI

S

P3

Q3
S3

S4C0 C1 C2

P0 C0
2 2 2 3

C0 C1 C1 C2 C2 S3

Delay of carry path within each full adder = 2

Carry path consists of three 2-input + one 3-input NANDsCarry path consists of three 2-input + one 3-input NANDs

Adder.PPT(10/1/2009) 5.15

Faster Adder Circuits: 1

Because a full-adder is self-dual, it will still work if for
alternate stages we invert both the inputs and the outputs:

P1

Q1

S1

1

1 1

Full Adder

C

P

Q



CI

S

P0

Q0

C–1

S0

C

P

Q



CI

S

C

P

Q



CI

S

P2

Q2
S2

C0 C1 C2
1 1

1

S1

C0 C1

P1

Q1

Now consider only the Carry signals:

P0 P2P1P0

Q0

C–1

P2

Q2

1

C1







 C0

P1

Q1

1







 C2









C0 C1

C1a

C1b

C1c

By merging the shaded gates we can reduce the delay to
one gate per adder stage.

Adder Stage 0 Adder Stage 1 Adder Stage 2

Adder.PPT(10/1/2009) 5.16

Fast Adder Circuits: 1 (part 2)

P1

 C1a

P1

Q1  C1a

1

 C0

Q1 



C0

C0a

C0b

C0c

C1a

C1b

C1c





C1b

C1c

C0a

C0b

C0c

We can merge the 3-NAND and inverter into the final
column of gates as shown; this gives one delay per stage:



P0

P2

Q2

P1

Q1  

C2aP0

Q0

C–1















C0a

C0b

C0c

C2a

C2b

C2c

C1a

C1b

C1c



The signals C1a, C1b, C1c form an AND-bundle: C1 is true

Adder Stage 0 Adder Stage 1 Adder Stage 2

C1

only if all of them are high. We don’t need the signal C1
directly so the shaded gate can be omitted.

Adder.PPT(10/1/2009) 5.17

Fast Adder Circuits: 1 (part 3)

Even stages: PEven stages:

Delays:

P,Q,CI S 3

P,Q,CI C 1



 

Q

CIa,b,c COa,b,c

P,Q,CI C 1










S

30 gate inputs  60 transistors

Odd stages:

Delays:


P

Q

COa,b,c

1

1

30 gate inputs  60 transistors

P,Q S 5

P,Q C 2

CI S 4

CI C 1





 





CIa,b,c

S1

Bundles are denoted by a single wire with a / through it.

 

33 gate inputs  66 transistors

22% more transistors but twice as fast.

Adder.PPT(10/1/2009) 5.18

Fast Adder Circuits: 1 (part 4)

For an N-bit adder we alternate the two modules (with a
normalish first stage):

C

P

Q



CI

S

P0

Q0

C–1

S0

C

P

Q



CI

S

P1

Q1
S1

C

P

Q



CI

S

P2

Q2
S2

C

P

Q



CI

S

P3

Q3
S3

S4C0 C1 C2 
C3

Worst case delay is:

P0 C0
1 C0

2

C2
1

4
C1

C1

C2 S3

1
C1

P1

2
C2 S4

P0  !C0  C1  !C2  S3 = 7 gate delays

Note that:Note that:

 Delay to S4 is shorter than delay to S3

 Delay from P1 is the same as delay from P0

 Worst-case example:
Initially: P3:0=0000, Q3:0=1111, then P0Initially: P3:0 0000, Q3:0 1111, then P0

Delay for N-bit adder (N even) is N+3
(compare with 2N+1 for original circuit)

Adder.PPT(10/1/2009) 5.19

Carry Lookahead (1)

For each bit of an N-bit adder we get a carry out (CO=1) if
two or more of P,Q,CI are equal to 1.

There are three possibilities:

 P,Q=00: C=0 always Carry Inhibit

 P,Q=01 or 10: C=CI Carry Propagate

 P,Q=11: C=1 always Carry GenerateP,Q 11: C 1 always Carry Generate

We define three signals:

 CG = P • Q Carry Generate

 CP = P Q Carry Propagate

CGP P + Q C G t P t CGP = P + Q Carry Generate or Propagate

We get a carry out from a bit position either if that bit
generates a carry (CG=1) or else if it propagates the carry

d th i i f th i bit (CP CI 1)and there is a carry in from the previous bit (CP•CI = 1):

C = CG + CP•CI

Since CGP = CG + CP, an alternate expression is:

C CG CGP CIC = CG + CGP•CI

The second expression is usually used since P + Q is
easier and faster to generate than P Q.

Adder.PPT(10/1/2009) 5.20

Carry Lookahead (2)

Consider all the ways in which we get a carry out of bit
position 3:

1) Bit 3 generates a carry: 1???
+ 1???

2) Bit 2 generates a carry and 11??
bit 3 t it + 01??bit 3 propagates it. + 01??

3) Bit 1 generates a carry and 101?
bit 2 propagates it and + 011?
bit 3 propagates it.

4) Bit 0 generates a carry and 1011
bit 1 propagates it and + 0101
bit 2 propagates it and
bit 3 propagates it.p p g

5) The C–1 input is high and 1011
bits 0,1,2 and 3 all propagate the carry. + 0100 +1

Thus

C3 = CG3 + CP3•CG2 + CP3•CP2•CG1 +
CP3•CP2•CP1•CG0+CP3•CP2•CP1•CP0•C–1

As before, we can use CGPn in place of CPn., p

Adder.PPT(10/1/2009) 5.21

Carry Lookahead (3)

Each stage must now generate CP and CGP instead of C:

P

Q



CI

S
P0

Q0

C–1

S0
P

Q



CI

S
P1

Q1

S1
P

Q



CI

S
P2

Q2

S2
P

Q



CI

S
P3

Q3

S3

C1
CGP

CGP0

CG
CG0

CGP
CGP1

CG
CG1

CGP
CGP2

CG
CG2

CGP
CGP3

CG
CG3C0 C2

C0 = CG0 + CGP0•C 1

Logic Logic Logic

T
o

la
te

r
st

ag
es

C0 = CG0 + CGP0•C–1

C1 = CG1 + CGP1•CG0 + CGP1•CGP0•C–1

C2 = CG2 + CGP2•CG1 + CGP2•CGP1•CG0 +
CGP2•CGP1•CGP0•C–1

Worst-case propagation delay:

P0  CG0 = 1 gate delay (CG0 = P0•Q0)
CG0  C2 = 2 gate delays (see above expression)
C2  S3 = 3 gate delays (from full adder circuit)

Total = 6 gate delays (independent of adder length)

Adder.PPT(10/1/2009) 5.22

Carry Lookahead (4)

Carry lookahead circuit complexity for N-bit adder:

E pression for Cn in ol es n+2 prod ct terms each Expression for Cn involves n+2 product terms each
containing an average of ½(n+3) input signals.

 Direct implementation of equations for all N carry
signals involves approx N3/3 transistors.

N = 64  N3/3 = 90,000N 64  N /3 90,000

 By using a complex CMOS gate, we can actually
generate Cn using only 4n+6 transistors so all N
signals require approx 2N2 transistors.

N = 64  2N2 = 8,000

Actual gain is not as great as this because for large n,
the expression for Cn is too big to use a single gate.

 C 1 CG0 and CGP0 must drive N 1 logic blocks For C–1, CG0 and CGP0 must drive N–1 logic blocks. For
large N we must use a chain of buffers to reduce delay:

The circuit delay is thus not quite independent of N.

1 1 1CG0 To 8
logic
blocks

1

Adder.PPT(10/1/2009) 5.23

Quiz

1 What does it mean to say that a full adder is self dual1. What does it mean to say that a full-adder is self-dual
?

2. How does placing an inverter between each stage of a
multi-bit adder allow the merging of gates in
consecutive stages ?consecutive stages ?

3. In a 4-bit adder, give an example of a propagation
delay that increases when alternate bits are inverted.

4. Why is a carry-lookahead adder generally
implemented using CGP rather than CP outputs ?

Adder.PPT(10/1/2009) 5.24

Lecture 15

Fast Adder Circuits (2)

Objectives

 Understand the carry skip technique for reducing theUnderstand the carry skip technique for reducing the
propagation delay of an adder circuit.

 Understand how the carry save technique can be
used when adding together several numbers.

Summary So Far:

 Cascading full adders:
2N+1 gate delays 50N transistors2N+1 gate delays, 50N transistors

 Use self-duality to invert odd-numbered stages:
N+3 gate delays, 61N transistors

 Carry lookahead:
6 gate delays, between 2N2 and 0.3N3 transistors6 gate de ays, bet ee a d 0 3 t a s sto s

Adder.PPT(10/1/2009) 5.25

Carry Skip (1)

Consider a 12-bit adder:

           

P0,Q0 P2,Q2 P4,Q4 P6,Q6 P8,Q8 P10,Q10

P1,Q1 P3,Q3 P5,Q5 P7,Q7 P9,Q9 P11,Q11

C–1 C11

The worst case delay path is from C 1 to S11

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

The worst-case delay path is from C–1 to S11.

In carry skip, we speed up this path by allowing the carry
signal to skip over several adder stages at a time:

           

P0,Q0 P2,Q2 P4,Q4 P6,Q6 P8,Q8 P10,Q10

P1,Q1 P3,Q3 P5,Q5 P7,Q7 P9,Q9 P11,Q11

C–1 C11

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

Adder.PPT(10/1/2009) 5.26

Carry Skip (2)

Consider our fast adder circuit without carry lookahead (but
using alternate-bit inversion):

C

P

Q



CI

S

P0

Q0

C–1

S0

C

P

Q



CI

S

P1

Q1
S1

C

P

Q



CI

S

P2

Q2
S2

C

P

Q



CI

S

P3

Q3
S3

C0 C1 C2

2 4

C3

1

There are two possible sorts of addition sum:
 All bits propagate the carry  C3 = C–1:

C0
1 C0

2

C2
1

4
C1

C1

C2 S3

1
C1

P1

1
C2 C3

P0 C0
1

C–1

p p g y 3 1

0101 0101
1010 1010

0 1
01111 10000

C–1  C3  = 4 gate delays

 At least one bit doesn’t propagate the carry
 C3 is completely independent of C–1:

0101 01010101 0101
1110 1110

0 1
10011 10100

C 1   C3 = 0 gate delaysC–1   C3 0 gate delays

Adder.PPT(10/1/2009) 5.27

Carry Skip (3)

We speed up C–1  C3 by detecting when all bits propagate
the carry and using a multiplexer to allow C–1 to skip all the
way to C3:

P0 P1



P2 P3
CP

MUX




CP


CP


CP

CSK

CP0 CP1 CP2
CP3

C

P

Q

CI

S

P0

Q0

C–1

S0

C

P

Q

CI

S

P1

Q1
S1

C

P

Q

CI

S

P2

Q2
S2

C

P

Q

CI

SQ3
S3

C3XC0 C1 C2

2 4

C3

MUX

G1

1

1

1
C3X

2
CSK

1

P0 CP0
2

Calculate Carry Propagate (CP = P Q) for each bit. Call
this 2 gate delays since XOR gates are slow CSK=1 if all

C0
1 C0

2

C2
1

4
C1

C1

C2 S3

1
C1

P1

C2

C3X
1

C3 C3X
1

C–1
1

C3XP0 C0
1

C–1

this 2 gate delays since XOR gates are slow. CSK 1 if all
bits propagate the carry.

 Case 1: All bits propagate the carry
C–1  !C3X = 1 gate delay (via multiplexer)

 Case 2: At least one bit inhibits or propagates the carry
 C–1 does not affect C3

Longest delays to !C3X and S3:

 P0 !C3X = 5 (via either !C0 or CSK)()

 P0 S3 = 7

Adder.PPT(10/1/2009) 5.28

Carry Skip (4)

Multiplexer Details

C3X

MUX

G1

1

1

C3

C–1

CSK

CSK !C3X

0 !C3
1 !C–1

C3X
C3

C–1

CSK 1

 




C3

C–1

We merge both AND gates:

 the 3-AND gate merges into the following NAND

 the 2-AND gate merges into the next adder stage

C 1 C 1

C3

CSK 1



C–1  !C3X now equals 1 gate delay.

C3X

C–1 

C–1

Adder.PPT(10/1/2009) 5.29

Carry Skip (5)

Combine 4 blocks to make a 16-bit adder:

C3X

P3:0

Q3:0



CI

S3:0

P3:0

Q3:0

C–1

S3:0

C3
C3X

P3:0

Q3:0



CI

S3:0

P7:4

Q7:4

S7:4

C7
C3X

P3:0

Q3:0



CI

S3:0

P11:8

Q11:8

S11:8

C11
C3X

P3:0

Q3:0



CI

S3:0

P15:12

Q15:12

S15:12

C15

Worst case delay is:

C3
1 C3 C11

1
C7

P12

1
C7

7
C11 S15

P0 C3
5

C–1

S15
7

Worst-case delay is:

P0  !C3  C7  !C11  S15 = 14 gate delays

Each additional block of 4 bits gives a delay of only 1 gate
delay: this corresponds to ¼ gate delay per bit.

For an N-bit adder we have a delay of ¼N+10. We can
reduce this still further by having larger super-blocks.

Carry circuit delays:

Simple 2N+1
Bit-inversion N+3
Carry Skip ¼N+10
Carry Lookahead 6
 but lots of circuitry and high gate fanout  more delaybut lots of circuitry and high gate fanout  more delay

Adder.PPT(10/1/2009) 5.30

Adding lots of numbers

In multiplication circuits and digital filters we need to add
lots of numbers together.

Suppose we want to add together five four-bit unsigned
numbers: V, W, X, Y and Z.

V3:0

D

W3:0

X3:0

Y3:0

Z3:0

D

E

F

S

If we use carry-lookahead adders, each stage will have 6
gate delays.

Total delay to add together K values will be (K–1) × 6Total delay to add together K values will be (K 1) 6.

Thus K=16 gives a delay of 90 gate delays.

Adder.PPT(10/1/2009) 5.31

Addition Tree

In practice we use a tree arrangement of adders:













S















Number of values, K 16 8 4 2 1

log2(K) 4 3 2 1 0

Each column of adders adds a delay of 6 and halves the
number of values needing to be added together.

Equivalently, each column of adders reduces log2K by one.

Hence the total delay is is log2K × 6 giving a delay of 24 to
add together 16 values.

The total number of adders required is still K–1 as before.

Adder.PPT(10/1/2009) 5.32

Carry-Save Adder

Take a normal 4-bit adder but don’t connect up the
carrys:

C

P

Q



CI

S

P0

Q0

R0

S0

C

P

Q



CI

S

P1

Q1
S1

C

P

Q



CI

S

P2

Q2
S2

C

P

Q



CI

S

P3

Q3
S3

C3C0 C1 C2R1 R2 R3

We have P+Q+R = 2C + S

E.g. P=9, Q=12, R=13

1001
1100
1101

P:
Q:
R:

gives C=13, S=8

We call this a carry-save adder: it
reduces the addition of 3 numbers to

1000
1101_

S:
C:

CS
the addition of 2 numbers.

The propagation delay is 3 gates
regardless of the number of bits. The
amount of circuitry is much less than

C

P

Q

R

S

a carry-lookahead adder.

The circuit reduces log2K by 0.585 (from 1.585 to 1.0)
for a delay of 3. The overall delay we can expect is
therefore log2K × 3/0.585 = log2K × 5.13. This is betterg2 g2

than carry lookahead for less circuitry.

Adder.PPT(10/1/2009) 5.33

Carry Save Example

We will calculate: 13+10+5+11+12+1 = 52

CS

C

P

Q

CS

R

S

CS
C

P

Q

CS

R

S

C

P

Q

CS

R

S P

Q



S

A

B

C ×2

×2

G

H
K

L
M

N
X

×2

C

P

Q

R

S

CR QD

E

F ×2

I

J

×2

1101
1010
0101
0010

1101_

A :
B :
C :
G :
H :

_0010
1101_
_0110
11110

0010

G :
2H :

I:
K :
L :

01000
1011__

0110100

M :
2N :

X :_

1011
1100
0001
0110

D :
E :
F :
I

_ _

11110
0010_
1001_
01000

K :
2L :
2J:
M :

0110100X :

0110
1001_

I:
J :

01000
1011__

M :
N :

Notes: 1. ×2 requires no logic: just connect wires appropriately
2. No logic required for adder columns with only 1 inputg q y p
3. All adders are actually only 4 bits wide
4. Final addition M+2N requires a proper adder

Adder.PPT(10/1/2009) 5.34

Carry-Save Tree

We can construct a tree to add sixteen values together:

CS

CS

CS CS

CS

CS

CS

SCSCS
CS

CS

CSCS
CS

CS

Number of
values, K

16 4 3 2 1

log2(K) 4 2 1.58 1 0

13

3.7

9

3.17

6

2.58

Delay 0 12 15 18 243 6 9

Delay/log2(K) 10 7.23 5.13 65.65 5.13 5.13

• The final stage must be a normal adder because we
need to obtain a single output.

• The delay is the same as for a conventional
lookahead-adder tree but uses much less circuitry.

• The irregularity of the tree causes a reduction in
efficiency but this is relatively small (and becomes
even smaller for large K).

• Inverting alternate stages will speed up both tree
circuits still further but requires more circuitry.

Adder.PPT(10/1/2009) 5.35

Merry Christmasy

The End

Adder.PPT(10/1/2009) 5.36

Quiz

1 In a 4 bit adder how can you tell from P0:3 and Q0:31. In a 4-bit adder, how can you tell from P0:3 and Q0:3
whether or not C3 is dependent on C–1 ?

2. A multiplexer normally has 2 gate delays from its data
inputs to its output. How is this reduced to 1 gate delay
in the carry skip circuit ?in the carry skip circuit ?

3. If five 4-bit numbers are added together, how many
bits are needed to represent the result ?

