
E2.11/ISE2.22 – Digital Electronics II

Problem Sheet 4
(Question ratings: A=Easy, …, E=Hard. All students should do questions rated A, B or C as a minimum)

Rev: May-08 Digital Electronics II: Problem Sheet 4 Page 1

1B. Say which of the following state diagrams denote the same state machine as version
(a). Where an arrow is marked 0/1, for example, it means when A=0, the output Z will
be 1 and the transition will be taken at the next CLOCK rising edge.

1/1 0/0

/0

I/O: A/Z
Default: Z=0

I/O: A/Z

I/O: A/Z
Default: Z=1

(a) (b) (c)

(d) (e) (f)

Z=A Z=0

!A 0/0

I/O: A/Z

1/1

0/0,1/1

01/10/0

/0

0/0

/0

I/O: A/Z

2C. The state diagram and input waveforms of a state machine are shown below. All input
and state transitions occur shortly after the clock rising edge. Complete the timing
diagram by indicating the value of the state during each clock cycle and by drawing the
waveform of X. The initial state is 0 as shown.

A
B

State

Clock ↑

0

0 1 2
01

00 10
11/1

00

I/O Signals: A,B/X Default: X=0

3B. A synchronous state machine has its state represented by the 2-bit number S1:0 and has
a single input signal DIR. The current state is stored in a D-type register whose input
NS1:0 is defined by: NS S DIR1 0= ⊕ and NS S DIR0 1= ⊕ . Draw the state
diagram for the state machine.

4C. Draw the state diagram for a state machine whose output goes high when the input is
high for four or more clock cycles. As shown in the timing diagram, the output should
go high during the fourth clock cycle and remain high so long as the input does. Input
and state transitions occur shortly after the clock rising edge.

5D. Draw the state diagram for a state machine whose output goes high during the clock
cycle following the reception of the input sequence 1011010. The trigger sequences can
overlap as in the example below. Indicate the sequence of states followed by your
design.for the input sequence given below.

6C. A counter is required that follows the sequence 1, 2, 3, 1, 2, 3, …. Design a state
machine to follow this sequence using D-type flipflops and as few gates as possible.
You should ensure that the counter will reach the desired sequence regardless of its
initial state.

7B. State the circumstances under which an input to a state machine should be passed
through a register before going to the logic that generates the next-state bits.

State the circumstances under which an output from a state machine should be passed
through a register before being used elsewhere in a circuit.

8C. Two possible numberings for a state machine are shown below. Explain why it is
essential for the input to be synchronised with the clock in one case but not in the other.

Rev: May-08 Digital Electronics II: Problem Sheet 4 Page 2

9C. Show that for one of the state machines shown below it is possible to renumber the
states to avoid output glitches but that this is not possible for the other one. Assume the
input is synchronized with the clock.

0
/1

1
/0

2
/0

3
/0

0
/0

1
/1

2
/0

3
/0

0

1

0

1

10C. Construct the state diagram for a state machine that emits a single pulse on each rising
edge of its input and a double pulse on each falling edge as shown below. Each output
pulse should last exactly one clock cycle. Assume that the input signal has been
synchronized with the clock rising edge. How does your design react to an input signal
that goes low for less than four clock cycles?

11C. In the state machine illustrated below, the contents of the logic block are defined by:
NS S S1 1 0= ⊕ , NS PIN S S0 1 0= + + , NOUT PIN S S S= ⋅ + ⋅0 1 0 which gives
the state diagram shown. Transitions of the input signal IN occur on the falling edge of
the clock. Complete the timing diagram by indicating the sequence of states and the
signals PIN, NOUT and OUT.

0 1 2 3
/1

0/1

1

I/O Signals: PIN/POUT
Default: NOUT=0

12D. In the notes (page 3.35) the “noise pulse eliminator” is designed as a Moore machine
and introduces a two-cycle delay in the output. Show that if it is designed as a Mealy
machine it will only require three states and will introduce only one cycle delay as
shown (all transitions occur on the rising clock edge):

Design the state machine and give Boolean expressions for the outputs of the logic
block..

13E. Data is recorded onto floppy disks in a Modified form of Frequency Modulation known
as MFM in which each bit of data is recorded as a pair of bits on the disk.. A logical 1
is always recorded as 01 whereas a logical 0 is recorded as either 10 or 00 according to
whether the previous bit was 0 or 1. This recording scheme ensures that successive 1’s
on the disk are separated by between one and three 0’s. The timing diagram shows the
input (DATA) and the recorded bit-pairs (DISK) for the sequence 101001110001.

Design the state diagram of a state machine which converts an input stream of data bits
into the bit-pairs that must be recorded onto the disk as shown in the timing diagram
below. Each DATA bit lasts for two clock cycles and all state and input transitions
occur shortly after the clock’s rising edge. If possible, your design should function
correctly regardless of its initial state.

E2.11/ISE2.22 – Digital Electronics II

Solution Sheet 4
(Question ratings: A=Easy, …, E=Hard. All students should do questions rated A, B or C as a minimum)

Rev: May-08 Digital Electronics II: Solution Sheet 4 Page 1

1B. In comparing state diagrams, you should first check the transitions and then check that
the outputs are the same in each state. It can be seen that the transitions are the same for
all the versions. However the outputs are incorrect in version (c) and version (e).

When output are marked on arrows they refer to the state from which the arrows
originate. In version (c) therefore, state 1 has an output Z=A instead of Z=0 as it should
be.

In version (e), the output is not specified for the case A=1 in state 0. It must either be
specified by default as in version (d) or else explicitly as in version (b).

2C. You should first determine the state sequence. The transitions depend on the value of A
and B immediately before the Clock↑ edge. A common mistake is to use the values
after the edge.

Note that X is only ever high in state 0 and then only if A and B are high. A common
mistake is to make X high in state 2 rather than state 0: remember that outputs on
transition arrows refer to the preceding state.

3B. This represents a 2-bit bidirectional counter whose counting sequence has only one bit
changing at a time. This unit-distance property means that you can decode the outputs
without risk of glitches.

DIR S1 S0 NS1 NS0

0 0 0 0 1
0 0 1 1 1
0 1 0 0 0
0 1 1 1 0

1 0 0 1 0
1 0 1 0 0
1 1 0 1 1
1 1 1 0 1

4C. Since the output must go high during the fourth clock cycle in response to the value in
that cycle, we must have a Mealy machine: a Moore machine would insert too much
delay. If IN=1 during the current cycle then we want OUT=1 if the previous three (or
more) cycles had IN=1. We therefore need to remember how many of the previous
cycles had IN=1: 0, 1, 2 or ≥3. We therefore need four states. Note that an unavoidable
glitch possibility exists if IN goes high for three clock cycles; this can only be
eliminated reliably by delaying the output for an extra cycle.

Rev: May-08 Digital Electronics II: Solution Sheet 4 Page 2

5D. The previous question could be regarded as recognising the sequence 1111. This
question is pretty similar but with a different pattern to recognise. There are two
significant differences. Firstly, when an input bit does not conform to the required
sequence, we cannot always just branch back to state 0; the last few bits of the rejected
input sequence may be the first few bits of the correct one. Secondly, the output must
go high during the cycle following the trigger sequence; this requires an extra state at
the end and allows us to use a Moore machine.

6C. The following table therefore lists both the value of the next state (NS1:0):

S1 S0 NS1 NS0

0 0 X X
0 1 1 0
1 1 0 1
1 0 1 1

Choosing the “don’t care” entries to simplify the expressions we get:

D flipflop inputs: S0S1NS1 += NS0 = S1

If our flipflops possess set inputs, we don’t require the gate. We can avoid state 0 either
by forcing S0 high whenever S1 is low or by forcing S1 high whenever S0 is low. The

former approach does not work because the set input to S0 will not be released in time
when the state machine goes from state 1 to state 2. We can redraw our table with the
assumption that S1 is forced high whenever S0 is low; this means that the S1 flipflop’s
data input can be “don’t care” whenever NS0 is equal to 0:

S1 S0 NS1 NS0

0 0 X X
0 1 X 0
1 1 0 1
1 0 1 1

Choosing the “don’t care” entries to simplify the expressions we get:

D flipflop inputs: NS1 S0= NS0 = S1

7B. Any inputs that are not already synchronized with the clock must be passed through a
register before going to the next-state logic. The only exception to this is if the level of
a particular input only ever selects between two states whose state numbers differ in a
single bit position.

Any output that is prone to glitches must be passed through a register before being
connected to a clock, set or reset input of a subsequent circuit either directly or via
combinational logic. Another way of putting this is that a glitch-prone output should
not be connected to a glitch-sensitive input.

If ROM or RAM is used for the combinational logic then all outputs are glitch-prone. If
hazard-free combinational logic is used then glitches are possible if an input depends
on two or more inputs/state-bits that can change simultaneously and if any of their 2n
possible combinations would cause the output to change. Another way of looking at
this is that since absolute simultaneity is impossible, any inputs to the combinational
logic that change together might in fact change in any conceivable sequence; an output
is glitch-prone if any of these sequences would cause it to change.

8C. In the rightmost diagram, the input signal selects between states 1 and 2 (01 and 10 in
binary); it thus causes both state bits to change. If the input changes just before the
clock edge, both inputs to the state register will be changing within the setup-hold
window and may end up taking any value. In particular the circuit may end up in state
3 whence it returneth not.

In the leftmost state diagram, the input signal selects between states 0 and 2 (00 and 10
in binary). The LSB is 0 in both cases and so the state machine cannot possibly go to
any state other than these two.

Rev: May-08 Digital Electronics II: Solution Sheet 4 Page 3

9C. We can assume without any loss of generality that the state in which the output is high
is numbered 3 (we can always invert one or both of the state bits to make this true). The
output will therefore be generated by means of an AND gate. The AND gate output
will be prone to glitches if its two inputs (S0 and S1) ever change in opposite directions
simultaneously; this is because there will always be a chance that they may briefly be
high together. S0 and S1 change simultaneously if and only if we ever have a transition
from 1 to 2 (01 to 10) or from 2 to 1 (10 to 01).

In the leftmost state diagram, the three states in which the output is 0 are all mutually
connected and so whichever two of them are numbered 1 and 2, there must be a
transition joining them and hence a possibility of a glitch.

In the rightmost state diagram we can number the states from left to right 2,3,1,0. There
is now no direct link between 1 and 2 and no glitch is possible on the output. In
general, any numbering scheme will work in which the second and fourth states from
the left have numbers adding up to 3.

Note that even with the leftmost diagram, we can suppress the potential glitch by
numbering the states 3,1,2,0 from the left and then inserting a delay in the S1 output of
the state register. This delay will ensure that S1 effectively changes later than S0 and
that the dangerous transition follows the sequence 1 → 0 → 2 without any possibility
of passing through state 3.

Note too that we can also make the left diagram work by numbering the states 4, 1, 2, 3
from the left and ensuring that the output is high only in state 4 (out of the possible 8
states). This now requires 3 state bits which is inefficient but none of the transitions
between states 1, 2 and 3 can generate a high output since the most significant state bit
will remain low.

10C. The basic diagram is shown below; note that we must use a Mealy machine in order to
get zero delay between IN and OUT. The only two points of difficulty is what to do if
the input goes high in the middle of the double pulse sequence and whether we wish to
ensure that consecutive pulses are separated by at least one clock cycle.

The following diagram ensures that pulses are distinct (by the addition of states e and f)
and abandons pulse sequences when another input transition occurs:

a e b c d f1/1

1

0/1 0/10
1

1/1

0

I/O Signals: IN/OUT Default: OUT=0

11C.

12D. We design the state diagram in the same way as in the lecture notes. Now however, the
output in state 1 has to depend on IN (and therefore the circuit must be a Mealy
machine); this is illustrated in the first two occurrences of state 1 in the timing diagrm.

We can now draw the state diagram:

Rev: May-08 Digital Electronics II: Solution Sheet 4 Page 4

/0
00 01 11

/IN /10

1

0 1

State Numbers: S1,S0
Inputs/Outputs: IN/OUT

0

1

We now make a Karnaugh map for the three outputs: NS1,NS0/OUT. The last row of
the K-map is all “don’t care”.

S1 S0 IN=0 IN=1

0 0 00/0 01/0
0 1 00/0 11/1
1 1 01/1 11/1
1 0 XX/X XX/X

Choosing the “don’t care” entries to simplify the expressions we get:

NS1=S0.IN, NS0=S1+IN, OUT=S1 + S0.IN = S1 + NS1

The X’s in the final row of the state table are bold where these expressions are true.
Note that the final row always branches to state 1 and so we can never get trapped in
state 2.

13E. The starting point is the leftmost state diagram. Here states 0 and 1 are occupied during
the first half of each input bit and 2 and 3 are occupied during the second half. Since
the input data should not change between the two halves, we do not really need to
check its value in states 2 and 3; I have therefore put the branch conditions in brackets.
The top two states correspond to DATA=1 while the lower two correspond to
DATA=0.

2 1

0 3

[1]/1
1

[0]
0/1

1 0

4 1

0

1/1

0
/!DATA

2 1

0 3

1/1

1

0

0/1

1 1

0

0

I/O Signals: DATA/DISK; DEFAULT: DISK=0

If we assume that DATA is correct in states 2 and 3, we can merge them to form state 4
as in the second diagram. A better solution is to branch 2→3 or 3→2 if DATA is
incorrect as in the third diagram. This will resynchronise the circuit and make if
function correctly regardless of its initial state. The figure shows several examples of
this.

