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Information for Candidates: 

 

Notation: (a) Random variables are shown in a sans serif typeface. Thus Xx,,x  denote 
a random scalar, vector and matrix respectively. The alphabet of a discrete 
random scalar, x , is denoted by X  and its size by X . 

 (b) n:1x denotes the sequence nxxx ,,, 21 L . 

 (c) The normal distribution function is denoted by: 
( ) ))-½(xexp(2),;( 22½22 −−

−= σμπσσμxN  

 (d) ⊕  denotes the exclusive-or operation or, equivalently, addition modulo 2. 

 (e) 
2ln

lnlog xx = denotes logarithm to base 2.  

 (f) )(•P  denotes the probability of the discrete event • . 

 (g) “i.i.d.” denotes “independent identically distributed” 
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The Questions 

 

1. In this question, all vectors and matrices have binary valued elements, i.e. 0 or 1, and all 
matrix or vector additions and multiplications are performed modulo 2. z  is a vector of 
length n  whose elements are i.i.d. Bernoulli random variables with probability 

fP i == )1(z . The typical set, )(nTε , is defined by 

{ }εε <−−= − )()(log: 1)( fHPnT n zz . 

(a) Explain why: 

(i) there exists an εN  such that εε ε NnTP n ><∉ for    )( )(z . 

 (ii) the size of the typical set satisfies  2 ))(()( ε
ε

+≤ fHnnT  

(b) B is a matrix of dimension nmn ×− )(  whose elements are i.i.d. Bernoulli 
random variables with 5.0)1( , ==jiP b .  

(i) If T
1b  is the first row of B, show that for any non-zero vector d , 

5.0)0( 1 ==dTP b  where, as with all vector arithmetic in this question, the 
product is performed modulo 2 and all vector elements are either 0 or 1. 

(ii) Hence show that nmP −== 2)( 0dB .  

(iii) Explain why this implies that if 1d  and 2d  are distinct vectors, 
nmP −== 2)( 21 dd BB . 

(c) For any matrix B as defined above, we select m2  distinct codewords ix  of length 
n  satisfying 0x =iB . Codewords are transmitted through a binary symmetric 
channel with error probability f  whose output is zxy +=  where z  represents 
the channel noise. The decoder estimates the noise by searching for )(ˆ nTε∈z  such 
that ByzB =ˆ  and then estimates the input codeword as zyx ˆˆ −= . 

(i) Show that the probability that the true noise vector, z , satisfies the 
requirements for ẑ  is greater than εε Nn >− for    1 .  

(ii) Show that the probability of a zz ≠ˆ  satisfying the requirements is less than 
 2 )(nnm Tε×− . 

(d) Determine a bound on  nmR /= , below which the probability that xx ≠ˆ  can be 
made arbitrarily small by taking n  sufficiently large. 

 

[2] 

[2] 

[2] 

[2] 

[2] 

[3] 

[3] 

[4] 
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2. In the diagram of Figure 2.1, xyx ˆ and  ,  all lie in the set }4,3,2,1,0{  and x̂  is a 
deterministic function of y . The Bernoulli variable e  equals 1 if xx ≠ˆ  and 0 
otherwise. 

(a) If )1( == ePpe , justify each step in the derivation below and hence derive a 
lower bound on the probability that xx ≠ˆ : 

 

(b) The channel input takes one of five values: }4,3,2,1,0{∈x  with probabilities 
8/]1,1,1,1,4[  respectively. The channel output is given by zxy +=  modulo 5 

where }2,1,0,1,2{ −−∈z  with probabilities 16/]1,4,6,4,1[  respectively.  

(i) Show that 7463.1)|( =yxH  bits. 

(ii) Using the result of part (a), determine a bound on the decoder error 
probability. 

(iii) Define the operation of the decoder )yx (ˆ  such that the error probability is 
minimized. Calculate the error probability of this optimum decoder. 

Noisy
Channel

x y
Decoder

x̂

 

Figure 2.1 

 

 [12] 

 [5] 

 [1] 

 [2] 
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3. (a) Figure 3.1 shows a binary tree used to construct a Fano code for the symbol set 
}5,4,3,2,1{  with probabilities T]108.0,162.0,18.0,22.0,33.0[=p . At each node in 

the tree, the symbols are split into two consecutive groups with the splitting point 
chosen to minimize the difference in total probability between the groups. Each 
branch is labelled with the total probability of its group. Thus the first split divides 
the symbol set into the two groups {1,2} and {3,4,5} with total probabilities 0.55 
and 0.45 respectively. 

(i) Give the Fano codeword for each symbol and the expected code length. 

(ii) Find the entropy )(pH . 

(b) (i) Show that if the initial symbol probabilities are in descending order, then the 
difference between the probabilities of the two groups at each split cannot 
exceed the probability of the lowest symbol in the upper group. 

(ii) Explain why each symbol except one will provide this bound for precisely 
one of the splitting operations. 

(c) At a typical internal node in the tree a consecutive set of symbols, ki : , is divided 
into the two groups ji :  and kj :1+ . We define kiH :  to be the entropy of a 
random variable },,1,{ kiii:k L+∈x  having probability vector 1

:11 ],,,[ −
+ kkii Qppp L  

where ∑ =
=

k

ir rki pQ : . We define kiL :  to be the expected length of a Fano code for 

i:kx . For the leaf nodes, we define 0:: == iiii LH . 

For each non-leaf node, 

(i) show that 1
:1:1:1

1
:1::: 1 −

++
− ++= kkjkjkjijiki QQLQQLL  

(ii) show that 1
:1:1:1

1
:1::

1
:1:1

1
:1:: ]),([ −

++
−−

+
− ++= kkjkjkjijikkjkjiki QQHQQHQQQQHH  

(iii) hence show that 

)()(||)( :1:1:1::::1:::: kjkjkjjijijikjjikikiki HLQHLQQQHLQ ++++ −+−+−≤− . 

You may assume without proof that ||1]),([ qpqpH −−≥ . 

(d) By combining the answers to (b) and (c) show that that if the initial symbol 
probabilities are in descending order, the expected length of the Fano code for an 
alphabet size of n  is bounded by nn pHL −+≤ 1)(:1 p . 

 

Figure 3.1 

 [3] 

 [3] 

 [3] 

 [2] 

 [3] 

 [2] 

 [2] 

 [2] 
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4. (a) Determine the differential entropy )(log)( vv auEh −=  when v  is uniformly 
distributed in the range ),( aa +−  with probability density function 15.0)( −= avua . 

(b) By considering the relative entropy ))(/)(log()||( xx afa ufEufD = , show that if 
x  is restricted to the range ),( aa +− , its differential entropy is maximized when 
its distribution is uniform. 

(c) Figure 4.1 shows a communications channel whose additive noise, z , is 
uniformly distributed in the range )1,1( +− . Justifying each step in your argument, 
determine the distribution )(1 xf  that maximizes )|()();( xyyyx hhI −=  subject 
to the restriction that 1|| ≤x . Give coding and decoding schemes that achieve the 
channel capacity for this case. 

(d) If x  is instead subject to the restriction that 2|| ≤x , determine the distribution 
)(2 xf  that maximizes );( yxI . Give coding and decoding schemes that achieve 

the channel capacity for this case. 

(e) Derive an expression for );( yxI  in terms of a  when x  is uniformly distributed 
in the range ),( aa +−  with 1≥a . 

+

z

x y
 

Figure 4.1 

 

[3] 

[3] 

[5] 

[4] 

[6] 
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5. x  is a continuous, possibly non-Gaussian, random variable with zero mean and 
variance 2σ . x̂  is a random variable that is correlated with x  and that satisfies 

DE ≤− 2)ˆ( xx . You may assume without proof that )2log(½)( 2σπeh ≤x  with 
equality if and only if x  is Gaussian. 

(a) Justify each step in the following sequence: 

( )( )
( )( )

eDh

eEh

eh

hh

hh

hhI

π

π

π

2log½)(

ˆ2log½)(

ˆVar2log½)(

)ˆ()(

)ˆ|ˆ()(

)ˆ|()()ˆ;(

(vi)

2(v)

(iv)

(iii)

(ii)

(i)

−≥

−−≥

−−≥

−−≥

−−=

−=

x

xxx

xxx

xxx

xxxx

xxxxx

 

(b) Suppose that x̂  is generated as )(ˆ zxx += k  where 21 −−= σDk  and z  is zero-
mean Gaussian with variance Dk 1−  and is independent of x . Show that 

(i) DE −= 22ˆ σx  

(ii) DE =− 2)ˆ( xx  

(c) When x̂  is generated as in part (b) above, justify the steps in the following  

)())(2log(½)()ˆ()ˆ;( 2
(ii)(i)

zzxxx khDekhhI −−≤−= σπ . 

Hence show that )log(½)ˆ;( 12 −≤ DI σxx . 

(d) Explain the significance of the bounds proved in (a) and (c) on the rate at which it 
is possible to code with maximum squared error of D , a sequence of i.i.d. random 
variables drawn from the distribution of x . 

 

 [6] 

 [6] 

[4] 

[4] 
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6. The stationary Bernoulli Markov process { }ix  has }1,0{∈ix  and a transition matrix 
given by 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

01
5.05.0

Q  

where )|( 11,1 abPq iiba === −++ xx  for }1,0{, ∈ba . 

(a) Determine 

(i) The stationary distribution of the process. 

(ii) The entropy of ix . 

(iii) The entropy rate of the process. 

(b) A coder processes the ix  in pairs, i.e. the first codeword encodes { }21, xx , the 
next encodes { }43, xx , etc. Calculate the probabilities of all possible pairs and 
hence design a Huffman coder. Determine the average code length per sample of 
{ }ix . 

(c) The Bernoulli stochastic process { }iy  has a probability distribution that depends 
on { }ix  with the following conditional probability matrix 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

10
25.075.0

R  

where )|(1,1 abPr iiba ===++ xy  for }1,0{, ∈ba . 

 (i) Determine the distribution of iy . 

(ii) Determine the entropy of iy . 

 (d) A coder processes the iy  in pairs as in part (b). Calculate the probabilities of all 
possible pairs and hence design a Huffman coder. Determine the average code 
length per sample of { }iy . 

(e) Determine the values of )|( 1−iiH yy  and ),|( 11 −− iiiH yxy  and say how they 
relate to the entropy rate of the process { }iy . 

 

 

 [6] 

 [4] 

 [2] 

 [4] 

 [4] 
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2007 E4.40/SO20 Solutions  

Key to letters on mark scheme: B=Bookwork, C=New computed example, A=New 
analysis 

 

1. (a) (i) From the weak law of large numbers, )()(log1 fHpn prob⎯⎯→⎯− − z  since the 
elements z  are i.i.d. The result follows directly. 

 (ii) )())(())(( 22)()(1
)()(

nfHn

T

Hn

T

Tpp
nn

ε
εε

εε

+−

∈

+−

∈

=≥≥= ∑∑∑
zzz

zz z . The result follows 

by rearranging. 

(b) (i) ∑
≠

=
0

,11
jd

j
T bdb  where the j,1b  are i.i.d. Bernoulli random variables with 

Bernoulli probability of 0.5. This equals 0 with probability of 0.5 provided 
that the sum is non-empty, i.e. that 0d ≠ . 

(ii) Since each row of B is independent, the nm −  elements of dB  are also 
independent and the probability that they all equal 0 is nm−2 . 

(iii) 21 dd BB =  iff 0dd =− )( 21B . Since 1d  and 2d  are distinct vectors, 
0dd ≠− 21  and the result of part (ii) holds. 

(c) (i) z  definitely satisfies ByBxByxyBBz =−=−= )(  and the probability 
that )(nTε∈z  is greater than εε Nn >− for    1 . 

(ii) From part (b)(iii), the probability of any specific member, zz ≠ˆ , of )(nTε   
satisfying BzzB =ˆ  is nm−2  so the probability of any one of them satisfying 
it is less than  2 )(nnm Tε×− . 

(d) The transmission can result in an error if either of the conditions in (c)(i) and 
(c)(ii) arise. The probability of an error is therefore less than their sum. I.e. 

)1)(())(()( 222||2)ˆ( −+++−− +=×+≤×+≤≠ RfHnfHnnmnnm TP εε
ε εεεxx  

For this to become arbitrarily small for large n , we need the exponent to be 
negative: 

εε −−<⇒<−++ )(101)( fHRRfH  

The right hand side is in fact the capacity of the channel though this was not 
requested in the question. 

 

[2B] 

[2B] 

[2A] 

[2A] 

[2A] 

[3A] 

[3A] 

[4A] 
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2. (a) (i) From the chain rule, ),|()|()|,( yxeyxyxe HHH += . However the 
second term is zero because e  is completely determined by x  and y . 

(ii) ),|()(),|()|()|,( yexeyexyeyxe HHHHH +≤+=  where the first 
step follows from the chain rule and the second because conditioning 
reduces entropy. 

(iii) We can split up a conditional entropy into a weighted sum of row entropies. 

(iv) If 0=e  then we know there is no error so x  is completely determined by 
y  so 0)0,|( ==eH yx . 

(v) e  is a Bernoulli variable so 1)( ≤eH . 

Hence 
)1|log(|
1)|(

−
−

≥
X
yxHpe  

(b) (i) We have )()|()()(),()|( yxyxyyxyx HHHHHH −+=−=  and we 
can use either the first of the second expression. The joint probability 
distribution of  x  and y  is 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

×

64114
46411
14641
11464

16441624

128
1

64114
46411
14641
11464
41146

10000
01000
00100
00010
00004

168
1  

From the column sums 
]219.0,148.0,148.0,219.0,266.0[128/]28,19,19,28,34[)( ==yP  from which 

bits 2843.2
128/)2480.41928074.42820875.534(7)(

=
××+××+×−=yH  

Method (1) To get ),( yxH  directly: 

Including the scale factor, 72− , we can calculate 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=+

585.22002
2585.2200
02585.220
002585.22
4224585.4

7),(log yxP  

from which, 

bits 0306.4
128/)2410585.2644162585.424(7),(

=
××+××+××+×−=yxH  

Hence bits 7463.12843.20306.4)(),()|( =−=−= yyxyx HHH . 

Method (2) To calculate )|()(),( xyxyx HHH +=  

2)(]3,3,3,3,1[)(log8/]1,1,1,1,4[)( =⇒=−⇒= xxx Hpp  

[3B] 

[3B] 

[2B] 

[2B] 

[1B] 

[1B] 

[5A] 
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0306.2)()|(
]4,2,415.1,2,4[)|(log16/]1,4,6,4,1[)|(

==⇒
=−⇒=
zxy

xyxy
HH

pp
 

Hence 0306.40306.22)|()(),( =+=+= xyxyx HHH  

(ii) From (a), 3732.0
2

7463.0
)1|log(|
1)|(

==
−
−

≥
X
yxHpe  

(iii) Taking the highest entry in each column of the above matrix, we see that the 
optimum decoder maps ]4,3,2,1,0[=y  to ]0,3,2,0,0[ˆ =x . Summing the 
maximum probabilities in each column gives an error probability of 

4688.0128/)16661624(1 =++++−  which does indeed exceed the upper 
bound in (ii). 

 

[1C] 

[2A] 
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3. (a) (i) The codewords are ]111,110,10,01,00[ . Its expected length is given by 
27.2]3,3,2,2,2][108.0,162.0,18.0,22.0,33.0[ =T  bits. 

(ii) The entropy is given by 

23.2]21.3,63.2,47.2,18.2,60.1][108.0,162.0,18.0,22.0,33.0[ =T  bits 

(b) (i) Suppose that pq ≤  are the probabilities of the first symbol in the lower 
group and the last in the upper group respectively. If the probability of the 
upper group exceeds that of the lower group by more than p  then 
transferring one symbol into the lower group will subtract p2  from this 
difference thereby reducing its absolute value. Similarly, if the probability of 
the lower group is larger by more than p , the difference also exceeds 

pq ≤ . and we can reduce its absolute value by transferring one symbol into 
the upper group. 

(ii) The symbol providing the bound is the last one in the upper group. For all 
subsequent divisions of that group, this symbol is bound to be in the lower 
group and so can never again form the bound. After 1−n  divisions, each 
symbol lies in its own group. Each symbol except the last must therefore 
have formed the bounding value for the division that separated it from its 
lower neighbour. 

(c) (i) The Fano code uses one bit to select between ji :  and kj :1+  so the 
expected length is given by: 

1
:1:1:1

1
:1:1:1

:1:1:1

1

):1():1(1
−

++
−

+

++=

+∈+∈+=

kkjkjkjj

kjjk

QQLQQL

kjPLjPLL xx
 

(ii) If we define u  to be a Boolean variable that equals 1 if x  is in the lower 
group, then since 0)|( =xuH , 

1
:1:1:1

1
:1:1:

1
:1:1:1 )]([

)0()0|()1()1|()(
)|()(),()(

−
++

−−
+ ++=

==+==+=
+==

kkjkjkjjikkjj QQHQQHQQQH
uPuHuPuHH

HHHH
xxu

uxuuxx
 

(iii) 1
:1:1:1

1
:1:1

1
:1:1

1
:1:1:1 ||1||1)]([ −

+
−

+
−−

+ −−=−−≥ kkjjkkjkjkkjj QQQQQQQQQQH  

Hence, subtracting the previous two results gives 
1

:1:1:1:1
1

:1:1:1:1
1

:1:1:1:1:1 )()(||11 −
+++

−−
+ −+−+−+−≤− kkjkjkjkjjjkkjjkk QQHLQQHLQQQHL  

from which the result follows by multiplying by kQ :1 . 

(d) From (b), the quantity in (c)(iii) satisfies jkjj pQQ ≤− + || :1:1 . Hence (c)(iii) 
becomes 

kjkjkjjjjjkkk QHLQHLpQHL :1:1:1:1:1:1:1:1:1 )()()( +++ −+−+≤−  

[3C] 

[3C] 

[3A] 

[2A] 

[3A] 

[2A] 

[2A] 

[2A] 
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At the leaf nodes, the quantities 0)( ,,, =− iiiiii QHL . As we go up the tree, we 
accumulate jp  terms and, from (b)(ii) eventually include them all except np . 
Thus they sum to np−1  and, since, 1:1 =nQ , the result follows. 

4. (a) aavuEvh a 2log)5.0log()(log)( 1 =−=−= −  

(b) If )(~ xfx , we have 

ahufEufD fafa 2log)())(/)(log()||(0 +−==≤ xxx  

and the result follows. 

(c) We have: 

1)(2log)(
)()()|()()|()();(

−=−=
−=+−=−=

yy
zyxzxyxyyyx

hh
hhhhhhI

 

Thus we need to find the input distribution that maximizes )(yh . Since 1|| ≤x , 
we must have 2|| ≤y  and the optimum distribution for y  is )(2 yu  giving 

1);(24log)( =⇒== yxy Ih . 

We can achieve capacity by making 1±=x  with equal probabilities. We can then 
send one bit per channel use and the decoder just detects the sign of y . 

(d) Now we have  

585.1);(585.26log)(3||2|| ≤⇒=≤⇒≤⇒≤ yxIyhyx  

We can make y  uniform by choosing }101{−∈x  with equal probabilities 
and detecting at thresholds of 5.0±=y . 

(e) The pdf of zxy +=  is trapezoidal in the range )1( +± a  since it is the 
convolution of two rectangular distributions. More precisely: 

⎩
⎨
⎧

+≤<−−+
−≤

=
−

−

1||1|)|1(25.0
1||5.0

)( 1

1

ayayaa
aya

yp  

–(a+1) –(a–1) (a–1) (a+1)

(2a)–1

 
From symmetry and shift-invariance, we need integrate only half the distribution 
and can shift it so the sloping portion goes through the origin: 

 [2B] 

 [3B] 

 [5A] 

 [4A] 
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[ ]

eaa
aaeaaa

ppeaaa

dpppeaaa

dpadyyap

aaadypp

dypph

a

a

a

log5.02log
)2log(log5.02log)1(

)ln5.0(5.0log82log)1(

loglog82log)1(

)4)4( substitute(

2log)2()1(2log2

log2)(

1

111

)2(
0

21

)2(

0

1

1

1
2

0

1

0

1

1

−

−−−

−

−

−

−

+

+=

++−=

+−−−=

×−−=

=⇒=

−××−−−=

−=

−

−

∫

∫

∫y

 

Hence  

eaaeaahI log5.0log1log5.02log1)();( 11 −− +=−+=−= yyx  

 

 [6A] 
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5. (a) (i) Definition of mutual information 

(ii) Translation invariance of differential entropy + x̂  is conditionally constant. 

(iii) Removing conditioning increases entropy (decrease because of – sign). 

(iv) Gaussian bound on differential entropy for a given variance 

(v) Mean square value is ≥  Variance (note x̂  may not be zero mean) 

(vi) Mean square deviation bounded by D  and log is monotonic increasing. 

(b) (i) Since x  and z  are xero mean and independent, we have 

DDDDD
DkkkDkEkEkE

−=−=+−−=

+=+=+=
−−− 222222

22222222

)1())1)((1(
)(ˆ

σσσσσσ

σσzxx
 

(ii) For the same reason, 

DDDDDDD
kDkDkkk

EkEkkkEkEE

=++=−+=

+−=+−=

+−=−−=+−=−

−−−−

−

22222222

221222

2222222

)1()(
)1()1(

)1())1(())(()ˆ(

σσσσσ

σσ

zxzxzxxxx
 

(c) (i) This is a contraction of steps (i), (ii) and (iii) from part (a). 

(ii) This is the Gaussian upper bound using the variance calculated in (b)(i). 

Using this as the starting point 

)log(½))(2log(½))(2log(½
))(2log(½))(2log(½

)())(2log(½)ˆ;(

122

122

2

−

−

=−=

−−=

−−≤

DkDeke
DkkeDe

khDeI

σπσπ

πσπ

σπ zxx
 

(d) We have shown in (a) that it is always true that eDhI π2log½)()ˆ;( −≥ xxx  and 
in (c) that there exists an x̂  satisfying the distortion constraint with 

)2log(½)ˆ;( 12 −≤ DeI σπxx . The rate distortion function )(DR  is the minimum 
value of )ˆ;( xxI  with x̂  satisfying the distortion constraint and must therefore lie 
between these bounds. Note that if x  happens to be Gaussian then the two bounds 
coincide. 
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6. (a) (i) The stationary distribution satisfies ppQ =T . If Tqp ],[=p  we have 
]31,32[],[25.0 =⇒=⇒+= qpqpqpp . 

(ii) The entropy of }{ ix  is bits 918.0])31,32([ =H . 

(iii) The entropy rate of a stationary Markov process is  

bits 667.0031132)1(31)5.0(32)|( 1 =×+×=×+×=− HHH ii xx . 

(b) We have )|()()( 121 abPaPabP ==== xxx  which gives: 

]0,333.0,333.0,333.0[]0333.0,1333.0,5.0667.0,5.0667.0[])11,10,01,00([ =××××=P
Huffman codes are therefore 0, 10, 11 with no code for the impossible pair 11. 
The average code length is 1.667 bits per pair or 0.833 bits per sample: this lies 
between the entropy rate and the entropy. 

(c) (i) TT ]5.0,5.0[== xy pRp . 

(ii) bit 1)()( == yy pHH i . 

(d) We can take the pair probabilities calculated in (b) and determine the possible 
}( iy  pairs that can result. We have the following conditional probabilities: 

x pair p(x) y pair 

00 

 

01

 

10 

 

11 

00 1/3 9/16 3/16 3/16 1/16 

01 1/3 0 12/16 0 4/16 

10 1/3 0 0 12/16 4/16 

Summing the columns and multiplying by 31)( =ixp  gives 

]1875.0,3125.0,3125.0,1875.0[]163,165,165,163[])11,10,01,00([ ==P  

The Huffman codes are 10, 00, 01, 11 and the average code length is 2. 

 (e) From the pair probabilities in part (d) we get 

bits 9544.0])85,83([)|( 1 ==− HH ii yy  
Since iy  does not depend directly on 1−iy  we have 

9067.0318113.0329544.0
31)16/]4,12([32)32/]20,12([

)0()0|()0()0|(
)|(),|(

1111

111

=×+×=
×+×=

==+===
=

−−−−

−−−

HH
PHPH

HH

iiiiii

iiiii

xxyxxy
xyyxy

  

The entropy rate of }{ iy  must lie between these two values. 
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