
NOTATION.PPT(10/8/2010) 1.1

Digital Electronics II

Mike Brookes

f fPlease pick up: Notes from the front desk

1. What does Digital mean ?

2. Where is it used ?

3. Why is it used ?

4. What are the important features of a digital system ?

NOTATION.PPT(10/8/2010) 1.2

Lecture List

– Notation, Cause and Effect,
• 1: Notation, Cause and Effect, Flipflops, Counters

– Interfacing Digital Systems
• 2: Synchronous bit-serial Interfacing

• 3. Asynchronous bit-serial interfacing

• 4,5: Microprocessor-to-Memory Interface

– Synchronous State Machines
• 6: Shift Register control and sequencing

• 7. Data Decoding with a counter

8 S h t t hi l i• 8. Synchronous state machine analysis

• 9. Synchronous state machine design

– Digital  Analog Conversion
• 10: Digital-to-Analog conversion

• 11 Analog-to-Digital Conversion: Flash and dither11. Analog-to-Digital Conversion: Flash and dither

• 12. Analog-to-Digital Conversion: Successive
approximation

– Addition Circuits
• 13: Adders and propagation delays

• 14. Fast Adders: bit inversion & carry lookahead

• 15. Fast adders: Carry skip and carry save

NOTATION.PPT(10/8/2010) 1.3

Lecture Notes

Very concise - ensure you understand each sentence.

BookBook

Tocci, Widmer & Moss, “Digital Systems: Principles &
Applications”, Pearson, 11th ed, 2010.

ISBN 0130387932

Covers most of the course though not in the same order. I
do not follow any book closely.

Problem Sheets
Problems graded:– Problems graded:

• everyone should do A, B and C

• D and E are harder

– Solutions are included

– Problems Class: Room 509:Problems Class: Room 509:
• Fri 16:00 (week 3) and Tue 3:00 (weeks 4 – 11)

– Tutorial questions

URL
htt // i k/h / t ff/d b/ /di 2/di 2 hthttp://www.ee.ic.ac.uk/hp/staff/dmb/courses/dig2/dig2.htm

Discussion Group
http://learn.imperial.ac.uk

Office HoursO ce ou s

Room 812: Mon 10:00-11:00 and Fri 15:00-16:00

NOTATION.PPT(10/8/2010) 1.4

Lecture 1

Notation, Cause and Effect

Objectives

• Introduce the IEC standard notation for logic symbols

• Emphasize the notion of cause and effect in digital
circuitscircuits

• Remind you what a flipflop does

• Look at the propagation delays of a ripple counter and a
synchronous counter

NOTATION.PPT(10/8/2010) 1.5

Notation

Logic Levels

A logic 1 (or high) is always the most positive of the two g (g) y p
voltage levels.

e.g. CMOS: 0 & 5V, ECL –1.75 & –0.9V

Gates

The label indicates how many of the inputs must be high
to make the output high:

& AND gate: all inputs high
1 OR gate: one or more inputs high1 OR gate: one or more inputs high

=1 Exclusive-OR: exactly one input high
2n Even Parity: even number of inputs high

Inversion Triangles

We can invert signals on the way in or on the way out:


A

B
X1!X 

A

B
X

=B 1 B

X or !X denotes the inverse of X.

NOTATION.PPT(10/8/2010) 1.6

0

Cause & Effect


A

X

A

I t B i hi h X t l

B
X B

X

Input B going high causes X to go low

Input A going low causes X to go high

P ti D lPropagation Delay:

The time delay between a cause (an input
changing) and its effect (an output changing).

Example: 74AC00: Advanced CMOS 2-input NAND gate

min typ max

A to X (t) 1 5 4 5 6 5 nsA to X (tPHL) 1.5 4.5 6.5 ns

A to X (tPLH) 1.5 6.0 8.0 ns

tPHL and tPLH refer to the direction that the output changes:
high-to-low or low-to-high.

NOTATION.PPT(10/8/2010) 1.7

D-Flipflop

DATA Q
1D

CLOCK

CLOCK

N t ti

C1
CLOCK DATA

Q

Notation:

> input effect happens on the rising edge

C1 C  Clock input, 1  This input is input number 1.

1D D  Data input,
1  This input is controlled by input number 11  This input is controlled by input number 1.

The meaning of a number depends on its position:

A number after a letter is used to identify a particular input.
A number before a letter means that this input is controlled
by one of the other inputs.

Cause and Effect:

– CLOCK causes Q to change after a short delay.
Thi i th l ti Q hThis is the only time Q ever changes.

– The value of D just before CLOCK is the new Q.

– Propagation delay CLOCK to Q is typically 6 ns.

– Propagation delay DATA to Q does not make
i DATA h i d t Q tsense since DATA changing does not cause Q to

change.

NOTATION.PPT(10/8/2010) 1.8

Ripple Counter

Q0 Q1 Q2

N t ti

C1

1D
CLOCK

C1

1D

C1

1D

Notation:

– Notice inverters on the CLOCK and DATA inputs

– Least significant bit of a number is always labelled 0

CLOCK

Q0

Q1

Q2

4 5 6 7 0 1Q2:0

State Diagram (not including transient states):

0 1 2 3

Propagation Delay: CLOCK to Q2 = 3 × 6 ns = 18 ns

7 6 5 4

Propagation Delay: CLOCK to Q2 3 6 ns 18 ns

NOTATION.PPT(10/8/2010) 1.9

Synchronous Counter

CLOCK
C1

Q0
1D

Logic
D=Q+1

Q1

Q2

D0

D1

D2

Q0

Q1

Q2

Notation:

– A register is a bunch of flipflops with the same CLOCK.

– The individual flipflops are rectangles stacked on top of
each other. Only the top one is labelled.

– All shared signals (e.g. the CLOCK input) go to the
notched common control block at the top of the stack.

The logic block must add 1 onto the current value of the g
counter, Q, to generate the next value of the counter, D.
Suppose it has a propagation delay of 10 ns.

All flipflops change state within a fraction of a nanosecond.

P ti D l CLOCK t Qi 6

CLOCK

Q2:0

D2:0

Propagation Delays: CLOCK to Qi = 6ns
CLOCK to Di = 16ns

NOTATION.PPT(10/8/2010) 1.10

Dependency Notation

Input Labels:
Inputs are labelled with a function letter to show what p

effect they have on the circuit. They have this effect
whenever they are high (i.e. at logic 1).

The function letter is usually followed by an identification
number (which must be unique):

• C1 Clock number 1

• M7 Mode input number 7

• D Data input (no identification number)

Dependencies:

If an input is affected by one or more other signals, we list
their identification numbers in front of the function
letter:

3 2 5D D t i t ff t d b i t 3 2 d 5 i th t• 3,2,5D Data input affected by input 3,2 and 5 in that
order.

The identification number is used to show which of the
other inputs are affected by putting it in front of their
function letters (if any).

Device Types:

The overall function of a device is indicated at the top of
its symbol Anything unlabelled is a flipflop or registerits symbol. Anything unlabelled is a flipflop or register.

NOTATION.PPT(10/8/2010) 1.11

Function Letters for Input Signals
A Address inputs for a memory circuit
CI,CO Carry In and Out for an adder
C Clock or Control inputp
CT=xx Set contents of register or counter to xx
D Data input to flipflop
EN Enable tri-state outputs
G “Gating” input: allows signals through when high
J K T Inputs for JK and Toggle flipflopsJ,K,T Inputs for JK and Toggle flipflops
M Mode input: selects one of several operating

modes (e.g. count up or count down)
P,Q Input numbers for adders, multipliers etc.
R,S Reset and Set inputs
V Forces a signal to 1 when highV Forces a signal to 1 when high
+, – Increment or Decrement
 Shift up (left) or shift down (right)

Device Types
&, 1, =1 Gates
(blank) Latch, Flipflop or register
MUX Multiplexer
 Adder
 Multiplier
CTR CounterCTR Counter
SRG Shift Register
RAM Read/Write memory

Note: These lists are for reference only. You are not
expected to memorize them.

NOTATION.PPT(10/8/2010) 1.12

Quiz Questions

1. The voltage levels for the TTL logic family are 0.4 V and
2.8 V. Which one of these corresponds to logic 1?

2. If a gate is labelled 1, under what circumstances will
the output be high?

3. What does the propagation delay of a circuit mean?

4. Why does it make no sense to talk about the
propagation delay between a flipflop’s DATA input and
the flipflop’s output?

5. A flipflop’s inputs are labelled C1 and 1D respectively.
Why does the 1 come after the C but before the D?

6. What is the meaning of the > sign just before the C1 in
a flipflop’s symbol?

7 What is the meaning of a triangle drawn where an input7. What is the meaning of a triangle drawn where an input
or output wire meets a logic symbol?

8. What is a register?

Answers are all in the notes.

INTERFACING.PPT(01/10/2009) 2.1

Lecture 2

Synchronous Bit-Serial Interfacing

Objectives

E l i h d t i t b t t di it l t• Explain how data is sent between two digital systems
using a synchronous bit-serial protocol

– Synchronous: same clock at transmitter & receiver

– Bit-serial: Only one bit sent at a time

Protocol: The procedure for exchanging– Protocol: The procedure for exchanging
information

• Explain the meaning of setup and hold times

• Investigate the timing constraints in a transmission g g
system

INTERFACING.PPT(01/10/2009) 2.2

Synchronous Bit-Serial Transmission

FRAME

A B

CLOCK

DATA

CLOCK

FRAME

DATA

B senses

T itti 8 bit l f A t B

B senses

0 0 0 0 01 1 1 0 0 0 1 10 0 0 0 1 0

134 18

Transmitting 8 bit values from A to B:

– FRAME indicates the first bit of each value; the other 7
bits follow on consecutive clock cycles. The FRAME
signal is often called a frame sync pulse.

DATA h th f lli CLOCK d– DATA changes on the falling CLOCK edge

– Propagation delays are often omitted from diagram.

– DATA is sensed by system B on the rising CLOCK
edge to maximise tolerance to timing errors. We must
always clock a flipflop at a time when its DATA input is
not changing.

INTERFACING.PPT(01/10/2009) 2.3

Transmission Delays

Propagation speed = (L C)–½ where L and C arePropagation speed = (L0C0) ½ where L0 and C0 are
inductance and capacitance per unit length.

For a uniform line this gives a total delay of (LC)½ where L
and C are the total inductance and capacitance. Any
additional load capacitance will increase delayadditional load capacitance will increase delay.

Signal speed can be expressed in terms of:

– the speed of light (c = 30 cm/ns)

– the geometry of the wiring

– the relative permittivity of the insulator:

Examples:

C bl– Coax cable:

c × r
–½  20 cm/ns for r =2.3 (teflon)

– PCB with ground plane:

1.4c × (1.4+r)– ½ cm/ns  17 cm/ns for r =5 (fibreglass)(r) r (g)

Rule-of-thumb:

Data travels along typical wires and circuit board tracks atData travels along typical wires and circuit board tracks at
about 15 cm/ns: half the speed of light.

INTERFACING.PPT(01/10/2009) 2.4

Timing Specifications

DA DBtD
1D

BA

tP ½TTime: 0

CLOCK

CA CB

tC

C1 C1

1D

CA

DA

CB

DB

PTime:

t P ti d l f d i A

DB

½T+tC
tP+tDTime: 0

tP Propagation delay for device A.

T Clock Period.

tC, tD Transmission line delays for CLOCK and DATA

F D i BFor Device B:

• Data input changes at time tP+tD

• Clock input changes  at time ½T+tC

INTERFACING.PPT(01/10/2009) 2.5

Setup and Hold Times

The DATA input to a flipflop or register must not change atThe DATA input to a flipflop or register must not change at
the same time as the CLOCK.

tH tS

DATA Q

C1

1D
CLOCK CLOCK

DATA

Q tP

Setup Time: DATA must reach its new value at least
tS before the CLOCK edge.

H ld Ti DATA t b h ld t t f t l tHold Time: DATA must be held constant for at least
tH after the CLOCK edge.

Typical values for a register: tS = 5 ns, tH =3 ns

The setup and hold time define a window around each
CLOCK  edge within which the DATA must not change.

If these requirements are not met, the Q output may
oscillate for many nanoseconds before settling to a stable

lvalue.

INTERFACING.PPT(01/10/2009) 2.6

Timing Constraints

DA DBtD
1D

BA

CLOCK

CA CB

tC

C1 C1

1D

T0 ½T

CA

DA

DB

T0 ½T

For Device B:

D t i t (DB) h t (d T)

CB

½T+tCtP+tD T+tP+tD

• Data input (DB) changes at tP+tD (and T+ tP+tD)

• Clock (CB) at time ½T+tC

For reliable operation:p

• Setup Requirement: tP + tD + tS < ½T + tC

• Hold Requirement: ½T+tC + tH < T + tP + tD

Get a pair of inequalities for each flipflop/register in a circuit.
You never get both tS and tH in the same inequality.

INTERFACING.PPT(01/10/2009) 2.7

Example Values

DA DBtD
1D

BA

F M t l 56001 27MH DSP

CLOCK

CA CB

tC

C1 C1

1D

For Motorola 56001 27MHz DSP processor:

0 < tP < 50 ns, tS = 12 ns, tH = 27 ns

Suppose differential delay: –10 < (tD – tC) < +10

Find maximum CLOCK frequency (min CLOCK period):

• max (tP + tD) + tS < min (½T + tC)

50 + 10 + 12 < ½T + 0 (tD =10, tC =0)

½T > 12 + 50 + (+10) = 72  T > 144 ns

• max (½T+tC) + tH < min(T + tP + tD)

½T + 10 + 27 < T + 0 + 0 (tD =0, tC =10)

½T > 27 + 10 = 37  T > 74 ns

Hence fCLOCK < 1/144 = 7 MHz

To test for worst case: make the left side of the inequality asTo test for worst case: make the left side of the inequality as
big as possible and the right side as small as possible.

INTERFACING.PPT(01/10/2009) 2.8

Propagation Delay Constraint Inequalities

DA DBtD
1D

BA

CLOCK

CA CB

tC

C1 C1

1D

When do they arise

• Whenever a flipflop’s clock and data input signals
originate from the same ultimate source. Here CB and
DB b th i i t f CLOCK Y ll t tDB both originate from CLOCK. You normally get two
inequalities for each flipflop in a circuit.

Relationship beween setup and hold inequalities:

• Setup Requirement: tP + tD + tS < ½T + tCp q P D S C

• Hold Requirement: ½T+tC + tH < tP + tD + T

• To get the Hold inequality you change tS to tH , swap
the sides of the other terms and add T onto the right
sideside.

Are both tS and tH ever in the same inequality?
• No.
How do you decide to take the max or the min?
• For a <, take max of everything on the left and min of y g

everything on the right.
• max = most positive: for example, max(–7,–2) = –2

INTERFACING.PPT(01/10/2009) 2.9

Quiz Questions

1. What is a bit-serial transmission system?

2 What is a synchronous transmission system?2. What is a synchronous transmission system?

3. In a synchronous transmission system in which the
transmitted data changes on the rising edge of the
CLOCK, why is it normal for the receiver to sense the
data on the falling edge of the CLOCK ?data on the falling edge of the CLOCK ?

4. What is the purpose of the frame sync signal In a
synchronous bit-serial transmission system?

5. How far does a signal travel along a typical wire in one
nanosecond?

6. What do the terms setup time and hold time mean?

7. Why do you get a pair of timing inequalities for each
flipflop or register in a circuit?flipflop or register in a circuit?

8. In formulating the timing inequalities, how do you
choose what to use for a quantity whose value may lie
anywhere within a particular range?

Answers are all in the notes.

INTERFACING.PPT(01/10/2009) 2.10

Lecture 3

Asynchronous Bit-Serial Interfacing

Objectives

E l i h d t i t b t t di it l t• Explain how data is sent between two digital systems
using an asynchronous bit-serial protocol

• Explain why it is necessary to include START and
STOP bits in an asynchronous protocol.

• Explain the circuitry needed for an asynchronous bit-
serial receiver

• Derive the tolerances for the transmitter and receiver
clocks in an asynchronous bit-serial systemy y

INTERFACING.PPT(01/10/2009) 2.11

Asynchronous Bit-Serial Transmission

Combine timing and data into a single signal to circumvent
differential delays over long distances (saves wires too).

RS232: Serial Port on a PC

10T

Start Bit

1 0 1 1 0 0 0 1

Stop Bit8 Data Bits (LSB first)

• Idle state has signal = 1. START bit indicates new byte.

• Data transmitted LSB first (above example equals 14110)

Bit ll d ti i T T 52 1/T 19200 b d• Bit cell duration is T: e.g. T=52 µs, 1/T = 19200 baud

• STOP bit needed to ensure signal goes to 1 before the
next START bit which might follow immediately.

• Signal is decoded by sampling each bit in the centre ofSignal is decoded by sampling each bit in the centre of
its cell an appropriate time after the start bit:

Time/T: 1½0 2½ 3½ 4½ 5½ 6½ 7½ 8½

INTERFACING.PPT(01/10/2009) 2.12

RS232 Receiver Timing

Good time resolution  use a master clock period of T/16:

• Middle of STOP bit is after 9½ bitcells  9½ × 16 = 152

CLOCK cycle: 240 40 56 72 88 104 120 136 (1520)

DATA

master clock cycles.

• Use ÷152 counter but hold it at 0 until the START bit
arrives  inhibit counting whenever CT=0 and DATA=1.

• Counter will increment either if DATA=0 or if CT isCounter will increment either if DATA 0 or if CT is
already non-zero.

• We use a clock enable input, G1, to control whether or
not the counter increments; much better design than
using gates to modify the clock signal.using gates to modify the clock signal.

DATA

CLOCK (16 × baud rate)
1+

CTR
DIV 152

CT0:7

CT=0


DATA

G1

CT=0

ZERO

The CT=0 output from counter goes high when the contents of theThe CT 0 output from counter goes high when the contents of the
counter, CT, are zero. Generate this signal using a NOR gate
connected to all 8 counter outputs.

INTERFACING.PPT(01/10/2009) 2.13

RS232 Receiver

DATA

• Use an 8-bit shift register to store the data value. Only
allow it to shift when CT = 24, 40, … , 136.

CLOCK cycle: 240 40 56 72 88 104 120 136 (152)

• The decode logic output, MID, goes high when the
counter has one of these values (all odd multiples of 8 
four LSBs = 10002).

• Notation:

– The shift register clock has two functions separated
by a /: 2C1 clocks first bit, 2 shifts the rest.

– Both these functions are controlled by the clock
enable input, G2.

2C1/2

G2



SRG
CLOCK (16 × baud rate)

CT0:7
D d

CT=24,...,136
MID

Timing
Circuit

1D

DATA

CT0:7
Decode
Logic

see previous
slide for
details

Q7

Q6

Q5

Q4

Q3

Q2

Q1

Q0

INTERFACING.PPT(01/10/2009) 2.14

Double Buffering

DATA

151

• The 8 data bits only stay in the shift register for 3T before
they get shifted out again by the next data byte.

CLOCK cycle: 240 40 56 72 88 104 120 136 0

}

24 40

they get shifted out again by the next data byte.

• Host microprocessor must respond to an interrupt within
this time and retrieve the data.

• Use a second register to grab the data at T=151 and
keep it for a whole 10T. This gives the µP more time.

SRG

TRANSFER

2C1/2

G2

1D



SRG
CLOCK (16 × baud rate)

Ti i Ci it

CT=24,...,136 MID

Q7

2C1

G2

1D
Z7

CT=151

1D

DATA

Timing Circuit
&

Decode Logic

Q6

Q5

Q4

Q3

Q2

Q1

1D
Z6

Z5

Z4

Z3

Z2

Z1

Q0 Z0

INTERFACING.PPT(01/10/2009) 2.15

Timing Errors

• Ideal situation:

– Receiver clock period P = T/16

– Counter starts counting exactly on DATA falling edge

• Real situation:

– Receiver clock period not exactly T/16

– Counter starts with some delay
• On first rising edge of P after DATA goes low

P slightly
too small

P much
too small

INTERFACING.PPT(01/10/2009) 2.16

RS232 Receiver Timing

CT will change to 1 on the first CLOCK  edge after DATA
goes to 0:  PT/16time = 0

Neglecting logic propagation delays, 0 <  < P where P is

0

CLOCK

DATA

CT 1 2 3

eg ect g og c p opagat o de ays, 0 e e s
receiver clock period.

– Count 01 a time  after the START bit

– Count n  n+1 a time nP+  after the START bit

Timing in the last (MSB) bit cell:

DATA

8T 9TSample
Instant

We will sample the correct bit cell if: 8T < 136P+  < 9T

Counter: CT 135 136 137

MID

136P+

8T < 136P+0  T/P < 17

136P+P < 9T  T/P > 15.2

Hence T/P = 16 +6.3% –5.0% which implies a clock
accuracy of around ± 2.5% at transmitter and receiver.

INTERFACING.PPT(01/10/2009) 2.17

Quiz Questions

1. How can you be sure that in the RS232 protocol there
will always be a high-to-low transition at the beginning
of each transmitted byte ?

2. What is the function of the clock enable input on a
counter or register?

3 What logic gate is needed to detect when the contents3. What logic gate is needed to detect when the contents
of a counter is equal to zero?

4. If an asynchronous protocol has one START bit, eight
data bits and one STOP bit, how may bitcell periods is it
from the beginning of the START bit until the centre offrom the beginning of the START bit until the centre of
the STOP bit?

5. What is the function of an input pin that is labelled
2C1/2?

6. If the CLOCK input of a counter has period P, what is
the range of possible delays between the counter’s
enable pin going high and the counter incrementing?

7. What is the purpose of double buffering the data in an
h bit i l i ?asynchronous bit-serial receiver?

8. How can you tell if a binary number is an odd multiple of
16?

Answers are all in the notes.

INTERFACING.PPT(01/10/2009) 2.18

Lecture 4

Microprocessor to Memory Interface

Objectives

E l i h i t d t i• Explain how memory is connected to a microprocessor

• Describe the sequence of events in reading from and
writing to a static RAM

• Describe the structure and input/output signals of aDescribe the structure and input/output signals of a
static RAM

INTERFACING.PPT(01/10/2009) 2.19

Microprocessor Memory Map

A typical 8-bit microprocessor has

• A 16-bit address bus, A15:0
– Can have up to 216=65536 memory locations
– Value is usually written in hexadecimal often with $ prefix:

$1000 212 4k 4096• e.g. $1000 = 212 = 4k = 4096

• An 8-bit data bus, D7:0
– Each data word in memory has 28 = 256 possible values

I /O
$FFFF We can tell which region ofInput/Output
$F000

$

$B000

$EFFF

ROM
16k words

We can tell which region of
memory an address is in by
inspecting the top few bits:

A15:12

F: 1111 Input/Output

ss
es

 (
h

e
xa

de
ci

m
a

l)

Unused

$B000

$7FFF

E: 1110 ROM
D: 1101 ROM
C: 1100 ROM
B: 1011 ROM
A: 1010
9: 1001

A
dd

re

RAM
32k words

8: 1000
7: 0111 RAM
6: 0110 RAM
5: 0101 RAM
4: 0100 RAM
3: 0011 RAM

$0000

3: 0011 RAM
2: 0010 RAM
1: 0001 RAM
0: 0000 RAM

INOUT = A15·A14 ·A13 ·A12INOUT A15 A14 A13 A12
ROM = A15·A14 ·!(A13 ·A12) + A15·!A14·A13·A12
RAM = !A15

INTERFACING.PPT(01/10/2009) 2.20

Microprocessor Memory Interface

µP
Memory

A15:0
A

D

A15:0

D7:0
D

A

8 8

16 16

Control
Signals

CLOCK

Control
Signals

During each memory cycle:

• A15:0 selects one of 216 possible memory locations

• D7:0 transfer one word (8 bits) of information either to
the memory (write) or to the microprocessor (read).

• D7:0 connections to the microprocessor are tri-state ():
they can be:y

– “logic 0”, “logic 1” or “high impedance” (inputs)

• The control signals tell the memory what to do and when
to do it.

INTERFACING.PPT(01/10/2009) 2.21

Memory Chip Selection

• Each memory circuit has a “chip enable” input (CE)

• The “Decoder” uses the top few address bits to decide
which memory circuit should be enabled. Each one is
enabled only for the correct address range:

RAM = !A15
ROM = A15·(A14 ·!(A13 ·A12) +!A14·A13·A12)
INOUTx = A15·A14·A13·A12·!A11·A10·!A9·A8·

!A7·A6·A5·A4·!A3·A2!A7 A6 A5 A4 !A3 A2

• INOUTx responds to addresses: $F574 to $F577
other I/O circuits will have different addresses

• Low n address bits select one of 2n locations within each
i it (l f d d i)memory circuit (value of n depends on memory size)

INTERFACING.PPT(01/10/2009) 2.22

Memory Interface Control Signals

µP

A

Memory

A15:0
A

16 16

D
D7:0

D
8 8

W RITE

MCLOCK

CLOCK

W RITE

Control signals vary between microprocessors but all have:

• A clock signal to control the timing (can be the same as
the system CLOCK)

• A signal to say whether the microprocessor wants to
read from memory or to write to memoryread from memory or to write to memory

– Must make sure that D7:0 is only driven at one end

MCLOCK

Read Cycle Write Cycle

MCLOCK

A15:0

WRITE

D7:0
from µP

from mem

D7:0 from memory only allowed when MCLOCK·!WRITE true

INTERFACING.PPT(01/10/2009) 2.23

Memory Circuit Control Signals

MCLOCK

Read Cycle Write Cycle

MCLOCK

A15:0

WRITE

D7:0
from µP

from mem

• Output enable: OE = MCLOCK·!WRITE turns on the
D7:0 output from the memory

• Write enable: WE = MCLOCK·WRITE writes new
information into the selected memory location with datainformation into the selected memory location with data
coming frommicroprocessor

• Chip enable: comes from the decoder and makes sure
the memory only responds to the correct addresses

INTERFACING.PPT(01/10/2009) 2.24

RAM: Read/Write Memory

Static RAM: Data stored in bistable latches

Dynamic RAM: Data stored in charged capacitors:Dynamic RAM: Data stored in charged capacitors:
retained for only 2ms.
Less circuitry  denser  cheaper.

8k × 8 Static RAM

RAM
8192 × 8

A12:0

D7:0WR

A

WR 

CE OE WR D0:7 Action

0 ? ? Hi Z Disabled
1 0 0 Hi Z Idle
1 1 0 Out Read

OE

CE

WR

OE

CE

 1 1 0 Out Read
1 ? 1 In Write

 Tri-state output: Low, High or Off (High Impedance).
Allows outputs from several chips to be connected;
Designer must ensure only one is enabled at a time.

CE Chip Enable: disabling chip cuts power by 80%.

OE Output Enable: Turns the tri-state outputs on/off.

A12:0 Address: selects one of the 213 8-bit locations.

WR Write: stores new data in selected location

D7:0 Data in for write cycles or out for read cycles.

INTERFACING.PPT(01/10/2009) 2.25

8k × 8 Static RAM

The 64k memory cells are arranged in a square array:
256 Cells

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

D7

D6

D5

D4

D3
8 × 32

= 256 cells

For each output bit, an 8192-way multiplexer selects one of
the cells The control signals OE CE and WR determine

Bit 3

Bit 2

Bit 1

Bit 0

D2

D1

D0
32 cells

the cells. The control signals, OE, CE and WR determine
how it connects to the output pin via buffers:

256 cells

32
 cells

A12:0

CE•WR

(8192-way multiplexer)

1 1
Dn

CE•OE•!WR

Occasionally DIN and DOUT are separate but  more pins

INTERFACING.PPT(01/10/2009) 2.26

Quiz Questions

1. What is the memory map of a microprocessor system

2 Why do all microprocessor systems include some read2. Why do all microprocessor systems include some read-
only memory (ROM)

3. What does it mean if a digital device has a tri-state
output? When are such outputs necessary ?

4. What is the difference between the chip enable and the
output enable inputs of a static RAM?

5. If a static RAM has n address inputs and m data
outputs, how many bits of information does it store?

6. What is the binary value of the three most significant
address bits for the hexadecimal address $BC37 ?

Answers are all in the notes.

INTERFACING.PPT(01/10/2009) 2.27

Lecture 5

Microprocessor to Memory Interface

Objectives

I ti t th ti i t i t f i• Investigate the timing constraints for a microprocessor
when reading from or writing to memory.

INTERFACING.PPT(01/10/2009) 2.28

RAM: Read/Write Memory

8k × 8 Static RAM

RAM
8192 × 8

A12:0

D7:0WR

A

CE OE WR D0:7 Action

0 ? ? Hi Z Disabled
1 0 0 Hi Z Idle
1 1 0 O t R dD7:0WR

OE

CE

WR

OE

CE

 1 1 0 Out Read
1 ? 1 In Write

 Tri-state output: Low, High or Off (High Impedance).
Allows outputs from several chips to be connected;
Designer must ensure only one is enabled at a time.g y

A12:0 Address: selects one of the 213 8-bit locations.

D7:0 Data in for write cycles or out for read cycles.

CE Chip Enable: disabling chip cuts power by 80%.p g p p y %

OE Output Enable: Turns the tri-state outputs on/off.

WR Write: stores new data in selected location

INTERFACING.PPT(01/10/2009) 2.29

Memory Read Cycle

CE•OE•!WR

A12:0

D7:0

<10 (20)

>5

<35 <20 (35)

>5




A read cycle happens when CE•OE•!WR is true.

High, Low Constant, Hi Z
Don't Care Input
Unknown Output{

Note: Time axis not to scale

 If A12:0 changes, D7:0 remains for at least 5 ns and
goes to new value within 35 ns. Rubbish in between
even if new and old locations contain the same value.

 If a read cycle ends due to OE going low the outputs go If a read cycle ends due to OE going low, the outputs go
Hi-Z within 10 ns

 If a read cycle starts due to OE going high, D7:0 stays
Hi-Z for at least another 5 ns and the selected word
appears within 20nsappears within 20ns

You can use CE instead of OE but it is slower: 20 ns to turn
off and 35 ns to turn on (in parentheses on timing diagram).

When reading data, the propagation delay to the D7:0 g p p g y
outputs is called the RAM’s access time: 35 ns from A12:0
and 20 ns from OE.

INTERFACING.PPT(01/10/2009) 2.30

Memory Write Cycle

>5 >30 >5

A12:0

CE•WR 

 

>2>15<10 >5

CE•WR

CE•OE•!WR

D7:0






A write cycle happens whenever CE•WR is true.

 CE•WR must go high for at least 30 ns.

 To avoid writing to unwanted locations the address



 To avoid writing to unwanted locations, the address,
A12:0 must remain constant for at least 5 ns at both
ends of the write pulse.

 Input data D0:7 only matters at the end of the write
pulse Setup & hold times of 15 ns & 2 ns define apulse. Setup & hold times of 15 ns & 2 ns define a
window within which it must not change.

 Input When CE•OE•!WR goes high, the memory reverts
to read mode. The input data must be removed from
D7:0 before this happens.D7:0 before this happens.

• Timing specifications that end on an output are
guarantees from the chip manufacturer (shown in black).

• Timing specifications that end on an input are
i t th t th d i t t (h bl)requirements that the designer must meet (shown blue).

INTERFACING.PPT(01/10/2009) 2.31

Microprocessor Memory Interface

µP RAM
8k × 8

A15 0 A12 0

A15:13

A

D

A15:0

D7:0D

A

8 8

16
A12:0

13

1 



WRITE

MCLOCK
WR

OE

CE1

OE = MCLOCK • !WRITE WR = MCLOCK • WRITE

• Reading or writing takes place during the second half of
the clock cycle when MCLOCK is high.

MCLOCK

0 250 500

• WRITE output from µP determines whether WR or OE
goes high. Assume NAND gate delay = 5 ns.

MCLOCK

A15:0

>33 <181

WRITE

WR or OE

255 5050 5

INTERFACING.PPT(01/10/2009) 2.32

Microprocessor Write to Memory

MCLOCK

0 250 500
505255

<378 >533<181

MCLOCK

A12:0

WRITE

D0:7

WR

OE

µP
A

RAM
8k × 8

A12:0

D7 0

A

WR

>5 >5 >30RAM Requirements:
>15 >2

1 



WRITE

MCLOCK

D

WR

OE

D7:0D

MCLOCK

• µP emits data within 128ns of MCLOCK

• Requirements:

– AddrWR setup: 181+5 < 255 

– Data !WR setup: 378+15 < 505 

– WR pulse: 255+30 < 505 

Addr hold: 505+5 < 533 – Addr hold: 505+5 < 533 

– Data hold: 505+2 < 533 

INTERFACING.PPT(01/10/2009) 2.33

Microprocessor Read Setup Time

MCLOCK

A12:0

0 250 500<181 255 <275 505 <515
>505

WRITE

D0:7

OE

WR

• Data Setup time: 30 ns before MCLOCK
– Three paths must be satisfied

>30µP Requirements: >10,<83

– Check each one individually

1

µP
A

RAM
8k × 8

D

A12:0

D7:0D

A

1 



WRITE

MCLOCK
WR

OE

• Requirements:

– Addr to Data setup: 181+35+30 < 500 

– WRITE to Data setup: 181+5+5+20+30 < 500 

– MCLOCK to Data setup: 250+5+20+30 < 500 

INTERFACING.PPT(01/10/2009) 2.34

Microprocessor Read Hold Time

MCLOCK

A12:0

0 250 500<181 255 <275 505 <515
>505

WRITE

D0:7

OE

WR

• D7:0 must go tristate 10 to 83 ns after MCLOCK
– MCLOCK path is the only relevant one

>30µP Requirements: >10,<83

– OE to tristate delay varies between 0 and 10 ns

µP
A

RAM
8k × 8

D

A12:0

D7:0D

A

1 



WRITE

MCLOCK
WR

OE

• Requirements:

– Min hold: 505 > 500+10 

– Max hold: 515 < 500+83 

May need to add some delay to !OE signal to meet min hold

INTERFACING.PPT(01/10/2009) 2.35

Quiz Questions

1. What is the access time of a static RAM?

2 When writing to a static RAM why is does the state of2. When writing to a static RAM, why is does the state of
the data inputs matter only at the end of the write
pulse?

3. How do you check timing constraints if the manufacturer
specifies a maximum propagation delay but nospecifies a maximum propagation delay but no
minimum ?

4. How do you check timing constraints if the validity of an
output depends on several of the input signals ?

Answers are all in the notes.

SYNCSM.PPT(01/10/2009) 3.1

Lecture 6

Control Logic

Objectives

U d t d h di it l t b di id d i t• Understand how digital systems may be divided into a
data path and control logic

• Appreciate the different ways of implementing control
logic

• Understand how shift registers and counters can be
used to generate arbitrary pulse sequences

• Understand the circumstances that give rise to output
glitches

SYNCSM.PPT(01/10/2009) 3.2

Control Logic

Most digital systems can be divided into

– Data Path: adders, registers etc, g

– Control Logic: generates timing signals to ensure
things happen at the right time and in the right order

Control logic can be implemented with:

– Microprocessor/Microcontroller
+ Cheap, very flexible, design easy (software)

– Slow: most actions require >20 instructions = 2 µs @
clock speed of 10 MHz.

U f l li tiUse for slow applications.

– Synchronous State Machine
+ Fast (20 ns/action), Cheap using programmable logic.

– Hard to design complex systems. Limited data storage.

Use for fast, moderately complex systems.Use for fast, moderately complex systems.

– Counters/Shift Registers
+ Fast, Cheap, Very easy design.

– Simple systems only.

A special case of synchronous state machines.

Use for very simple systems (fast or slow).

SYNCSM.PPT(01/10/2009) 3.3

Shift Registers

Easy way to make a sequence of events happen in response
to a trigger:

– P, Q, R and S are delayed
versions of D but with all
transitions on the CLOCK 

– Delay from D to P is between

C1

1D



SRG
CLOCK

D P

Q

R
0 and 1 clock cycle.

R

S

CLOCK

T
½T±½T

CLOCK

D

P

Q

R

SS

P•!R

QR

!R•S

– P•!R gives pulse of length 2T approx ½T after D.

– !R•S gives pulse of length T approx 2½T after D.

– QR gives pulses of length T approx 1½T after D & 

SYNCSM.PPT(01/10/2009) 3.4

Shift Registers with Short Input Pulses

C1

SRG

1 1D

CLOCK

1D
GO

1

C1

1D

R

D X

Y

Z

• D might be ignored if it lasts < 1 CLOCK period

• GO input is sent to a edge-triggered input

• Works like a toaster: Z causes D to turn off halfway
through the whole cycle.

CLOCK

GO

D

X

Y

Z

• Use the X output with care: it may oscillate for tens of
ns if D changes within setup/hold window:

CLOCK

GO

• X is OK by next clock  so Y and Z are safe to use.

D

X

Y

Z

SYNCSM.PPT(01/10/2009) 3.5

Shift Register Example: Logic Analyser

On every GO rising edge we must sample DATA and
store it in the RAM.

CLOCK

GO

D
 X

Y

RAMDAT

WR

ADDR









• RAM control signals are easily generated from the shift
register. Four time instants available:  to .

• We don’t use  so it doesn’t matter if X has a glitch on
the previous cycle since it is ANDed with Y (which is lowthe previous cycle since it is ANDed with Y (which is low
at the time).

SYNCSM.PPT(01/10/2009) 3.6

Synchronous Counters

C1


CLOCK

CTR4
CLOCK

1D


D3:0

Q3:0

0001


P

Q

+

CT
Q3:0

CLOCK

• An N bit binary counter has a cycle length of 2N states.
We can draw a state diagram in which one transition is
made for each clock  :

1 2 3 4 5 6 7

15 14 13 12 11 10 9

0 8

• Adder can be simplified: one set of inputs is fixed so
many gates can be eliminated:

 X
A

0
=

X0

 Y
B

1
=

YB

SYNCSM.PPT(01/10/2009) 3.7

Synchronous RESET

CLOCK

C1

1D
 D3:0

Q3:0

0001


P

Q

CTR4

C1/+

CT
Q3:0

CLOCK

1R
!RST



!RST

• This is a synchronous reset input: taking !RST low has
no effect until the next clock 

• In a synchronous counter everything is done by
manipulating the D inputs of the registermanipulating the D inputs of the register.

1 2

3

15

14 RST
RST

!RST

!RST

!RST!RST

413

0

RST RST

RST

RST

RSTRST

RST

!RST

!RST!RST

!RST RST

5

6

12

11

RST

RST

RST
RSTRSTRST

RST

RST

!RST !RST

710 9 8

!RST
!RST!RST!RST

!RST

SYNCSM.PPT(01/10/2009) 3.8

Detecting Counter Output Values

CTR4

+/C1
CLOCK

CTRDIV10

+
CLOCK

 0

3

CT

1R

+/C1

Z Q0

Q1

Q2

Q3

Q0

Q3

0

3

CT

+

Q0

Q1

Q2

Q3

Notation: CT = Contents
0 = least significant bit (LSB)
Bit k has a binary weight of 2k

1R means reset on next C1 (CLOCK  edge)1R means reset on next C1 (CLOCK  edge)

• Z is high whenever Q3:0 = 1??1 1001 = 9
1011 = 11

lowest value is when 1101 = 13
all the ? bits are zero 1111 = 15all the ? bits are zero 1111 15

• Counter resets after 9 giving a cycle length of 10 states:

1 2 3 4

13

10 11

9 8 7 6

12

14 15

0 5

SYNCSM.PPT(01/10/2009) 3.9

Output Glitches

If k counter bits change “simultaneously”, other logic
circuits using them may briefly see any of 2k possible c cu s us g e ay b e y see a y o poss b e
values.

Glitches are possible at the logic circuit output if both:
1. These 2k values include any that would cause

the logic circuit output to change.

CTR4

3+
Q3CLOCK

g p g
and 2. The logic circuit output is meant to remain at

a constant value.

0

3

CT

+

Q0

Q1

Q2

 Y

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 015Q0:3

Q3

Q2

Q1

Q0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 015Q0:3

Y

•Y is high when Q=0000 or 0100

•Transition 1  2: Q=00?? which includes 0000
•Transition 5  6: Q=01?? which includes 0100
•Transition 7  8: Q=???? which includes both

SYNCSM.PPT(01/10/2009) 3.10

Eliminating Output Glitches

We can eliminate output glitches by delaying Y with a
flipflop:

CTR4

0

3

CT

+

Q0

Q1

Q2

Q3CLOCK

 Y

C1

1D
Z

Q3

Q2

Q1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 015Q0:3

Alternatively use a count sequence where only one bit

Q1

Q0

Y

Z

y q y
changes at a time (e.g. Gray code):

1 3 2 6 7 5 40

Top and bottom rows differ only in the MSB  any even
count length can be made by branching to the bottom row
f h lf h D h d li i 12

8 9 11 10 14 15 13 12

after half the counts. Dashed line gives a ÷12 counter.

SYNCSM.PPT(01/10/2009) 3.11

Quiz Questions

1 If the CLOCK period is T what is the range of possible1. If the CLOCK period is T, what is the range of possible
time delays between a change in the DATA input of a
shift register and the resultant change in the output of
the first stage?

2 How do you combine the outputs of a shift register to2. How do you combine the outputs of a shift register to
generate a pulse for both the rising and the falling
edges of its input signal?

3. In order to guarantee that a shift register will notice a
pulse on its DATA input, how long must a pulse last?pulse on its DATA input, how long must a pulse last?

4. If an AND gate is used to combine 2 of the outputs
from a 4-bit counter, how many different count values
will make the AND gate output go high?

5 Wh d t t lit h t h t5. Why do output glitches not occur when a counter
counts from 6 to 7?

6. Name two ways in which output glitches may be
avoided.

Answers are all in the notes.

SYNCSM.PPT(01/10/2009) 3.12

Lecture 7

Data Decoding with a Counter

This design example illustrates

U i t t ti i t l• Using a counter to measure time intervals

• The logic symbol notation for a bidirectional counter

• Why it is necessary to use a flipflop to synchronise an
asynchronous input signaly p g

• Detailed timing analysis for asynchronous signals

• Assembling a larger design bit by bit

SYNCSM.PPT(01/10/2009) 3.13

Data Decoding

Task: Decode a data stream where a 0 or 1 is transmitted
as a pulse lasting 2/3T or 1/3T respectively.

Problem: you don’t know the value of T.

IN

T

0 1 0 1

T

Method: (a) Wait for a rising edge

(b) Time how long until the next falling edge

(c) Time how long until the next rising edge

(d) Output a 0 or 1 according to which is longer
and then go back to (b).

How do you measure time intervals ?

With a counter.
– Reset the counter at the rising edge
– Count upwards while IN=1
– Count downwards while IN=0
– See if it is +ve or –ve just before you reset

it at the next rising edge.

SYNCSM.PPT(01/10/2009) 3.14

Counter Symbol

XCTR10X

1R

M3 Q9
Q9

RST

IN

CLOCK

(1 MHz)
C1/3+/3–

Notation:

• M3 is a “mode” input which controls the counting direction. We
connect this to IN

(1 MHz)

connect this to IN.

• The CLOCK input is
– +ve edge triggered – indicated by the “>” symbol
– Has three separate functions divided by “/”

• C1 means it is a clock for some other feature of the circuit
3 th t th t i t h CLOCK• 3+ means that the counter increments on each CLOCK
rising edge if the M3 input is high

• means that the counter decrements on each CLOCK
rising edge if the M3 input is low

• 1R: The “1” means that this input only has any effect when C1
is active (i.e. the rising edge of CLOCK). R means the RST

3

(g g)
input sets the counter to zero when it is high.

• CTR10 means it is a 10 bit counter: 0 to 1023. It will wrap
around from 1023 to 0 when counting up and from 0 to 1023
when counting down so 1023 is equivalent to –1. Q9, the MSB,
tells you when it is negative.

SYNCSM.PPT(01/10/2009) 3.15

Resetting the Counter

Task: We want to reset the counter on every rising edge of IN.

Method: Use a 1-bit shift register to generate a reset pulseMethod: Use a 1 bit shift register to generate a reset pulse.

C1

1D
 RST

IN

CLOCK

Z

IN

CLOCK

C1
(1 MHz)

IN

Z

RST

• Z is an inverted version of IN but is 1 clock cycle later.y

• RST goes high for one clock cycle every time IN goes high

• Problem 1: If IN is unsynchronised (can change at any part of
the CLOCK cycle), we might get very short RST pulses.

IN

CLOCK

Z

RST

SYNCSM.PPT(01/10/2009) 3.16

Getting Rid of Glitches

Solution 1: synchronise IN. Y is always synchronised below.

C1

1D
 RST

IN

CLOCK

(1MHz)

Z

C1

1D
Y

(1 MHz)

Potential Problem 2:

All changes of Y occur just after the clock rising edge.

If IN changes just on the clock edge, Y (and RST) could oscillate.

Doesn’t matter because the counter only looks at RST on
the next clock rising edge and the oscillation will be gone
by then.

IN

CLOCK

Y

P = 1 µs
y

RST

Z

Counter x+1 0
No reset ResetGlitch

x

SYNCSM.PPT(01/10/2009) 3.17

Timing the input pulses

300

• Count up when Y is high and down when it is low

• Each bitcell lasts 300 µs  300 clock cycles

Y

RST

C t

300 µs

Counter

+200 –100 +100 –200

For a logic zero

• Count up by 200 then down by 100  +100 at end of cell• Count up by 200 then down by 100  +100 at end of cell

For a logic one

• Count up by 100 then down by 200  –100 at end of cell

Counter MSB, Q9, is 0 for positive numbers and 1 for negative

SYNCSM.PPT(01/10/2009) 3.18

Saving the Answer

We need to remember the value of Q9 just before the
counter is reset.

• Use the RST pulse to enable the clock of a flipflop

– G1 is a “gating” input: it enables something when it
is high

– 1C2 is a clock input but only when G1 is true1C2 is a clock input but only when G1 is true

0 1 0

Y

RST

Counter

OUTOUT

0 1 0

OUT gives the decoded data stream but one bitcell late.

SYNCSM.PPT(01/10/2009) 3.19

Slowest and Fastest Data Rate

Clock = 1/P Hz, Bitcell = T seconds, Counter = n bits

Slowest Data RateSlowest Data Rate

At the end of the bitcell, counter reaches ±T/3P. To ensure
that Q9 is correct, this must not exceed half the counter
range. Hence

µs 153625.125.03/  PTPT nn

It doesn’t matter if the counter exceeds this range in the
middle of a cell: only the final value matters.

Fastest Data Rate

OUT only goes low if Y goes high for more cycles than low.

CLOCK

Y High:Y Low 2:1 1:2 1:1 2:2

Y

CLOCK

RST

? 0 1 0 0 –1 –2 0 –1 0 1 0Count

OUT

–1 0

? 0 1 1 1OUT Data ? 0 1 1 1OUT Data

We have to make sure that when IN high:low = 2/3T : 1/3T
this results in Y being high for more clock cycles than it is g g y
low.

SYNCSM.PPT(01/10/2009) 3.20

Fastest Data Rate

If a pulse on IN has length W then the length of the
corresponding synchronised pulse on Y is W±P.

IN

CLOCK

Y

V W

V P W P

P

V+P W–P

If IN high:low = 2/3T : 1/3T

then Y high:low = 2/3T ± P: 1/3T ± P

it follows that we need

2/3T ± P > 1/3T ± P  2/3T – P > 1/3T + P

 2T – 3P > T + 3P  T > 6P = 6 s

Example of failure when T = 6 s

If rising edges of IN are just too late to be sensed by the
clock but falling edge is just early enough then Y is highclock but falling edge is just early enough then Y is high
for 3 cycles and low for three cycles 

SYNCSM.PPT(01/10/2009) 3.21

1 If a flipflop input is labelled “2C1” what is its function ?

Quiz Questions

1. If a flipflop input is labelled 2C1 what is its function ?

2. If a counter input is labelled “ ” what is its
function?

3. What is the difference between a synchronous and an

 3/3/1C

asynchronous reset input to a counter ?

4. Why doesn’t it matter if the input to an asynchronous
reset input has glitches just after the clock rising edge?

5 If a 10-bit counter initially contains 1020 and is then5. If a 10-bit counter initially contains 1020 and is then
incremented 10 times, what value will it then contain?

6. What is the minimum and maximum number of clock
rising edges included in an asynchronous pulse that
lasts x clock cycles?lasts x clock cycles?

7. What is the smallest values of x to guarantee that

1. ceil(x) <= floor(2x)

2. ceil(x) < floor(2x)

Answers are all in the notes.

SYNCSM.PPT(01/10/2009) 3.22

Lecture 8

Synchronous State Machine Analysis

Objectives

R i th d fi iti f h t t hi• Review the definition of a synchronous state machine

• Learn how to construct the state table and state
diagram of a state machine from its circuit diagram

• Appreciate the alternative ways of drawing the state pp y g
diagram

• Learn how to draw the output waveforms of a state
machine given its initial state and input waveforms

• Understand the causes of glitches in state machine• Understand the causes of glitches in state machine
outputs

SYNCSM.PPT(01/10/2009) 3.23

Synchronous State Machines

Synchronous State Machine = Register + LogicSynchronous State Machine = Register + Logic

CLOCK

Inputs

O t t
C1

1D

Combinational
Logic

CLOCK

STATE NEXT_STATENEXT_STATE

Outputs

– The state is defined by the register contents

– Register has n flipflops  2n states

– The state only ever changes on CLOCK
• We stay in a state for an exact number of CLOCK cycles

– The state is the only memory of the past

Rules:Rules:

– Never mess around with the clock signal

– Never use asynchronous SET/RESET inputs to
register (asynchronous = independent of CLOCK)

SYNCSM.PPT(01/10/2009) 3.24

Combinational Logic Block

Inputs

C1

1D

Combinational
Logic

CLOCK

STATE NEXT_STATENEXT_STATE

Outputs

– The combinational logic outputs specify two things:

 The output signals during the current state
These may change during the state if the inputs
change

 Which state to go to at the next CLOCK g
This too may change during a state but the only thing
that matters is its value just before CLOCK 

bi ti l l i h i t l f db k l– combinational logic has no internal feedback loops
 no memory

• combinational logic outputs are entirely determined by
the current STATE and the current Inputs

SYNCSM.PPT(01/10/2009) 3.25

Analysing a State Machine

1 
A

Y

C1

1D

 




CLOCK
Y

S0

S1

NS0

NS1
NS0

State Table:

Truth table for the combinational logic:

– One row per state: n flipflops  2n rows

– One column per input combination:
m input signals  2m columns

– Each cell specifies the next state and the output
signals during the current state

• for clarity, we separate the two using a /

NS1,NS0/Y

S1,S0 A=0 A=1

00 11/0 10/1
01 11/0 10/0
10 11/1 10/0
11 01/1 01/111 01/1 01/1

SYNCSM.PPT(01/10/2009) 3.26

Drawing the State Diagram

Split state table

Next State: NS1:0

S1:0 A=0 A=1Split state table
into two parts:

NS1,NS0/Y

S1,S0 A=0 A=1

S1:0 A=0 A=1

0 3 2
1 3 2
2 3 2
3 1 1

 S ,S0 0

00 11/0 10/1
01 11/0 10/0
10 11/1 10/0
11 01/1 01/1

Output Signal: /Y

S1:0 A=0 A=1

0 /0 /1 Y=A
1 /0 /0 Y=0
2 /1 /0 Y=!A
3 /1 /1 Y=1

 Y=A
0A A

Y=A
2

Y=1
3

Y=0
1A

A
AA

– Transition arrows are marked with Boolean
expressions saying when they occur

• Every input combination has exactly one destination.
• Unlabelled arrows denote unconditional transitions

– Output Signals: Boolean expressions within each
state.

SYNCSM.PPT(01/10/2009) 3.27

Timing Diagram

Y=A
0A A

Y=A
2

Y=1
3

Y=0
1A

A
AA

CLOCK

A

State: S1:0 0 3 1 2 3 1 3

Y

State machine behaviour is entirely determined by:
• The initial state
• The input signal waveforms

St t SState Sequence:

Determine this first. Next state depends on input
values just before CLOCK .

Output Signals:

Defined by Boolean expressions within each state.

If all the expressions are constant 0 or 1 then outputs
only ever change on clock . (Moore machine)

If any expressions involve the inputs (e.g. Y=A) then
it is possible for the outputs to change in the middleit is possible for the outputs to change in the middle
of a state. (Mealy machine)

SYNCSM.PPT(01/10/2009) 3.28

Self-Transitions

Y=A
0A A

Y=A
2

Y=1
3

Y=0
1A

A
AA

• We can omit transitions from a state to itself.
– Aim: to save clutter on the diagram.

• The state machine remains in its current state if none
of the transition-arrow conditions are satisfied.

– From state 2, we go to state 3 if !A occurs,
otherwise we remain in state 2.

Y=A
0

Y=A
2

Y=1
3

Y=0
1

A A

A
A

A
Y=A Y=1 Y=0A

SYNCSM.PPT(01/10/2009) 3.29

Output Expressions on Arrows

Y=A
0A A

It may make the diagram clearer to put output expressions

Y=A
2

Y=1
3

Y=0
1A

A
A

It may make the diagram clearer to put output expressions
on the arrows instead of within the state circles:

– Useful if the same Boolean expression determines
both the next state and the output signals.

– For each state, the output specification must be
ith i id th i l l itt deither inside the circle or else on every emitted

arrow
– If self transitions are omitted, we must declare

default values for the outputs
0A/1 A

2
Y=1

3
Y=0

1A/1
A

A
Output: /Y
Default: Y=0

• Outputs written on an arrow apply to the state
emitting the arrow.

• Outputs still apply for the entire time spent in a state
• This does not affect the Moore/Mealy distinctionThis does not affect the Moore/Mealy distinction
• This is a notation change only

SYNCSM.PPT(01/10/2009) 3.30

Output Glitches

When making a transition from one state to another, the
logic is likely to generate a glitch on an output if:

– two or more state bits change

– the output has the same value in both states

– some combination of the changing state bits would
cause the output to change

Y=A
0

Y=A
2

Y=1
3

Y=0
1

A A

A
A

A
Y=A Y=1 Y=0A

In changing from state 1 to state 2:

– the two states differ in both S0 and S1

– the output is low in both states

if S0 and S1 both went high then the output would– if S0 and S1 both went high then the output would
change.

SYNCSM.PPT(01/10/2009) 3.31

Cause of Output Glitches

Look in detail at the logic when going from state 1 to 2:

C1

1D

1  



A

CLOCK
Y

S0

S1

NS0

NS1
NS0

P

 NS0

CLOCK

A

State: S1:0 1 2

S0

P = A•S0

S1

Y = PS1

The two inputs to the XOR gate (P and S1) are meant to
change simultaneously.

In fact S1 changes first because of the delay through the
NOR gate.

The XOR gate “sees” the effect of S1 changing before it
“sees” the effect of S0 changing. It is as if we went briefly
into state 3.

SYNCSM.PPT(01/10/2009) 3.32

Quiz Questions

1 What is the definition of a Moore machine?1. What is the definition of a Moore machine?

2. What does it mean if an arrow in a state diagram has
no Boolean expression attached to it?

3. To which state does an output value refer when it is
marked on an arrow in a state diagram? Is it the state
the arrow points towards or the state the arrow points
away from?

4. Is the next state determined by the value that the input
signals have just before or just after the CLOCK?

5. If transitions from a state to itself have been omitted
from a state diagram, how can you tell when such a
transition occurs?

6. What are the three conditions that give rise to output
glitches?

Answers are all in the notesAnswers are all in the notes.

SYNCSM.PPT(01/10/2009) 3.33

Lecture 9

Synchronous State Machine Design

Objectives

T l h t d i t t hi t t• To learn how to design a state machine to meet
specific objectives

• To understand when two or more states are equivalent
and can be merged into a single state.

• To understand the principles of assigning state
numbers

• To appreciate when it is necessary to synchronise a
state machine’s inputs with the CLOCK

• To understand how a state machine is implemented
using programmable logic

SYNCSM.PPT(01/10/2009) 3.34

Designing a Synchronous State Machine

The state is the only way the circuit can rememberThe state is the only way the circuit can remember
what happened in the past.

The number of states required equals the number of
past histories that the circuit needs to distinguish.

General Design Procedure

– Construct a sequence of input waveforms that
includes all relevant situationsincludes all relevant situations.

– Go through the sequence from the beginning.
Each time an input changes, you must decide:

• branch back to a previous state if the current
situation is materially identical to a previous onesituation is materially identical to a previous one

• create a new state otherwise

– For each state you must ensure that you have
specified:

• which state to branch to for every possible input• which state to branch to for every possible input
pattern

• what signals to output for every possible input
pattern

SYNCSM.PPT(01/10/2009) 3.35

Designing a Noise Pulse Eliminator

Design Problem: Noise elimination circuit

We want to remove pulses that last only one clock cycle– We want to remove pulses that last only one clock cycle

• Use letters a,b,… to label states; we choose numbers later.
• Decide what action to take in each state for each of the

possible input conditions.
• Use a Moore machine (i.e. output is constant in each state).

Easier to design but needs more states & adds output delay.

Assume initially in state “a” and IN has been low for ages

/0
a b

/0

1

0

a  …00

Assume initially in state a and IN has been low for ages

(1)

1

0 b  …001

c  11

/0
a b c

/0 /10

1
1(2)

b c d
1

0 1

1
0

c  …11

d  …110

/0
a b c d

/0 /10 /1
1

(3)

a b c d
1

0 1

1
0

(4)
/0 /0 /10 /11

0

(4)

SYNCSM.PPT(01/10/2009) 3.36

Explanatory Notes

(1) If IN goes high for two (or more) clock cycles then OUT must
go high, whereas if it goes high for only one clock cycle then
OUT t l It f ll th t th t hi t i “IN l fOUT stays low. It follows that the two histories “IN low for
ages” and “IN low for ages then high for one clock” are
different because if IN is high for the next clock we need
different outputs. Hence we need to introduce state b.

(2) If IN goes high for one clock and then goes low again, we can
forget it ever changed at all. This glitch on IN will not affect any
of our future actions and so we can just return to state a.
If on the other hand we are in state b and IN stays high for a
second clock cycle, then the output must change. It follows
that we need a new state, c.

(3) The need for state d is exactly the same as for state b earlier.
We reach state d at the end of an output pulse when IN has
returned low for one clock cycle. We don’t change OUT yet
because it might be a false alarm.

(4) If we are in state d and IN remains low for a second clock(4) If we are in state d and IN remains low for a second clock
cycle, then it really is the end of the pulse and OUT must go
low. We can forget the pulse ever existed and just return to
state a.

Each state represents a particular history that we
d t di ti i h f th thneed to distinguish from the others:

(a) IN=0 for >1 clock (b) IN=1 for 1 clock

(c) IN=1 for >1 clock (d) IN=0 for 1 clock

SYNCSM.PPT(01/10/2009) 3.37

Equivalent States

An initial design often creates more states than are
necessary.

States A and B are said to be equivalent if, for any
possible input sequence, you get identical output
waveforms regardless of whether the initial state is A
or B.

You can simplify a state machine by merging equivalent
states into a single state.

Two states are definitely equivalent if:

– They have the same outputs for every possible input– They have the same outputs for every possible input
combination.

– They have the same next state for every possible
input combination (assuming they themselves are
equivalent).

This rule won’t always find all possible equivalent states
and so won’t necessarily make the state machine as
simple as possible (you will learn a complete rule next
year).

States A and B are
i l tequivalent

SYNCSM.PPT(01/10/2009) 3.38

Implementing a State Machine

Assign each state a unique binary number. Your choice
affects circuit complexity but the circuit will work correctly
whatever choice you make.

State Assignment Guidelines:

– Any outputs that depend only on the state should if
possible be used as some of the state bits.

– Assign similar (=most bits the same) numbers to
states (a) that are linked by arrows, (b) that share a
common destination or source, (c) that have the same
outputs.

If two subsets of the state diagram have identical– If two subsets of the state diagram have identical
transitions with identical input conditions, they should
be numbered so that corresponding states have
similar numbers.

Example:Example:

/0
00 01 11 10

/0 /10 /1

1

0 1

1
0

1

0

– S1 is the same as OUT (from the first guideline)

0
State Numbers: S1,S0
Inputs/Outputs: IN/OUT

S1 is the same as OUT (from the first guideline)
– All states linked by arrows differ in only one bit (from

the second guideline)

SYNCSM.PPT(01/10/2009) 3.39

Implementing a State Machine (contd)

Now we can draw a Karnaugh map (really three K-maps in
one) giving NS1, NS0 and OUT in terms of S1, S0 and IN:

NS1,NS0/OUT

S1,S0 IN=0 IN=1

00 00/0 01/0
01 00/0 11/0

From this we can derive Boolean expressions for the
combinational logic block:

11 10/1 11/1
10 00/1 11/1

1001)01(1 SOUTINNSSSSSINNS 

C1

IN

CLOCK

OUT
Combinational

Logic1D
NS1

NS0

OUT

S1

S0

NS1

NS0

SYNCSM.PPT(01/10/2009) 3.40

Unsynchronised Inputs

An input transition just before CLOCK  can cause the NS
bits to change within the setup/hold window of the register.

If k of the NS bits change we might go to any of 2k states:

CLOCKCLOCK

State

IN

NS1

NS0

S1

S0

1 3 3 2 1

State 3:

IN  causes NS0:1 to change from 11 to 10  k=1.
NS0  too late for S0 but causes glitch on S0
S0 goes low on next CLOCK  Everything is OK

S0

S0 goes low on next CLOCK Everything is OK.

State 2:

IN  causes NS0:1 to change from 00 to 11  k=2.
NS0 changes in time so S0  1.
NS1 changes too late so S1  0NS1 changes too late so S1  0.
Next state is 01 which is an ILLEGAL destination.

SYNCSM.PPT(01/10/2009) 3.41

Input Synchronization

• An asynchronous input must be synchronized if in any
state it affects more than one of the next state bits.

• Inputs can be synchronized by passing them through a
register before they go to the combinational logic:

Combinational

C1

IN

CLOCK

PIN
Logic

Propagation
Delay = tl

1D
IN

NS1

NS0

OUT

S1

S0

NS1

NS0

PIN

11

00

PIN

PIN
10

CLOCK

IN

NS0:1

T

PIN

tw tl ts

– Here IN must be synchronized because destinations
11 and 00 differ in more than 1 bit position

– IN might change within setup-hold windowIN might change within setup hold window
– PIN (Previous IN) will be stable tw after CLOCK 

Typical tw is 25ns for MTBF of 1000 years
– NS1:0 will be stable tw+tl after CLOCK 
– CLOCK period (T) must be greater than tw+tl+ts for

reliable operationreliable operation
– To get a huge MTBF, send PIN through a 2nd register

SYNCSM.PPT(01/10/2009) 3.42

Input Sync versus Output Glitches

Do not confuse two different problems:

O t t lit h lik l if th diti tOutput glitches are likely if three conditions are true:

• two consecutive states differ
in more than one bit position

• output is the same in both 01 10 11

states

• changing only some of the
state bits would cause an
output change

0 0 1

Input synchronisation is needed
01

A
when two alternative destinations
differ in more than one bit
position. 10

A

A

This is a far more serious problem as it

In both cases the solution is to send the offending input
t t i l th h i t /fli fl

This is a far more serious problem as it
results in the wrong state sequence.

or output signal through a register/flipflop.
(This adds a 1-cycle delay).

SYNCSM.PPT(01/10/2009) 3.43

Universal State Machine Circuit Diagram

n
a

l

RINPUTS R OUTPUTS

C
o

m
b

in
at

io
n

L
o

g
ic

RINPUTS

R
STATE

R OUTPUTS

NEXT_STATE

• “R” denotes register bits: all with the same CLOCK

• Inputs can go directly into logic block if they are already
synchronized with CLOCK Others must be passedsynchronized with CLOCK. Others must be passed
through a register unless (i) they only affect one bit of
the Next_State and (ii) the logic block is hazard-free.

• Glitch-prone outputs must be deglitched if they go to a
clock or to an asynchronous set/reset/load inputclock or to an asynchronous set/reset/load input.

– For some state diagrams it is possible to eliminate
output glitches by clever state numbering.

• Input synchronization and output deglitching add
circuitry and increase input-to-output delays Avoid ifcircuitry and increase input-to-output delays. Avoid if
unnecessary.

SYNCSM.PPT(01/10/2009) 3.44

Quiz Questions

1 What problem can arise if two alternative next states1. What problem can arise if two alternative next states
differ in more than one bit position?

2. What problem can arise if two consecutive states differ
in more than one bit position?

3. What determines the minimum number of states
needed by a state machine to solve a particular
problem?

4. What aspects of a state machine’s operation are
affected by the assignment of state numbers?

5. Under what conditions can a group of states be
merged into a single state?

Answers are all in the notes.

ANALOG.PPT(01/10/2009) 4.1

Lecture 10

Digital-to-Analog Conversion

Objectives

– Understand how a weighted-resister DAC can be g
used to convert numbers with binary or non-binary bit
weightings

– Understand the meaning of the terms used to specify
DAC accuracy

U d t d h R 2R l dd b d t– Understand how an R-2R ladder can be used to
convert both unsigned and signed binary numbers

– Understand the offset binary representation of
negative numbers

ANALOG.PPT(01/10/2009) 4.2

Digital-to-Analog Conversion

We want to convert a binary number into a voltage
proportional to its value:

1

1

X3 V3 R3=1/G3

X2 V2 R2

VOUT

   V V G V V GOUT OUT3 3 0 0 0    

1

1

X1 V1

X0 V0

R1

R0

V
V G V G V G V G

G G G G

R
G G G G

OUT

Thevenin

3 3 2 2 1 1 0 0

3 2 1 0

3 2 1 0

1


  
  


  

Hence VOUT is a weighted sum of V3, …, V0 with weights
proportional to the conductances G3, …, G0.

3 2 1 0

– If X3:0 is a binary number we want conductances in
the ratio 8:4:2:1.

– Very fast: gate slew rate  3 V/ns.

– We can scale the resistors to give any output
impedance we wantimpedance we want.

You do not have to use a binary weighting

– By using other conductance ratios we can choose
arbitrary output voltages for up to five of the sixteen
possible values of X3:0 May need additional resistorspossible values of X3:0. May need additional resistors
from VOUT to the power supplies.

ANALOG.PPT(01/10/2009) 4.3

Output Op-Amp

1X3 V3 R3=1/G3 RF

1

1

1

X2 V2

X1 V1

X0 V0

R2

R1

R0

–

+

VOUT

 00112233 GVGVGVGVRV
R

R
V FThévenin

Thévenin

F
OUT 




Adding an op-amp:

– The voltage at the junction of all the resistors is now
held constant by the feedback

• Hence current drawn from V3 is independent of the other
voltages V Vvoltages V2, …, V0

• Hence any gate non-linearity has no effect  more
accurate.

– Lower output impedance

– Much slower: op-amp slew rate  1 V/µs.p p µ

Hard to make accurate resistors covering a wide range of
values in an integrated circuit.

– Weighted-resistor DAC is no good for converters withWeighted resistor DAC is no good for converters with
many bits.

ANALOG.PPT(01/10/2009) 4.4

DAC Jargon

ng
e

1 LSB

V

X0:2 V

na
l F

ul
l-s

ca
le

 R
an1 LSB

Accuracy=1.8@X=3 Linearity=–0.7@X=4
Non-monotonic@34 Diff Linearity=–1 2@ 34

0 1 2 3 4 5 6 7
X0:2

N
om

i

Non-monotonic@34 Diff Linearity=–1.2@ 34
(all in units of LSB)

Resolution 1 LSB = V when XX+1
= Full-scale range ÷ (2N–1)

Accuracy Worst deviation from nominal line

Linearity Worst deviation from line joining end points

Differential Linearity
Worst error in V when XX+1Worst error in V when XX+1
measures smoothness

Monotonic At least V always has the correct sign

Settling time Time taken to reach the final value to withinSettling time Time taken to reach the final value to within
some tolerance, e.g. ±½ LSB

ANALOG.PPT(01/10/2009) 4.5

R-2R Ladder

We want to generate currents I0, 2I0, 4I0, …

– Two 2R resistors in parallel means
that the 2I0 current will split equally.

2R
V0

2R

I02I0

I0

– The Thévenin resistances of the two
branches at V1 both equal 2R so the
current into this node will split evenly.

We already know that the current into

2R

2R

V1

R

I1

I0
V0

I1

2I1

We already know that the current into
node V0 is 2I0, so it follows that I1=2I0.

2R I0

– We can repeat this process indefinitely
and, using only two resistor values,
can generate a whole series of
currents where In=2nI0.

From the voltage drop across the
2R

2RVIN=V3

R

I3

I2
V2

2I3

g p
horizontal resistors, we see that
Vn = 2RIn = 2n+1RI0 . For an N-bit
ladder the input voltage is therefore
Vin = 2NRI0  I0=2–N Vin/R.

2R

2R

R

R

2R

I1

I0

V1

V0

I00

ANALOG.PPT(01/10/2009) 4.6

Current-Switched DAC

VIN

8I0
16I0

X3
1

RF

VIN

4
-b

it
R

/2
R

 la
d

d
er 4I0

2I0

I0

3

0

0

1

0

1

1

X2

X1

X0

–

+

VOUT

X3:0 × I0

– Total current into summing junction is X3:0 × I0

I0
0

ota cu e t to su g ju ct o s 3:0 0

Hence Vout = X3:0 × Vin /16R × –Rf

– We switch currents rather than voltages so that all
nodes in the circuit remain at a constant voltage
 no need to charge/discharge node capacitancesg g p
 faster.

– Use CMOS transmission gates as switches: adjust
ladder resistors to account for switch resistance.

• Each 2-way switch needs four transistorsy

– As required by R/2R ladder, all the switch output
terminals are at 0 V.

• ladder outputs are always connected either to ground or
to a virtual earth.

ANALOG.PPT(01/10/2009) 4.7

Digital Attenuator

The output of the DAC is proportional to the product of anThe output of the DAC is proportional to the product of an
analog voltage (Vin) and a digital number (X3:0).

Vout = X3:0 × Vin /16R × –Rf

It is called a multiplying DACIt is called a multiplying DAC.

C b d di it l tt tCan be used as a digital attenuator:

X7:0 VOUT= X × VIN

VIN

DAC

Here the digital number X7:0 controls the gain of the
circuit.

DAC

ANALOG.PPT(01/10/2009) 4.8

Bipolar DAC

A bipolar DAC is one that can give out both positive and
negative voltages according to the sign of its input. There
are two aspects of the circuit that we need to change:

Number Representation

Normally we represent numbers using 2’s complement
notation (because we can then use the same
addition/subtraction circuits).

For converters it is more convenient to use offset-binary
t tinotation.

Positive and Negative Currents

W d t lt R 2R l dd i it th t tWe need to alter our R-2R ladder circuit so that we can get
an output current that can be positive or negative
according to the sign of the input number.

To do this, we will use a current mirror.

ANALOG.PPT(01/10/2009) 4.9

Signed Numbers

Value (v) 2’s complement (y) Offset Binary (x) (u=v+8)

–8 1000 0000 0

–7 1001 0001 1

–6 1010 0010 2

–5 1011 0011 3

...

–1 1111 0111 71 1111 0111 7

0 0000 1000 8

1 0001 1001 9

...

6 0110 1110 14

7 0111 1111 15

– Obtain offset binary from 2’s complement by
i ti th MSBinverting the MSB

– 2’s complement: v = –8y3+4y2+2y1+y0

– Unsigned X3:0 u = +8x3+4x2+2x1+x0

– Offset Binary: v = +8x3+4x2+2x1+x0– 8 = u – 8y 3 2 1 0

ANALOG.PPT(01/10/2009) 4.10

Signed number DAC

V
8I0

16I0
X3

1
X3:0 × I0VIN

4
-b

it
R

/2
R

 la
d

d
er 4I0

2I0

I0

X3

0

0

1

0

1

1

X2

X1

X3:0 I0

2(X3:0–8) × I0

I0
0

X0

Current
Mirror

(16–X3:0) × I0

(16–X3:0) × I0

– Collect up all the unused currents from the R-2R
ladder:

• Total current into the ladder = 16I0

• Hence total current out of the ladder = 16I0

H d t dd t (16 X3 0)I• Hence unused currents add up to (16–X3:0)I0

– Send unused currents into a current mirror to reverse
direction

– Add to original current to give 2(X3:0–8)I0.

If Y3 0 i i d 2’ l t b t– If Y3:0 is a signed 2’s complement number, v, we set
{X3, X2, X1, X0} to {!Y3, Y2, Y1, Y0} which gives v =
u – 8 where u is X3:0 as an unsigned number.

– Output current is now 2 y I0

T i t Y3 j t th it h t t– To invert Y3, we can just reverse the switch contacts.

ANALOG.PPT(01/10/2009) 4.11

Current Mirror

RFA

–

+

VOUTR

A

B

A–B

–

+

RVX

B

The lower op-amp acts as a current mirror:

– Input current B all flows through the feedback resistor.

– Hence VX = –BR since –ve input is a virtual earth.

Hence second resistor has a voltage of BR across it– Hence second resistor has a voltage of BR across it
since –ve input of 2nd op-amp is also a virtual earth.

– Hence current through second resistor is B

Thus VOUT = – (A – B) RF

Alternatively, in an integrated circuit, use a long-tailed pair
or Wilson current mirror.

ANALOG.PPT(01/10/2009) 4.12

Quiz

– Why is a weighted-resistor DAC impractical for a 16-y g p
bit converter?

– What is a multiplying DAC ?

– Why is a current mirror circuit so-called?

– What is the value of the bit pattern 1001 in the
following notations: (a) unsigned binary, (b) two’s
complement binary, (c) offset binary ?

– How do you convert a number from offset binary to
two’s complement notation ?

ANALOG.PPT(01/10/2009) 4.13

Lecture 11

Analog-to-Digital Conversion (1)

Objectives

– Understand the relationship between the continuous p
input signal to an Analog-to-Digital converter and its
discrete output

– Understand the source and magnitude of quantisation
noise

U d t d h fl h t k– Understand how a flash converter works

– Understand how the use of dither can improve
resolution and decorrelate the quantization noise

ANALOG.PPT(01/10/2009) 4.14

Analog to Digital Conversion

XN 1 0V

VREF

XN–1:0VIN ADC

Converters with ±ve input voltages are called bipolar

converters and usually round (VIN ÷ 1LSB) to the nearest y (IN)
integer.

E l











LSB1
round INV

X

Example:

If 1 LSB = 0.5 V, then VIN = 2.8 V will be converted to:

  66.5round
50

8.2
round 






X

Analog to digital conversion destroys information: we
convert a range of input voltages to a single digital value

 
5.0






convert a range of input voltages to a single digital value.

ANALOG.PPT(01/10/2009) 4.15

Sampling

To process a continuous signal in a computer or other
digital system, you must first sample it:

Time Quantisation

• Samples taken (almost always) at regular intervals:
fsample frequency of fsamp.

• This causes aliasing: A frequency of f is
indistinguishable from frequencies k fsamp ± f for all
integers k.g

• No information lost if signal contains only frequencies
below ½fsamp . This is the Nyquist limit.

Amplitude Quantisation

• Amplitude of each sample can only take one of a finite
number of different values.

• This adds quantisation noise: an irreversible
corruption of the signal.p g

• For low amplitude signals it also adds distortion. This
can be eliminated by adding dither before sampling.

ANALOG.PPT(01/10/2009) 4.16

1.11

Quantisation Noise

VREF

V

VREF

VX

VOUT is restricted to discrete levels so cannot follow VIN
exactly. The error, VOUT – VIN is the quantisation noise

DAC
VIN

ADC
VOUTXN–1:0

and has an amplitude of ± ½ LSB.

VIN, VOUT

If all error values are equally likely, the RMS value of the
quantisation noise is

VOUT – VIN

quantisation noise is

Signal-to-Noise Ratio (SNR) for an n-bit converter

LSB3.0
12

1½

½

2 




dxx

Ratio of the maximum sine wave level to the noise level:

– Maximum sine wave has an amplitude of ±2n–1 which
equals an RMS value of 0.71 × 2n–1 = 0.35 × 2n.

– SNR is:
2350 n 

dB68.1)22.1(log20
3.0

235.0
log20 1010 nn

n








 

ANALOG.PPT(01/10/2009) 4.17

Threshold Voltages

XN 1 0V

VREF

XN–1:0VIN ADC

Threshold Voltages

Each value of X corresponds to a range of values of VEach value of X corresponds to a range of values of VIN.

The voltage at which VIN switches from one value of X to
the next is called a threshold voltage.

The task of an A/D converter is to discover which of the
voltage ranges VIN belongs to. To do this, the converter
must compare VIN with the threshold voltages.

The threshold voltages corresponding to X are at
(X±½) LSB

ANALOG.PPT(01/10/2009) 4.18

Flash A/D Converter

For an n-bit converter we have
2n–1 threshold voltages.

2 1 5 0 5 0 5 1 51 0 1 2

Input Voltage (1 LSB = 0.5 V)
g

Use 2n–1 comparators:

–2 –1.5 –0.5 0.5 1.5–1 0 1 2

–4 –3 –2 –1 0 1 2 3

X2:0 = round(VIN / 1LSB)

Use 2 1 comparators:

Resistor chain used to

–

+

–

+

R

G7

G6

VHI = 1.25 V

Resistor chain used to
generate threshold
voltages.

Priority encoder logic
must determine the

+

–

+

–

+

R

R

R

G5

G4

X2

X1

X0E
n

co
d

er
 L

o
g

ic

ust dete e t e
highest Gn input that
equals 1.

12-bit converter needs
4095 comparators on a

–

+

–

+

R

R

G3

G2

X0

P
rio

rit
y

single chip! –

+

G1

VIN

VLO = –1.75 V

ANALOG.PPT(01/10/2009) 4.19

Priority Encoder

G7:1 can have 27 possible values but only 8 will occur:

G7:1 X2:0 Example: G2 • !G4
VIN > 1.25: 1111111 011 =+3 0

0111111 010 =+2 0
0011111 001 =+1 0
0001111 000 =+0 0
0000111 111 = 1 10000111 111 =–1 1
0000011 110 =–2 1
0000001 101 =–3 0

VIN < –1.75: 0000000 100 =–4 0

By inverting one comparator output and ANDing it with
another one, we can generate a signal that is high for any

G2G4

g g g y
group of consecutive X values.

– Example: G2•!G4 is high for –2  X  –1

H t h f X2 X1 d X0 b ORiHence we can generate each of X2, X1 and X0 by ORing
together a number of such terms:

– X2 = !G4

– X1 = G6 + G2•!G4

X0 = G7 + G5•!G6 + G3•!G4 + G1•!G2– X0 = G7 + G5•!G6 + G3•!G4 + G1•!G2

ANALOG.PPT(01/10/2009) 4.20

1.11

Quantisation Distortion for Small Signals

VREF

V

VREF

VX

If VIN is a low amplitude triangle wave (0.6 LSB):

DAC
VIN

ADC
VOUTXN–1:0

Input and Output Signals (amp = 0.60)

-1

-0.5

0

0.5

1

In
p

u
t/

O
u

tp
u

t
(L

S
B

)

0 0.2 0.4 0.6 0.8 1
Time

Error has strong negative correlation with VIN  distortion

0

0.5

V
OUT

 - V
IN

0 0.2 0.4 0.6 0.8 1
-0.5

0

Time

Correlation coefficient 0 at high amplitudes:

-0.5

0

a
tio

n
 C

o
e

ff
ic

ie
n

t

0 2 4 6 8

-1

Triangle wave amplitude (+- LSB)

C
o

rr
e

l

ANALOG.PPT(01/10/2009) 4.21

1.11

Dither

DAC

VREF

VIN
ADC

VREF

VOUTXN–1:0W

Dither, D, is a random noise with a triangular probability density.

If VIN = 2.1 LSB, then W has a triangular distribution and VOUT
takes three possible values:

DAC
IN

ADC
OUTN 1:0

+

D

W

takes three possible values:

0.8

1

P
ro

b
 (

V O
U

T)

V
IN

 = 2.1 LSB

0 5 1 1 5 2 2 5 3 3 5
0

0.2

0.4

0.6

P
ro

b
 D

e
n

si
ty

 (
W

)
o

r
P

0.5 1 1.5 2 2.5 3 3.5
W and V

OUT
 (LSB)















180)52()3(3

74.0)5.25.1()3(2

08.0)5.1()1(1

Wpp

Wpp

Wpp

VOUT


  18.0)5.2()3(3 Wpp

 
  25.01.218.0374.0208.01

1.218.0374.0208.01
2222 



OUT

OUT

VVar

VE

E(VOUT) = VIN and Var(VOUT) = 0.25 for all values of VIN

ANALOG.PPT(01/10/2009) 4.22

1.11

Effects of Dither

DAC

VREF

VIN
ADC

VREF

VOUTXN–1:0W
DAC

IN
ADC

OUTN 1:0
+

D

W

Dither should be added to a signal
• before an ADCbefore an ADC
• before reducing digital precision (e.g. 16 to 8 bits)
• Triangular pdf of amplitude 1 LSB at new precision

Good consequences
Q ti ti i l l i t t i d d t f V• Quantisation noise level is constant independent of VIN

• Quant noise is uncorrelated with VIN  no distortion
• Signal variations are preserved even when < 1 LSB

Bad consequence
• RMS quantisation noise increases from 0.3 to 0.5 LSB

0 4

0.5
with dither

0

0.2

n
t

with dither

0.2

0.3

0.4

R
M

S
 n

o
is

e
 (

L
S

B
)

without dither

0 8

-0.6

-0.4

-0.2

C
o

rr
e

la
tio

n
 C

o
e

ff
ic

ie
n

ith t dith

0 2 4 6 8
0

0.1

Triangle wave amplitude (+- LSB)
0 2 4 6 8

-1

-0.8

Triangle wave amplitude (+- LSB)

without dither

ANALOG.PPT(01/10/2009) 4.23

Quiz

– What is a bipolar A/D converter ?p

– What is the amplitude of the quantisation noise
introduced by an A/D converter ?

– How many threshold voltages are there in an n-bit
converter ?

– What is the function of a priority encoder ?

– What is the level of quantisation noise for large signal
variations ?

– What are the good and bad consequences of adding
dither to a signal before conversion to digital ?dither to a signal before conversion to digital ?

ANALOG.PPT(01/10/2009) 4.24

Lecture 12

Analog-to-Digital Conversion (2)

Objectives

– Understand the principles behind a successive p p
approximation converter

– Understand how a successive approximation
converter can be implemented using a state machine

– Understand the need for using a sample/hold circuit
ith i i ti twith a successive approximation converter

– Understand the origin of glitches at the output of a
DAC and how they can be avoided.

ANALOG.PPT(01/10/2009) 4.25

Successive Approximation Converter

Make successive guesses and use a comparator to tell
whether your guess is too high or too low.

Each guess determines one bit of the answer and cuts the
number of remaining possibilities in half:

Input Voltage = –1.1 V

–4 –3 –2 –1 0 1 2 3–3.5 –2.5 –1.5 –0.5 0.5 1.5 2.5 3.5

–8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7

Input Voltage 1.1 V

1 t 0 25 V1st guess: –0.25 V
(too high)

2nd guess: –2.25 V
(too low)

X=0???

X=11??

X=1???

3rd guess: –1.25 V
(too low)

4th guess: –0.75 V
(too high)

X=111?

X=1110

Use a DAC to generate the threshold voltages and a state
machine to create the sequence of guesses. A DAC input
of n generates the threshold between n–1 and n which

l (½) 1 LSB

X=1110

equals (n–½) × 1 LSB

ANALOG.PPT(01/10/2009) 4.26

Successive Approximation ADC

START DONE

CLOCK

X3:0
DAC

VREF

+

–

STATE4:0

X3:0
VIN

HIGHER

State Diagram:

A DAC input of n must
generate the threshold
between n–1 and n.

When the final column
of states is reached,
DONE goes high and
the answer is X3:0.

Note that it is possible
to number the 31 states
so that DONE is the MSB
and X3:0 are the 4 LSB.

ANALOG.PPT(01/10/2009) 4.27

Need for Sample/Hold

If the input voltage changes during conversion, the result is
biased towards its initial value because the most significant
bits are determined first.

–4 –3 –2 –1 0 1 2 3–3.5 –2.5 –1.5 –0.5 0.5 1.5 2.5 3.5

Input Voltage = –1.1 V

–8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7

1st guess: –0.25 V
(too high)

2nd guess: 2 25 V

X=0???X=1???

2nd guess: –2.25 V
(too low)

3rd guess: –1.25 V
(too low)

X=11??

X=111?

Input Voltage

Increasing voltages will tend to be converted to values
ending in 111 Decreasing voltages will tend to be

4th guess: –0.75 V
(too low) X=1111

ge

ending in …111. Decreasing voltages will tend to be
converted to values ending in …000.

Consequences:
reduced precision, uncertain sample instant.

ANALOG.PPT(01/10/2009) 4.28

A/D conversion with sample/hold

VREF

VADC

X0:7

VIN
ADC

CLOCK

DONEC

START

Input switch is opened during the conversion so VADC
remains constant.

Choice of C is a compromise:

– Big C keeps constant voltage despite leakage
currents since dV/dt = Ileakage/C

– Small C allows faster acquisition time for any given
input current since dV/dt = Iin/C.

START

DONEDONE

X0:n

VIN & VADC
VIN

Aperture time
 ± Aperture uncertainty

Acquisition time

ANALOG.PPT(01/10/2009) 4.29

Sample/Hold Circuit

IN OUT

SAMPLE

–

+

–

+

C

When switch is open:

– Leakage currents through open switch and op-amp g g p p p
input will cause output voltage to drift up or down.

– Choose capacitor large enough that this drift amounts
to less than 0.5 LSB during the time for a conversion

– Converters with high resolution or long conversion
ti d l ittimes need larger capacitors

When switch closes:

– Charge rate of capacitor is limited by the maximum
op-amp output current. This determines the

i iti ti t i th i l t ithi ½LSBacquisition time: to acquire the signal to within ½LSB.
It is typically of the same order as the conversion time.

Value of C is a compromise: big C gives slow acquisition,
small C gives too much drift.

ANALOG.PPT(01/10/2009) 4.30

Other types of Converter

Sampling ADCSampling ADC

Many A/D converters include a sample/hold within them:
these are sampling A/D converters.

Oversampling DAC and ADC

Oversampling converters (also known as  or 
converters) sample the input signal many times for each
output sample. By combining digital averaging with an
error feedback circuit they can obtain up to 20 bits of
precision without requiring a high accuracy resistor
network (hence cheaper). A typical oversampling ratio is (p) yp p g
128×, i.e. the input is sampled at 6.4MHz to give output
samples at 50 kHz. Most CD players use an oversampling
DAC.

ANALOG.PPT(01/10/2009) 4.31

Glitches in DAC output voltages

Switches in DAC operate at different speeds  outputSwitches in DAC operate at different speeds  output
glitches occur when several input bits change together:

0111  1000 V

Cannot remove glitches: low pass filtering merely spreads
out the glitch: the glitch energy = V × T remains constant

T

X=7

X=8

out the glitch: the glitch energy V × T remains constant.

Glitches are very noticeable on a video display:

Correct With Glitchy DACCorrect With Glitchy DAC

Solution: We use a sample/hold circuit to isolate the
output from the DAC while the glitch is happening.

ANALOG.PPT(01/10/2009) 4.32

Deglitching

To minimize the effect of glitches:To minimize the effect of glitches:

– Use a register to make inputs change as
simultaneously as possible

– Use a sample/hold circuit to disconnect the DAC
output while it is changingp g g

VOUT

C1

1D
X7:0

DAC

VREFCLOCK

D7:0 VDAC

CONTROL

D7:0D7:0

CLOCK

X7:0

VDAC

CONTROL

VOUT

ANALOG.PPT(01/10/2009) 4.33

Summary

D/A Converters:

– Weighted resistor: very fast (no op-amp), each bit can
have an arbitrary weight, no good for big numbers.

– R-2R ladder: used for most converters, switch
currents rather than voltages for higher speed.
Multiplying DAC has an analog input as well.

 converters used for audio: very good linearity–  converters used for audio: very good linearity.

A/D Converters:

– Flash converter: very fast (down to 1 ns), lowFlash converter: very fast (down to 1 ns), low
precision (8 bits max), expensive and power hungry. A
“pipeline” converter uses a DAC to subtract the
converted value and measures the difference with
another flash converter .

S i A i ti di d (d t– Successive Approximation: medium speed (down to
0.1 µs), need to use sample/hold circuit to avoid input
changing during conversion.

–  converters dominate the medium to low speed
market (down to 0.5 µs). Long been standard for (µ) g
audio: very good linearity (up to 24 bits). Very high
speed sampling at low precision with dither, followed
by low-pass digital filter and sub-sampling to desired
sample rate.

ANALOG.PPT(01/10/2009) 4.34

Quiz

– How many voltage comparisons are made by an n-bit y g p y
successive approximation converter during the course
of a conversion ?

– What is a multiplying DAC ?

– Why does the DAC in an n-bit successive
approximation converter only need to to generate 2n–
1 different values rather than 2n ?

– If a 12-bit successive approximation converter is used
without a sample/hold, which of the output values 127,
128 and 129 are likely to occur least frequently ?128 and 129 are likely to occur least frequently ?

– What is the aperture uncertainty of a sample/hold
circuit ?

– What two effects determine the acquisition time of a
sample/hold circuit ?sample/hold circuit ?

– What happens if you try to improve a glitchy signal
using a low-pass filter ?

Adder.PPT(10/1/2009) 5.1

Lecture 13

Adder Circuits

Objectives

 Understand how to add both signed and unsigned
numbers

 Appreciate how the delay of an adder circuit depends
on the data values that are being added together

Adder.PPT(10/1/2009) 5.2

Full Adder

P
 P

Q

Output is a 2 bit number counting how many inputs are

C

P

Q

CI

S Q

CI

SC

+

Output is a 2-bit number counting how many inputs are
high

P Q CI C S

0 0 0 0 00 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1

CIQCIPQPC 

S P Q CI  1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

S P Q CI  

 Symmetric function of the inputs

 Self-dual: Invert all inputs  invert all outputs
If k inputs high initially then 3–k high when inverted

Inverting all bits of an n-bit number make x  2n–1–x

N t P  Q  CI (P  Q)  CI P  (Q  CI) Note: P  Q  CI = (P  Q)  CI = P  (Q  CI)

Adder.PPT(10/1/2009) 5.3

Full Adder Circuit

9-gate full-adder NAND implementation (do not memorize)





P

Q

CI
C



 









S

Propagation delays:

From To Delay

P Q or CI S 3P,Q or CI S 3

P,Q or CI C 2

Complexity: 25 gate inputs  50 transistors but use ofComplexity: 25 gate inputs  50 transistors but use of
complex gates can reduce this somewhat.

Adder.PPT(10/1/2009) 5.4

N-bit adder

We can make an adder of arbitrary size by cascading full
adder sections:

C

P

Q



CI

S

P0

Q0

C–1

S0

C

P

Q



CI

S

P1

Q1
S1

C

P

Q



CI

S

P2

Q2
S2

C

P

Q



CI

S

P3

Q3
S3

C3C0 C1 C2

The main reason for using 2’s complement notation for
signed numbers is that:

Signed and unsigned numbers can use identical circuitry

P0

P1
0

P

Q

S0
P2

P3

Q0

Q1

Q2

Q3

3

0

S1

S2

S3


0

3

C3CI
C–1

Q3
3

C3

Adder.PPT(10/1/2009) 5.5

Adder Size Selection

The number of bits needed in an adder is determined by
the range of values that can be taken by its output.

If we add two 4-bit numbers, the answer can be in the
range:

 0 to 30 for unsigned numbers

 -16 to +14 for signed numbersg

In both cases we need a 5-bit adder to avoid any
possibility of overflow:

P0

P

P0

S0

P1

P2

P3

Q0

0

4

0

S1

S2

S3


0

?

C4

Q

CI
C–1

Q1

Q2

Q3

0

4

S3

C4

4

0

S4

?

We need to expand the input numbers to 5 bits. How do
we do this ?

Adder.PPT(10/1/2009) 5.6

Expanding Binary Numbers

Unsigned numbers

Expand an unsigned number by adding the appropriateExpand an unsigned number by adding the appropriate
number of 0’s at the MSB end:

5 0101 00000101

13 1101 00001101

Signed numbers

Expand a signed number by duplicating the MSB the
appropriate number of times:

5 0101 00000101

–3 1101 11111101

This is known as sign extension

Shrinking Binary Numbers

UnsignedU s g ed

Can delete any number of bits from the MSB end so long
as they are all 0’s.

Signed

Can delete any number of bits from the MSB end so longCan delete any number of bits from the MSB end so long
as they are all the same as the MSB that remains.

Adder.PPT(10/1/2009) 5.7

Adding Unsigned Numbers

To avoid overflow, we use a 5-bit adder:

P0

P

P0

S0

P1

P2

P3

Q0

0

4

0

S1

S2

S3


0

0

C4

Q

CI
C–1

Q1

Q2

Q3

0

4

S3

C4

4

0

S4

0

The MSB stage is performing the addition: 0 + 0 + C3.
Thus S4 always equals C3 and C4 always equals 0.

P0
0

P

Q

S0

P1

P2

P3

Q0

Q1

Q2

0

3

0

S1

S2

S3


0

3
S4

We can use a 4-bit adder with C3 as an answer bit.

C3

Q

CI
C–1

Q2

Q3
3

C3
0

S4

Adder.PPT(10/1/2009) 5.8

Adding Signed Numbers

To avoid overflow, we use a 5-bit adder:



P

P0

S0

P1

P2

P3

Q0

0

4
S1

S2


0

C4

Q

CI
C–1

Q0

Q1

Q2

Q3

0

4

S3

C4



4

0

S4

This is different from the unsigned case because P4 and
Q4 are no longer constants. We cannot simplify this circuit

C4CI0

by removing the MSB stage.

If P and Q have different signs then S4 will not equal C3.

e.g. P=0000, Q=1111
Unsigned P+Q=01111 Signed P+Q=11111Unsigned P+Q 01111, Signed P+Q 11111

Some minor simplifications are possible:

 If the C4 output is not required, the circuitry that
generates it can be removed.

 S4 can be generated directly from P3 Q3 and C3 S4 can be generated directly from P3, Q3 and C3
which reduces the circuitry needed for the last stage.

Adder.PPT(10/1/2009) 5.9

Adder Propagation Delay

P0 P1 P2 P3

C

P

Q

CI

S

P0

Q0

C–1

S0

C

P

Q

CI

S

P1

Q1
S1

C

P

Q

CI

S

P2

Q2
S2

C

P

Q

CI

S

P3

Q3
S3

S4C0 C1 C2

P0 C0
2 2 2 3

C0 C1 C1 C2 C2 S3

Delays within each stage (in gate delays):

P, Q, CI  S = 3 P, Q, CI  C = 2

Worst-case delay is:

P0  C0  C1  C2  S3 = 3×2 + 3 = 9

Note: We also have Q0  S3 = 9 and C 1  S3 = 9Note: We also have Q0  S3 = 9 and C–1  S3 = 9

For an N-bit adder, the worst delay is (N–1)×2 + 3 = 2N+1

Example of worst case delay:Example of worst case delay:
 Initially: P3:0=0000, Q3:0=1111  S4:0=01111

 Change to: P3:0=0001, Q3:0=1111  S4:0=10000

Adder.PPT(10/1/2009) 5.10

Delays are Data-Dependent

To determine the delay of a circuit, we need to specify:

1. The circuit

2. The initial value of all the inputs

3. Which of the inputs changes

Example: What is the propagation delay AQ ?Example: What is the propagation delay AQ ?







A
Y

X Q

Answer 1 (B=0):







B
Z

Answer 1 (B=0):

 Initially: A=0, B=0  X=1, Y=0, Z=0, Q=0

 Then: A Y Q 2 gate delays

Answer 2 (B=1):

 Initially: A=0, B=1  X=1, Y=0, Z=1, Q=1

 Then: A X Z Q 3 gate delays

Adder.PPT(10/1/2009) 5.11

Worst-Case Delays

We are normally interested only in the worst-case delay
from a change in any input to any of the outputs.

The worst-case delay determines the maximum clock
speed in a synchronous circuit:

CLOCK

C1

1D

C1

1DLogic
X YW Z

CLOCK

W

X

Y

Z

tp + tg + ts < T

time 0 tp tp+tg T

Since the clock speed must be chosen to ensure that the
circuit always works, it is only the worst-case logic delay
that matters.

Adder.PPT(10/1/2009) 5.12

Quiz

1 In an full adder why is it normally more important to1. In an full adder, why is it normally more important to
reduce the delay from CI to C than to reduce the
delay from P to S ?

2. How many bits are required to represent the number
A+B if A and B are (a) 8-bit unsigned numbers orA+B if A and B are (a) 8-bit unsigned numbers or
alternatively (b) 8-bit signed numbers.

3. How do you convert a 4-bit signed number into an 8-
bit signed number ?

4. How do you convert a 4-bit unsigned number into an
8-bit signed number ?

5. How is it possible for the propagation delay of a circuit
from an input to an output to depend on the value of
the other inp ts ?the other inputs ?

Adder.PPT(10/1/2009) 5.13

Lecture 14

Fast Adder Circuits (1)

Objectives

 Understand how the propagation delay of an adder
can be reduced by inverting alternate bits.

 Understand how the propagation delay of an adder
can be reduced still further by means of carry
lookahead.

Adder.PPT(10/1/2009) 5.14

Standard N-bit Adder

Delay of standard N-bit adder = 2N+1

C

P

Q



CI

S

P0

Q0

C–1

S0

C

P

Q



CI

S

P1

Q1
S1

C

P

Q



CI

S

P2

Q2
S2

C

P

Q



CI

S

P3

Q3
S3

S4C0 C1 C2

P0 C0
2 2 2 3

C0 C1 C1 C2 C2 S3

Delay of carry path within each full adder = 2

Carry path consists of three 2-input + one 3-input NANDsCarry path consists of three 2-input + one 3-input NANDs

Adder.PPT(10/1/2009) 5.15

Faster Adder Circuits: 1

Because a full-adder is self-dual, it will still work if for
alternate stages we invert both the inputs and the outputs:

P1

Q1

S1

1

1 1

Full Adder

C

P

Q



CI

S

P0

Q0

C–1

S0

C

P

Q



CI

S

C

P

Q



CI

S

P2

Q2
S2

C0 C1 C2
1 1

1

S1

C0 C1

P1

Q1

Now consider only the Carry signals:

P0 P2P1P0

Q0

C–1

P2

Q2

1

C1







 C0

P1

Q1

1







 C2









C0 C1

C1a

C1b

C1c

By merging the shaded gates we can reduce the delay to
one gate per adder stage.

Adder Stage 0 Adder Stage 1 Adder Stage 2

Adder.PPT(10/1/2009) 5.16

Fast Adder Circuits: 1 (part 2)

P1

 C1a

P1

Q1  C1a

1

 C0

Q1 



C0

C0a

C0b

C0c

C1a

C1b

C1c





C1b

C1c

C0a

C0b

C0c

We can merge the 3-NAND and inverter into the final
column of gates as shown; this gives one delay per stage:



P0

P2

Q2

P1

Q1  

C2aP0

Q0

C–1















C0a

C0b

C0c

C2a

C2b

C2c

C1a

C1b

C1c



The signals C1a, C1b, C1c form an AND-bundle: C1 is true

Adder Stage 0 Adder Stage 1 Adder Stage 2

C1

only if all of them are high. We don’t need the signal C1
directly so the shaded gate can be omitted.

Adder.PPT(10/1/2009) 5.17

Fast Adder Circuits: 1 (part 3)

Even stages: PEven stages:

Delays:

P,Q,CI S 3

P,Q,CI C 1



 

Q

CIa,b,c COa,b,c

P,Q,CI C 1










S

30 gate inputs  60 transistors

Odd stages:

Delays:


P

Q

COa,b,c

1

1

30 gate inputs  60 transistors

P,Q S 5

P,Q C 2

CI S 4

CI C 1





 





CIa,b,c

S1

Bundles are denoted by a single wire with a / through it.

 

33 gate inputs  66 transistors

22% more transistors but twice as fast.

Adder.PPT(10/1/2009) 5.18

Fast Adder Circuits: 1 (part 4)

For an N-bit adder we alternate the two modules (with a
normalish first stage):

C

P

Q



CI

S

P0

Q0

C–1

S0

C

P

Q



CI

S

P1

Q1
S1

C

P

Q



CI

S

P2

Q2
S2

C

P

Q



CI

S

P3

Q3
S3

S4C0 C1 C2 
C3

Worst case delay is:

P0 C0
1 C0

2

C2
1

4
C1

C1

C2 S3

1
C1

P1

2
C2 S4

P0  !C0  C1  !C2  S3 = 7 gate delays

Note that:Note that:

 Delay to S4 is shorter than delay to S3

 Delay from P1 is the same as delay from P0

 Worst-case example:
Initially: P3:0=0000, Q3:0=1111, then P0Initially: P3:0 0000, Q3:0 1111, then P0

Delay for N-bit adder (N even) is N+3
(compare with 2N+1 for original circuit)

Adder.PPT(10/1/2009) 5.19

Carry Lookahead (1)

For each bit of an N-bit adder we get a carry out (CO=1) if
two or more of P,Q,CI are equal to 1.

There are three possibilities:

 P,Q=00: C=0 always Carry Inhibit

 P,Q=01 or 10: C=CI Carry Propagate

 P,Q=11: C=1 always Carry GenerateP,Q 11: C 1 always Carry Generate

We define three signals:

 CG = P • Q Carry Generate

 CP = P Q Carry Propagate

CGP P + Q C G t P t CGP = P + Q Carry Generate or Propagate

We get a carry out from a bit position either if that bit
generates a carry (CG=1) or else if it propagates the carry

d th i i f th i bit (CP CI 1)and there is a carry in from the previous bit (CP•CI = 1):

C = CG + CP•CI

Since CGP = CG + CP, an alternate expression is:

C CG CGP CIC = CG + CGP•CI

The second expression is usually used since P + Q is
easier and faster to generate than P Q.

Adder.PPT(10/1/2009) 5.20

Carry Lookahead (2)

Consider all the ways in which we get a carry out of bit
position 3:

1) Bit 3 generates a carry: 1???
+ 1???

2) Bit 2 generates a carry and 11??
bit 3 t it + 01??bit 3 propagates it. + 01??

3) Bit 1 generates a carry and 101?
bit 2 propagates it and + 011?
bit 3 propagates it.

4) Bit 0 generates a carry and 1011
bit 1 propagates it and + 0101
bit 2 propagates it and
bit 3 propagates it.p p g

5) The C–1 input is high and 1011
bits 0,1,2 and 3 all propagate the carry. + 0100 +1

Thus

C3 = CG3 + CP3•CG2 + CP3•CP2•CG1 +
CP3•CP2•CP1•CG0+CP3•CP2•CP1•CP0•C–1

As before, we can use CGPn in place of CPn., p

Adder.PPT(10/1/2009) 5.21

Carry Lookahead (3)

Each stage must now generate CP and CGP instead of C:

P

Q



CI

S
P0

Q0

C–1

S0
P

Q



CI

S
P1

Q1

S1
P

Q



CI

S
P2

Q2

S2
P

Q



CI

S
P3

Q3

S3

C1
CGP

CGP0

CG
CG0

CGP
CGP1

CG
CG1

CGP
CGP2

CG
CG2

CGP
CGP3

CG
CG3C0 C2

C0 = CG0 + CGP0•C 1

Logic Logic Logic

T
o

la
te

r
st

ag
es

C0 = CG0 + CGP0•C–1

C1 = CG1 + CGP1•CG0 + CGP1•CGP0•C–1

C2 = CG2 + CGP2•CG1 + CGP2•CGP1•CG0 +
CGP2•CGP1•CGP0•C–1

Worst-case propagation delay:

P0  CG0 = 1 gate delay (CG0 = P0•Q0)
CG0  C2 = 2 gate delays (see above expression)
C2  S3 = 3 gate delays (from full adder circuit)

Total = 6 gate delays (independent of adder length)

Adder.PPT(10/1/2009) 5.22

Carry Lookahead (4)

Carry lookahead circuit complexity for N-bit adder:

E pression for Cn in ol es n+2 prod ct terms each Expression for Cn involves n+2 product terms each
containing an average of ½(n+3) input signals.

 Direct implementation of equations for all N carry
signals involves approx N3/3 transistors.

N = 64  N3/3 = 90,000N 64  N /3 90,000

 By using a complex CMOS gate, we can actually
generate Cn using only 4n+6 transistors so all N
signals require approx 2N2 transistors.

N = 64  2N2 = 8,000

Actual gain is not as great as this because for large n,
the expression for Cn is too big to use a single gate.

 C 1 CG0 and CGP0 must drive N 1 logic blocks For C–1, CG0 and CGP0 must drive N–1 logic blocks. For
large N we must use a chain of buffers to reduce delay:

The circuit delay is thus not quite independent of N.

1 1 1CG0 To 8
logic
blocks

1

Adder.PPT(10/1/2009) 5.23

Quiz

1 What does it mean to say that a full adder is self dual1. What does it mean to say that a full-adder is self-dual
?

2. How does placing an inverter between each stage of a
multi-bit adder allow the merging of gates in
consecutive stages ?consecutive stages ?

3. In a 4-bit adder, give an example of a propagation
delay that increases when alternate bits are inverted.

4. Why is a carry-lookahead adder generally
implemented using CGP rather than CP outputs ?

Adder.PPT(10/1/2009) 5.24

Lecture 15

Fast Adder Circuits (2)

Objectives

 Understand the carry skip technique for reducing theUnderstand the carry skip technique for reducing the
propagation delay of an adder circuit.

 Understand how the carry save technique can be
used when adding together several numbers.

Summary So Far:

 Cascading full adders:
2N+1 gate delays 50N transistors2N+1 gate delays, 50N transistors

 Use self-duality to invert odd-numbered stages:
N+3 gate delays, 61N transistors

 Carry lookahead:
6 gate delays, between 2N2 and 0.3N3 transistors6 gate de ays, bet ee a d 0 3 t a s sto s

Adder.PPT(10/1/2009) 5.25

Carry Skip (1)

Consider a 12-bit adder:

           

P0,Q0 P2,Q2 P4,Q4 P6,Q6 P8,Q8 P10,Q10

P1,Q1 P3,Q3 P5,Q5 P7,Q7 P9,Q9 P11,Q11

C–1 C11

The worst case delay path is from C 1 to S11

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

The worst-case delay path is from C–1 to S11.

In carry skip, we speed up this path by allowing the carry
signal to skip over several adder stages at a time:

           

P0,Q0 P2,Q2 P4,Q4 P6,Q6 P8,Q8 P10,Q10

P1,Q1 P3,Q3 P5,Q5 P7,Q7 P9,Q9 P11,Q11

C–1 C11

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

Adder.PPT(10/1/2009) 5.26

Carry Skip (2)

Consider our fast adder circuit without carry lookahead (but
using alternate-bit inversion):

C

P

Q



CI

S

P0

Q0

C–1

S0

C

P

Q



CI

S

P1

Q1
S1

C

P

Q



CI

S

P2

Q2
S2

C

P

Q



CI

S

P3

Q3
S3

C0 C1 C2

2 4

C3

1

There are two possible sorts of addition sum:
 All bits propagate the carry  C3 = C–1:

C0
1 C0

2

C2
1

4
C1

C1

C2 S3

1
C1

P1

1
C2 C3

P0 C0
1

C–1

p p g y 3 1

0101 0101
1010 1010

0 1
01111 10000

C–1  C3  = 4 gate delays

 At least one bit doesn’t propagate the carry
 C3 is completely independent of C–1:

0101 01010101 0101
1110 1110

0 1
10011 10100

C 1   C3 = 0 gate delaysC–1   C3 0 gate delays

Adder.PPT(10/1/2009) 5.27

Carry Skip (3)

We speed up C–1  C3 by detecting when all bits propagate
the carry and using a multiplexer to allow C–1 to skip all the
way to C3:

P0 P1



P2 P3
CP

MUX




CP


CP


CP

CSK

CP0 CP1 CP2
CP3

C

P

Q

CI

S

P0

Q0

C–1

S0

C

P

Q

CI

S

P1

Q1
S1

C

P

Q

CI

S

P2

Q2
S2

C

P

Q

CI

SQ3
S3

C3XC0 C1 C2

2 4

C3

MUX

G1

1

1

1
C3X

2
CSK

1

P0 CP0
2

Calculate Carry Propagate (CP = P Q) for each bit. Call
this 2 gate delays since XOR gates are slow CSK=1 if all

C0
1 C0

2

C2
1

4
C1

C1

C2 S3

1
C1

P1

C2

C3X
1

C3 C3X
1

C–1
1

C3XP0 C0
1

C–1

this 2 gate delays since XOR gates are slow. CSK 1 if all
bits propagate the carry.

 Case 1: All bits propagate the carry
C–1  !C3X = 1 gate delay (via multiplexer)

 Case 2: At least one bit inhibits or propagates the carry
 C–1 does not affect C3

Longest delays to !C3X and S3:

 P0 !C3X = 5 (via either !C0 or CSK)()

 P0 S3 = 7

Adder.PPT(10/1/2009) 5.28

Carry Skip (4)

Multiplexer Details

C3X

MUX

G1

1

1

C3

C–1

CSK

CSK !C3X

0 !C3
1 !C–1

C3X
C3

C–1

CSK 1

 




C3

C–1

We merge both AND gates:

 the 3-AND gate merges into the following NAND

 the 2-AND gate merges into the next adder stage

C 1 C 1

C3

CSK 1



C–1  !C3X now equals 1 gate delay.

C3X

C–1 

C–1

Adder.PPT(10/1/2009) 5.29

Carry Skip (5)

Combine 4 blocks to make a 16-bit adder:

C3X

P3:0

Q3:0



CI

S3:0

P3:0

Q3:0

C–1

S3:0

C3
C3X

P3:0

Q3:0



CI

S3:0

P7:4

Q7:4

S7:4

C7
C3X

P3:0

Q3:0



CI

S3:0

P11:8

Q11:8

S11:8

C11
C3X

P3:0

Q3:0



CI

S3:0

P15:12

Q15:12

S15:12

C15

Worst case delay is:

C3
1 C3 C11

1
C7

P12

1
C7

7
C11 S15

P0 C3
5

C–1

S15
7

Worst-case delay is:

P0  !C3  C7  !C11  S15 = 14 gate delays

Each additional block of 4 bits gives a delay of only 1 gate
delay: this corresponds to ¼ gate delay per bit.

For an N-bit adder we have a delay of ¼N+10. We can
reduce this still further by having larger super-blocks.

Carry circuit delays:

Simple 2N+1
Bit-inversion N+3
Carry Skip ¼N+10
Carry Lookahead 6
 but lots of circuitry and high gate fanout  more delaybut lots of circuitry and high gate fanout  more delay

Adder.PPT(10/1/2009) 5.30

Adding lots of numbers

In multiplication circuits and digital filters we need to add
lots of numbers together.

Suppose we want to add together five four-bit unsigned
numbers: V, W, X, Y and Z.

V3:0

D

W3:0

X3:0

Y3:0

Z3:0

D

E

F

S

If we use carry-lookahead adders, each stage will have 6
gate delays.

Total delay to add together K values will be (K–1) × 6Total delay to add together K values will be (K 1) 6.

Thus K=16 gives a delay of 90 gate delays.

Adder.PPT(10/1/2009) 5.31

Addition Tree

In practice we use a tree arrangement of adders:













S















Number of values, K 16 8 4 2 1

log2(K) 4 3 2 1 0

Each column of adders adds a delay of 6 and halves the
number of values needing to be added together.

Equivalently, each column of adders reduces log2K by one.

Hence the total delay is is log2K × 6 giving a delay of 24 to
add together 16 values.

The total number of adders required is still K–1 as before.

Adder.PPT(10/1/2009) 5.32

Carry-Save Adder

Take a normal 4-bit adder but don’t connect up the
carrys:

C

P

Q



CI

S

P0

Q0

R0

S0

C

P

Q



CI

S

P1

Q1
S1

C

P

Q



CI

S

P2

Q2
S2

C

P

Q



CI

S

P3

Q3
S3

C3C0 C1 C2R1 R2 R3

We have P+Q+R = 2C + S

E.g. P=9, Q=12, R=13

1001
1100
1101

P:
Q:
R:

gives C=13, S=8

We call this a carry-save adder: it
reduces the addition of 3 numbers to

1000
1101_

S:
C:

CS
the addition of 2 numbers.

The propagation delay is 3 gates
regardless of the number of bits. The
amount of circuitry is much less than

C

P

Q

R

S

a carry-lookahead adder.

The circuit reduces log2K by 0.585 (from 1.585 to 1.0)
for a delay of 3. The overall delay we can expect is
therefore log2K × 3/0.585 = log2K × 5.13. This is betterg2 g2

than carry lookahead for less circuitry.

Adder.PPT(10/1/2009) 5.33

Carry Save Example

We will calculate: 13+10+5+11+12+1 = 52

CS

C

P

Q

CS

R

S

CS
C

P

Q

CS

R

S

C

P

Q

CS

R

S P

Q



S

A

B

C ×2

×2

G

H
K

L
M

N
X

×2

C

P

Q

R

S

CR QD

E

F ×2

I

J

×2

1101
1010
0101
0010

1101_

A :
B :
C :
G :
H :

_0010
1101_
_0110
11110

0010

G :
2H :

I:
K :
L :

01000
1011__

0110100

M :
2N :

X :_

1011
1100
0001
0110

D :
E :
F :
I

_ _

11110
0010_
1001_
01000

K :
2L :
2J:
M :

0110100X :

0110
1001_

I:
J :

01000
1011__

M :
N :

Notes: 1. ×2 requires no logic: just connect wires appropriately
2. No logic required for adder columns with only 1 inputg q y p
3. All adders are actually only 4 bits wide
4. Final addition M+2N requires a proper adder

Adder.PPT(10/1/2009) 5.34

Carry-Save Tree

We can construct a tree to add sixteen values together:

CS

CS

CS CS

CS

CS

CS

SCSCS
CS

CS

CSCS
CS

CS

Number of
values, K

16 4 3 2 1

log2(K) 4 2 1.58 1 0

13

3.7

9

3.17

6

2.58

Delay 0 12 15 18 243 6 9

Delay/log2(K) 10 7.23 5.13 65.65 5.13 5.13

• The final stage must be a normal adder because we
need to obtain a single output.

• The delay is the same as for a conventional
lookahead-adder tree but uses much less circuitry.

• The irregularity of the tree causes a reduction in
efficiency but this is relatively small (and becomes
even smaller for large K).

• Inverting alternate stages will speed up both tree
circuits still further but requires more circuitry.

Adder.PPT(10/1/2009) 5.35

Merry Christmasy

The End

Adder.PPT(10/1/2009) 5.36

Quiz

1 In a 4 bit adder how can you tell from P0:3 and Q0:31. In a 4-bit adder, how can you tell from P0:3 and Q0:3
whether or not C3 is dependent on C–1 ?

2. A multiplexer normally has 2 gate delays from its data
inputs to its output. How is this reduced to 1 gate delay
in the carry skip circuit ?in the carry skip circuit ?

3. If five 4-bit numbers are added together, how many
bits are needed to represent the result ?

