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Claude Shannon Textbooks

Book of the course:

= Elements of Information Theory by T M Cover & J A
Thomas, Wiley 2006, 978-0471241959 £30 (Amazon)

* “The fundamental problem of communication is that
of reproducing at one point either exactly or
approximately a message selected at another
point.” (Claude Shannon 1948)

= Channel Coding Theorem: Alternative book — a denser but entertaining read that
covers most of the course + much else:

* Information Theory, Inference, and Learning Algorithms,
D MacKay, CUP, 0521642981 £28 or free at
http://www.inference.phy.cam.ac.uk/mackay/itila/

It is possible to achieve near perfect communication
of information over a noisy channel

« In this course we will:
— Define what we mean by information

— Show how we can compress the information in a 1916 - 2001 .
source to its theoretically minimum value and show Assessment: Exam only — no coursework.

the tradeoff between data compression and distortion.
— Prove the Channel Coding Theorem and derive the
information capacity of different channels.

Acknowledgement: Many of the examples and proofs in these notes are taken from the course textbook “Elements of
Information Theory” by T M Cover & J A Thomas and/or the lecture notes by Dr L Zheng based on the book.
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Notation Discrete Random Variables

* Vectors and Matrices e A random variable x takes a value x from
— v=vector, V=matrix, ®=elementwise product the alphabet X with probability p (x). The
= Scalar Random Variables vector of probabilities is p, .
— x = R.V, x = specific value, X = alphabet Examples:
» Random Column Vector of length ¥ G X =[12:345:6), p,= [V Vs Vi Ve Vi el

—x= R.V, x = specific value, XV = alphabet
d ticul t I t “english text”
— x. and x; are particular vector elements X = [a; b..., y: 7; <space>]
Ranges p,= [0.058; 0.013; ...; 0.016; 0.0007; 0.193]
— a:b denotes the range a, atl, ..., b
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Expected Values

* If g(x) is real valued and defined on X then
E, g(x)= p(x)g(x)

xeX
Examples:
G X = L2345:6) p,= [V Y Vs Vs Ve Vel
Ex=35=pu

Ex*=1517=c"+4’
E sin(0.1x)=0.338
E —log,(p(x))=2.58
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Shannon Information Content

e The Shannon Information Content of an
outcome with probability p is —log,p

= Example 1: Coin tossing
— X = [Heads; Tails], p =[%; %], SIC =[1; 1] bits

e Example 2: Is it my birthday ?
- X = [No; Yes], p = [**/35; /365
SIC = [0.004; 8.512] bits
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Minesweeper

e Where is the bomb ?
« 16 possibilities — needs 4 bits to specify

Guess Prob SIC

1. No 15/, 0.093 bits
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Entropy

T
The , H(x)=E —log,(p,(x))=-p, log,p,
— H(x) = the average Shannon Information Content of x
— H(x) = the average information gained by knowing its value

— the average number of “yes-no” questions needed to find x is in
the range [H(X),H(X)+1)

We use log(x) = log,(x) and measure H(x) in
— if you use log, it is measured in
— 1 nat = log,(e) bits = 1.44 bits
In(x) dlog,x log,e
In(2) . x

- log,(x) =
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Entropy Examples

(1) Bernoulli Random Variable .,
X=[0;1], p,=[1-p; pl
H(x)=—(1-p)log(l-p)-plogp
Very common — we write H(p) to

mean H([1-p; p]).

(2) Four Coloured Shapes
X=1[o; m; & &] p,=[¥2; Va; Yg; Y4l
H(X)=H(p,)= ) ~log(p(x)p(x)
=1xYs+2x%+3% § +3x ¥ =1.75 bits
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H(p)

Bernoulli Entropy Properties

X=1[0;1], p,=[1-p; P] H(p)=-(1-p)log(l-p)—plogp
H'(p)=1log(l- p)-logp

H'(p)=-p”'(1-p) ' loge
Bounds on H(p)

08 ] Quadratic Bounds
06 1 H(p)<1-2loge(p-"5)’
=1-2.89(p - %)
0.4 ——1-2.89(p-0.5)? )
—H(@E) H(p)z1-4(p-"2)
0.2 —L4p05y > 2min(p,1- p)

—2min(p,1-p)

0 0.2 0.4 0.6 0.8 1
p
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Joint and Conditional Entropy

Joint Entropy: H(x,))

Xx=0 Yo Ya
x=1 0 Ya

H(Xay)zE_Ing(Xsy)
=—Ylog's—Valog"—0log0—"slog' =1.5 bits

pin |0 e

Conditional Entropy : H(y| X)

H(y|Xx)=E-logp(y|x)
=-Yslog% —"log )4 —0log0—"alogl = 0.689 bits

Xy |0 =1
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Conditional Entropy — view 1

Additional Entropy: p(X ) |y:0 ¥l |p(X)

p X)) =p(x,y)+ p(x) Xx=0 Y 1,

H(y|x)=E~logp(y|x) x=1 0 ¥
= E {~log p(x, )}~ E {~log p(x)}
=H(x,y)-H(x)=H(%,",0,/) — H(Vs) = 0.689 bits

H(X )

& a
O
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Conditional Entropy — view 2

Average Row Entropy: pxY | y0 y1 |H(y| X=) | P

Xx=0 Ye Y| H1B) | %
x=1 0 v | HQ Y

H( | x)=E-logp(y | X)=) "~ p(x.y)log p(y| x)

xy

=> = p(X)p(y|Dlogp(y|x) = p(x)Y"— p(y| x)log p(y | x)
X,y Xe. vel

=" p(H(V | X =x)=Yx H())+Ysx H(0) = 0.689 bits

xeX
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Chain Rules

e Probabilities
p(X.y,2)=p(Z|Xx,y)p(y|X)p(X)
e Entropy
H(x,y,z)=H(Z|x,y)+HY|X)+H(x)

Hx,) =S HX, | X,y )

i=1

products
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Summary

* Entropy: H(x)=3 ~log,(p(x)p(x) = E ~log,(p, (x))
X

— Bounded 0<H(x)<log|X|

H(x.,y)

e Chain Rule: 8\
H(x,y)=H( |x)+H(x) M‘N
H( H()

e Conditional Entropy:
HW | X)=H(X,y)~H(x)=Y p()H(y | x)

xeX

— Conditioning reduces entropy H(y |x)<H(y)
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Lecture 2

e Mutual Information

— If xand yare correlated, their mutual information is the average
information that y gives about x
« E.g. Communication Channel: x transmitted but y received

* Jensen’s Inequality
* Relative Entropy
— Is a measure of how different two probability mass vectors are
* Information Inequality and its consequences
— Relative Entropy is always positive
* Mututal information is positive

« Uniform bound
« Conditioning and Correlation reduce entropy
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Mutual Information

The mutual information is the average
amount of information that you get about x
from observing the value of y

I(x:y)=H(X)-H(x|y)=H(X)+H(Y)-H(X,y)

Mutual information is 4 s
symmetrical @)
H( H()

I(x;y)=1(y; %)
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Mutual Information Example

PXY |40 1« |fyou try to guess y you have a 50%
x=0 V2 Ya chance of being correct.
x=1 0 % < However, what if you know x ?
— Best guess: choose y= x
— If x=0 (p=0.75) then 66% correct prob
— If x=1 (p=0.25) then 100% correct prob
— Overall 75% correct probability

H(x,)=1.5

I(x;y)=H(xX)-H(x|y)
=HX)+HW)-H(X.y)
H(x)=0811, H(y)=1, H(x,y)=15

H(x~0811 HY=L - I(x;)=0.311
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Conditional Mutual Information

Conditional Mutual Information
I(x;y|2)=H(x|2)-H(x|y,2)
=H(x|2)+Hy|2)-H(x,y|2)

Chain Rule for Mutual Information
I(X, X5, X33 ) = 1(X s Y)+ (X Y | X))+ I(X5 Y | X, X)

I(x,,;¥)= ZI(X,GJ/ | X1i1)
i=1
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H(x, )

Review/Preview ,,m H

* Entropy: H(x) =) -log,(p(x))p(x) = E ~log, (p, (x))
— Always positi\;:ax H(x)=0
e Chain Rule: Hx.»)=HX)+HY [X)<SH)+H(Y)
— Conditioning reduces entropy H(y |x)<H(y)
e Mutual Information:
Iy;x)=HWY)-HY |xX)=HX)+H()-H(x.,y)
— Positive and Symmetrical 1(x;y)=1(y;x)>0
— xand yindependent < H(x,y)=H()+H(x)
S I(xy)=0
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Convex & Concave functions

fx) is strictly convex over (a,b) if
fAu+(A-AW)<Hw)+(1-A)f(v) Yu#ve(a,b),0<i<l

— every chord of f{x) lies above f{x) Concave is like this

- fix)is < —flx)is -
* Examples “ﬁ ]
— Strictly Convex: x7, x*, e*, xlog x[x > 0] TR
— Strictly Concave: logx,x [x>0] 1 i
— Convex and Concave: x
af o
- Test: — 5> 0 Vxe(ab) = flx) is strictly convex

(not strictly) uses “<” in definition and “>” in test
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Jensen’s Inequality

. (a) flx) convex = Ef(X) > f(EX)
(b) f{x) strictly convex = Ef(x) > f(Ex) unless x constant
Proof by induction on |X|
= X[=1: EfO0=fEX)=f(x)

= Xk B £00= Y pf () =pf )+ (1= p) Y5 )

k=1
> pof () + (- mf[zl P:U xij
i=1 1= Py

Zf[kaA +(1_P1‘)Zlf;} xljzf(Ex)
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Jensen’s Inequality Example

Mnemonic example:
flx) =x2 : strictly convex

X=[-1;+1]

p=1[7"%] \
Ex=0

AE %=0 g2
Efx=1>fE x) 1
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Relative Entropy

or
between two probability mass vectors p and g

B &) PX) o _
Dl =3 p(log = =Eylog: "= E, (~logg(x))-H(x)

where £, denotes an expectation performed using probabilities p

D(p||lq) measures the “distance” between the probability
mass functions p and g.
We must have p~0 whenever ¢=0 else D(p||c)=«

Beware: D(p||q) is not a true distance because:

— (1) it is asymmetric between p, g and
— (2) it does not satisfy the triangle inequality.
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Relative Entropy Example

&) X=[123456]"

o=l % % Yo Ve Wl = He=2s8s
qz[%o Mo Mo Ho Mo %] = H(@)=2.161

D(p|lq)=E,(-loggq,)—H(p)=2.935-2.585=0.35
D(q||p)=E,(-logp,)—H(q)=2.585-2.161=0.424
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Information Inequality

Dpplag)=0
e Define A={x:p(x)>0cX

° -D —_ 1 p(x): 1 q(x
Proof -p(plia) ;p<x>ogq(x) ;mx) &

< 10g[2p(x)M) = log[Zq(x)] < log(Zq(x)j =logl=0
xed p(x) xed xeX

If D(p|/g)=0: Since log( ) is strictly concave we have equality in the
proof only if g(x)/p(x), the argument of log, equals a constant.

But Zp(x) :Z q(x)=1  so the constant must be 1 and p=q
eX eX
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Information Inequality Corollaries

e Uniform distribution has highest entropy
—Set g=[lX"1, ..., |XI""]7 giving H(q)=log|X| bits

D(p | Q) = E, {~logq(x)}— H(p) =log | X| ~H(p) 2 0

e Mutual Information is non-negative

[yix) = HOO) + H(y) ~ H(x.y) = E log 2V
X)) =HX)+H(Y)-H(X,y) ng()()p(y)
=D, , P, ®p,)20

with equality only if p(x,)) = p(X)p()) < xand y are independent.
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More Corollaries

e Conditioning reduces entropy
0<I(y)=HW)-HWY|x) = HYIx)<HY)

with equality only if x and y are independent.
» Independence Bound
H(Xlzn) = ZH(Xz | Xl:i—l) < ZH(Xz)
i=1 i=1

with equality only if all x, are independent.
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Conditional Independence Bound

e Conditional Independence Bound
H(XI;n |y|:n) = ZH(X,‘ ‘ Xlzi—lﬁylgn) < ZH(Xf U/,)

e Mutual Information Independence Bound
If all x are independent or, by symmetry, if all y; are independent:

I(x, 3 0) = Hxy,) - H(X,, | V1)

>3 HOO) - Y HO ) =2 10:8)
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Summary

Mutual Information  1(x;¥)=H(x)-H(x|y)< H(x)
* Jensen’s Inequality:  f(x) convex = Ef(x) > AEX)
* Relative Entropy: 5%
— D(pla)=0iffp=gq D(pHQ)=Ep10gp( )
; q(x)
e Corollaries
— Uniform Bound: Uniform p maximizes H(p)

>0

— I(x; y) = 0= Conditioning reduces entropy

- Indep bounds: H(X]:n)SZH(Xi) H(Xl:n‘yl:n)ng(Xi‘yi)

i=1 i=1

I, 91,)2 D 10Xy, if x; or y, are indep
i=1
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Lecture 3

Symbol codes

— uniquely decodable

— prefix

Kraft Inequality
Minimum code length
Fano Code
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Symbol Codes

Symbol Code: C is a mapping X—D*
— Dt = set of all finite length strings from D
—eg {E, F, G} »{0,1}*: C(E)=0, C(F)=10, C(G)=11
Extension: C* is mapping X* —»D* formed by
concatenating C(x;) without punctuation

e e.g. C*(EFEEGE) =01000110
Non-singular: x;=x, = C(x;) = C(x,)
Uniquely Decodable: C* is non-singular
—that is C*(x*) is unambiguous
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Prefix Codes

e Instantaneous or Prefix Code:
No codeword is a prefix of another

e Prefix = Uniquely Decodable = Non-singular
Examples:

- C(E,F,G,H)=(0, 1,00, 11)

— C(E,F) = (0, 101)

— C(E,F) =(1,101)

- C(E,F,G,H) = (00, 01, 10, 11)

— C(E,F,G,H) =(0, 01,011, 111)
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Code Tree

Prefix code: C(E,F,G,H) = (00, 11, 100, 101)

Form a D-ary tree where D = |D|

— D branches at each node

— Each node along the path to
a leaf is a prefix of the leaf

= can't be a leaf itself
— Some leaves may be unused
all used = | X|—1is a multiple of D—1

111011000000— FHGEE
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Kraft Inequality (binary prefix)

e Label each node at depth / with 2~

e Each node equals the sum of
all its leaves

e Codeword Iengths:m
2
Ly by oo Iy = 22751

e Equality iff all leaves are utilised
e Total code budget = 1
Code 00 uses up ¥4 of the budget
Code 100 uses up /g of the budget
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Kraft Inequality

If uniquely decodable ¢ has codeword lengths

|X]
I, b, ..., Ly , then > D" <1
i=l
1X|
Let S= ZD"' and M =max/; thenforany N,
i=1

N _ & -, Yomm o iy +y 4ty ~length {C” (X)}
S DA D RN =2D

=liy=1  iy= xeXV
—ZD | x:1=length {C" (x)}] < Z D' DE 21 NM
I=1
If $> 1 then S¥> NM for some N. Hence S< 1
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Converse to Kraft Inequality

If iD”» <1 then 3 a prefix code with
- codeword lengths /,, [,, ..., Iy,
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Kraft Converse Example

3|
Suppose 1=1[2;2;3;3;3] = 22" =0875<1

k-1
Proof: A =3 D" Code
— Assume /;<[,,, and think of codewords as '
base-D decimals 0. d1d2 d,; 2 0.0 = 0.00, 00
L 2 0.25 =0.01, 01
— Let codeword ¢, ZD thh I, digits 3 05 = 0.100, 100
— Forany j<kwe have ck—c +ZD 2c,+D" " 3 0.625 = 0.101, 101
i=j —
— So ¢; cannot be a prefix of ¢, because they differ in 3 0.75 =0.110, 110
the first /; digits.
Minimum Code Length Fano Code

If I(x) = length(C(x)) then C'is if
L-=E I(X) is as small as possible.
Uniquely decodable code = L.> H(X)/log,D
Proof: We define gby g(x)=c"'D"™ where c= D™ <1
L. —H(x)/log, D = E I(x) + E log,, p(X) §
=E (— log, D' +log, p()())= E (~log, cq(x) +log,, p(x))

[logn p(( )))—lognc =log, 2(D(p|la)-logc)>0
q(x

Fano Code (also called Shannon-Fano code)
1. Put probabilities in decreasing order
2. Split as close to 50-50 as possible; repeat with each half

0.20 0 00 H(p)=2.81 bits

019 ¢ , 0 010
0.17 011
0.15 100
0.14 1 101
0.06 0 110
0.05 0 1110
0.04 1111

Lg=2.89 bits

o| —

Always H(p) < L, < H(p)+1-2min(p)
<H(p)+1

SR o 0 A6 o
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Summary

e Kraft Inequality for D-ary godes:
— any uniquely decodable C has ) D™ <1

1X] i=l

— If >.D™" <1 then you can create a prefix code

. Uniqliely decodable = L.> H(X)/log,D
e Fano code

— Order the probabilities, then repeatedly split in half to
form a tree.

— Intuitively natural but not optimal
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Lecture 4

e Optimal Symbol Code
— Optimality implications
— Huffman Code

« Optimal Symbol Code lengths
— Entropy Bound

e Shannon Code
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Huffman Code

An Optimal Binary prefix code must satisfy:
1. p(x)>plx) = <] (else swap codewords)
2. The two longest codewords have the same length
(else chop a bit off the longer codeword)

3. 3 two longest codewords differing only in the last bit
(else chop a bit off all of them)
Huffman Code construction

1. Take the two smallest p(x;) and assign each a
different last bit. Then merge into a single symbol.

2. Repeat step 1 until only one symbol remains
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Huffman Code Example

X=T[a,b,c,d,e],p,=[025 025 0.2 0.15 0.15]
a 025—025—025 055710
b 025—0257045 0.45
c 02—02

d 0159 03— 03
e 0.15

1

Read diagram backwards for codewords:
C(X)=[00 10 11 010 011], L.=2.3, H(x) =2.286
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Huffman Code is Optimal Prefix Code

Huffman traceback gives codes for progressively larger
alphabets:

a 025——025— 02520552 10
p,=[0.55 0.45], b 0,25—0.25% 045 0.457
¢,=[0 11, L,=1 ¢ 02 o 02771 s
d 0150 03— 03
p;=[0.25 0.45 0.3], e o015

¢;=[00 1 01], L;=1.55
p,=[0.250.25 0.2 0.3],
¢,=[00 10 11 01], L,=2
p,=[0.25 0.25 0.2 0.15 0.15],
¢=[00 10 11 010 011], L;=2.3

Jan 2008

Huffman Optimality Proof

Suppose one of these codes is sub-optimal:

— 3m>2 with ¢, the first sub-optimal code (note c,is definitely

optimal)

- An optimal ¢! must have L., < L,
Rearrange the symbols with longest codes in ¢!, so the two
lowest probs p, and p; differ only in the last digit (doesen’t
change optimality)
— Merge x; and x; to create a new code c

procedure

= L ¢yt =L ,—pi—p; since identical except 1 bit shorter with prob
pitp;
But also L ¢, =L ,—p;—p; hence L ., < L, which
contradicts assumption that c,, is the first sub-optimal code

as in Huffman

m—1
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How short are Optimal Codes?

Huffman is optimal but hard to estimate its length.
If I(x) = length(C(x)) then C is optimal if
L-=E I(x) is as small as possible.

We want to minimize Y, p(x)I(x) subject to
1. ZD*I(X) <1 xeX

xeX
2. all the (x) are integers

Simplified version:
Ignore condition 2 and assume condition 1 is satisfied with equality.

less restrictive so lengths may be shorter than actually possible = lower bound
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Optimal Codes (non-integer 7))

| X
« Minimize ) p(x); subjectto > D™ =1

i=1 i=1

Use lagrange multiplier:

_ R X aJ
Define /=) p(x),,+2) D" andset 5:0
i=1 i=1 i

2_1J =p(x)-Aln(D)D™" =0 = D™ = p(x,)/AIn(D)

i

also iD”':l = A=UlD) = [ =-logy(p(x,)

i=1

withthese |, E1(x) = E - log, (p(x)) = E=108(p(0)) | HX)
log, D log, D

no uniquely decodable code can do better than this (Kraft inequality)
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Shannon Code

Round up optimal code lengths: 7 =[-log, p(x)]

= [, are bound to satisfy the Kraft Inequality (since the
optimum lengths do)

* Hence prefix code exists:
put /;into ascending order and set

“ =) equally good
=y D™ r = : o
G ; ° G ;p(x,) since p(x,) > D
to /; places
. H(X) H(X) (since we added <1
= Average length: log, D Sle< log, D + to optimum values)

Note: since Huffman code is optimal, it also satisfies these limits
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Shannon Code Examples

Example 1 p,=[0.5 025 0.125 0.125]
(good) —log,p,=[1 2 3 3]
I, =[-log,p, =01 2 3 3]

L. =1.75bits, H(x)=1.75bits

Dyadic probabilities

Example 2 p, =[0.99 0.01]

(bad) —log,p, =[0.0145 6.64]
IX = |7— 10g2 pX—|= [1 7] (obviously stupid to use 7)

L. =1.06bits, H(x)=0.08Dbits

We can make H(x)+1 bound tighter by encoding longer blocks as a super-symbol

Jan 2008

Shannon versus Huffman

Shannon p, =[036 034 025 0.05] = H(x)=1.78bits
—log,p, =[147 1.56 2 432]
Iy=[-log,p, ]=[2 2 2 3]

Ly =2.15bits
Huffman
0
I =11 2 3 3 a 0.36—— 0.36—— 0.36 1.0
n=l ) ] b 0.34— 0.34—> 0.647l
Ly =1.94bits ¢ 0252 03; !
d 0405: 1

Individual codewords may be longer in
Huffman than Shannon but not the average
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Shannon Competitive Optimality

e I(x) is length of a uniquely decodable code
e I (x)= ]—— log p(x)-| is length of Shannon code
then p(I(x)<lg(x)—c)<2"*
Proof: Define A = {x:px)< 27’(")7“1} x with especially short /(x)

pli0) <[ =log p(x)|=¢)< plix) < ~log p(x) —c +1)= p(x e A)
=Y p(x) £ max(p(x)|xed) <y 27

xed xed

“I(x)-c+1 ~(c-1 -1 ~(e-1
< 22 ()merl _ pte )22 @) < 27D Yraft inequality
**~—nowoverallx

No other symbol code can do much better than Shannon code most of the time
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Dyadic Competitive optimality

If p is dyadic < log p(x,) is integer, Vi
then p(i(x) <Ig(x))< pli(x) > Io(x)) with equality iff I(x) = 1(%)
Proof:

— Define sgn(x)={—1,0,+1} for {x<0, x=0, x>0}

— Note: sgn(i) < 27—1 for all integers i

plls(x) > 100) - plis(x) <1(x)) =Y. p(x)sgn(ls(x) - 1(x))

< Zp(x)(Z"‘"‘)’“” _ 1): 1+ 224,;0)2150)40)
=-1+> 2" <-1+1=0

Rival code cannot be shorter than
Shannon more than half the time.
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Shannon with wrong distribution

If the real distribution of xis p but you assign Shannon
lengths using the distribution g what is the penalty ?
Answer: D(p||q)

Proof: EI(X)=Y. p[-logq, |<Y p(1-logq,)

i i

:Zp{lﬂogﬂ—logp,-]
i q

i

=1+D(p Q)+ H(p)

Therefore

HP)+ DD <EIx)<HP)+DP|a)+1

If you use the wrong distribution, the penalty is D(p||q)

Jan 2008

Summary

Any uniquely decodable code: Ei(x)= HD()():%
2

Fano Code: H,(x)<EI(x)<Hp(x)+1

— Intuitively natural top-down design

Huffman Code:
— Bottom-up design

— Optimal = at least as good as Shannon/Fano

Shannon Code: [ =[-log, p,]  Hy(X)<EI(x)<Hpy(x)+1

— Close to optimal and easier to prove bounds

Jan 2008

Lecture 5

» Stochastic Processes

* Entropy Rate

e Markov Processes

» Hidden Markov Processes
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Stochastic process

Stochastic Process {x;} = x;, X,, ...

often

Entropy: HxD=HMX)+H(X,|X)+... = ©

Entropy Rate: H(X)= limlH(XM) if limit exists
n—o0 n

Examples:
— x i.i.d. random variables: H(X)=H(X,)
— X indep, H(x)=0 100 11 0000 1111 00000000 ... no convergence
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Lemma: Limit of Cesaro Mean

1 n
a,>b = =Y a, —>b
nio

Proof:
* Choose ¢>(0 andfind N, suchthat |a,—bl<'2e Vn>N,
- Sset N,=2N,'max(|a,—b|) for re[l,N,]

n

Zak_b‘

k=Ng+1

N,
« Then Vn>N, n’li‘ak—b‘ =rf'z‘y:‘ak—b‘+n’1
k=1 k=1

< NN (N, N,e )+ n'n(e)

=he+he=¢
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Stationary Process

Stochastic Process {x;} is iff

P(Xyy, =) = P(X iy = a1,,)  Vk,m,a, € X
If {x} is stationary then H(X) exists and
HX)=lim—H(x,,)=limH(x,|X,,)
n—0 n n—0

(a) (b)
Proof: 0<H(x,| X, )SH(X, ‘XZ;nfl) =H(X, | X,.)

Hence H(x|x,.,,) is +ve, decreasing = tends to a limit, say »

Hence from Cesaro Mean lemma:
1

1 "
Hx | Xy ) >b = ;H(XM):*ZH(X/( [ X14) > b=H(X)
]

niz
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Block Coding

If x; is a stochastic process
— encode blocks of n symbols

— 1-bit penalty of Shannon/Huffman is now shared
between n symbols

nilH(X]:n) S nilE I(Xlzn) S nilH(Xl:n)J'_ n71
If entropy rate of x; exists (< x; is stationary)

nH(x,) > HX) = n'El(x,,)—> HX)
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Block Coding Example

1

X=[AB], p,=1[0.9;0.1] 08
H(x,)=0.469 &
( ;) [=4 0.6
04— 4 6 8 10 12
e n=1 sym A B n
prob 09 01 p'E/=1
code 0 1

e »p=2 sym AA AB BA BB
prob 0.81 0.09 0.09 0.01 n'El1=0.645
code 0 11 100 101

e n=3 sym AAA  AAB .. BBA BBB
prob  0.729 0.081 ... 0.009 0.001 n'El1=0.583
code 0 101 .. 10010 10011
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Markov Process

Discrete-valued Stochastic Process {x;} is
e Independent iff  p(x,xo.,_)=p(x,)
© MarkOV Iff p(xn|x0:n—1):p(xn‘xn—l)
— time-invariant iff p(x,=b|x,_,=a) = p,, indep of n
— Transition matrix: T = {¢,,}
e Rows sum to 1: T1 =1 where 1 is a vector of 1's
*p,=Tp,,
- Stationary distribution: ps = T’pg
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Stationary Markov Process

If a Markov process is
: you can go from any a to any b
in a finite number of steps
e irreducible iff (I+T7)X-! has no zero entries

: Va, the possible times to go from
a to a have highest common factor = 1

then it has exactly one stationary distribution, py.
~  pg is the eigenvector of T7 with 1=1: T'ps =Pp;
— T" —>1p{ where 1=[1 1 - 1]"
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Chess Board

H(p))=0, H(p, | p)=0

Random Walk |—
e Move & § Rdw < equal prob .
° p;=[10..0]"

- Hpp=0
Ps="4x[353585353]
— H(p) = 3.0855

H(X)= %%H(Xn [ X,.)= z_ DPsili IOg(ti,.i)
]
- H(X)=2.2365
and = stationary
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Chess Board Frames

Hp =0, Hp, 190 Hp =184, H, 915845 Hpg=310287,  Hp, | p)-254795 Hi 295553, Mo, 1p,)-205299
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ALOHA Wireless Example

M users share wireless transmission channel

|i @ @|o |0 e @ o — For each user independently in each timeslot:
« if its queue is non-empty it transmits with prob ¢
. . e @ |0 ® @ e « anew packet arrives for transmission with prob p
ole| e oe|®| e - If two packets col!lde. they stay in the queues
— At time ¢, queue sizes are X, = (n,, ..., n))
. 1 i
S S S (X} is Markov since p(x,) depends only on x, ,
e|e e|@|e ele|e e|l@|e . . %, =0
Transmit vectorisy,:  p(y,, =1)= ’
e @®|eo e @ e @ e e @|e q x,>0
@ e e @ | e @ e e @ e — {y,} is not Markov since p(y,) is determined by X, but is not
determined by y, ;. {y,} is called a Hidden Markov Process.
Jan 2008 s Jan 2008 7

ALOHA example

Waiting Packets : TX en

® © 0«
.> o ® 0 0 0
.
1

3 2 1 2 1.0 1 2

0 01 1 1 1 2 2 1

oo L0000 11 1 11

TX enable, e: 1 1 0 0 1 1 0 0
1.0 0 1 1 0 1 1

Y 0 1 0 0 1 1 0 0

y = (x>0)e is a deterministic function of the Markov [x; e]

Hidden Markov Process

If {x;} is a stationary Markov process and y=f(x) then
{);} is a stationary Hidden Markov process.

What is entropy rate H(Y) ?
— Stationarity = H(y, |y,,..)2HM) and — HW)

@) 2
~ Also HW, 1Y rx) < HW) and S H()
e
So H(Y)) is sandwiched between two quantities which converge
to the same value for large n.

Proof of (1) and (2) on next slides
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Hidden Markov Process — (1)

Proof (1)1 H(W, V.. X)<SHW)
HWY N Vit X)=HY | Vs X 41)  Vk X markov

=HW, | Vi XtV o) = HW, Y s X i) YAX)
SHW, Y ju) Yk

=HW |y0:k+n—l)kjm H®) y stationary

conditioning reduces entropy

Just knowing x; in addition to y;., , reduces the conditional entropy to
below the entropy rate.

Jan 2008 78

Hidden Markov Process — (2)

Proof (2): HY, V%) = HW)

k
Note that Z[(Xl;yn |)/M71) = I(Xl;}/l:k) chain rule
=
! <H(x)) defr of /(A;B)
Hence I(X;;V, |V i) — 0 bounded sum of
n—w

H()H-H(—?{Jat\\/i:‘ terms

S0 HW, | ViwrsX) =HW, | Vi) = IX3 Y, | Vi) 0o 0f HAB)
> HW)-0

The influence of x; on y, decreases over time.
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Summary

e Entropy Rate: H(X)= limlH(xm)
n—o0 n

— {x} stationary: H(X)=lmH(x,|x,,)
— {x;} stationary Markov:

H(.X) = H(Xn | Xn—l) = Z_ p$,it1,‘,‘ IOg(ti,j)
— y=f0: Hidden Markov:

H(yn |y1;n71’X1) S I_I(l/’)S H(yn |y1:n71)
with both sides tending to H(})
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Lecture 6

e Stream Codes
e Arithmetic Coding
e Lempel-Ziv Coding
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Huffman: Good and Bad

Good

— Shortest possible symbol code #*) ., (A
Bad log, D log, D

— Redundancy of up to 1 bit per symbol
* Expensive if H(x) is small
e Less so if you use a block of N symbols
* Redundancy equals zero iff p(x,)=2+*" Vi
— Must recompute entire code if any symbol
probability changes

* A block of N symbols needs |X|" pre-calculated
probabilities
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Arithmetic Coding

X=[a b], p=[0.6 0.4], N=3 Code

* Take all possible blocks of N

symbols and sort into lexical Q8 = 1.0000 = 1.000000 ||
order, x, for r=1: |X|¥ Q7=09360= 0111011 m8=1111
v ’ bba
« Calculate cumulative Q6 =08400= 0110101 B =101
probabilities in binary: s —ormo—otomt | e rrc
= X.),0,=0 ta |
o ;P( O Q4 = 0.6000 = 0100110 ms=1010
. avb | ma-10001
« To encode x,, transmit enough @3- 0.5040 - 0.00000 "
binary places to define the aba
interval (0, ;, 0,) Q2 = 0.3600 = D.O10114 LESK]
1> Zr.
unambiguously. . I
- Use first/, places of 1, 27" @1=02160= 0001101
where /, is least integer with aga D
m1=000

0., <m2" <(m +1)27" <Q,  @0-o0we-oomom
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Arithmetic Coding — Code lengths

« The interval corresponding to x, has width p(x,)=0, -0, 22’”'

- Define k =[d] = d <k <d+1 = Y%p(x)<2™ <p(x,)

< set m=[2"0.] = 0, <m2*

e If (m +1)27% <Q, thenset/ =k,; otherwise
- set [ =k +landredefine m =20 | = (m, 12" <0, <m2"
= NOW (g +1)27" =(m, -1)27" +27" <O+ p(x,)=0,

* We always have [/ <k, +1<d,+2=—log(p,)+2

dgq=-1 =—10g0.096 = 3.38 bits 4

o7 = =108 Pl¥o7) = ~log ' k=d,m, =14,15x2" >0,  *
Q7 =0.9360 = 0.111011 5
bba =1,=5m,=27,28x27"<0, v
Q6 = 0.8400 = 0.110101 B3 m7=11011 7 7 0

b [ o k=4,m=12,13x27 <0, v

Q5 =0.7440 = 0.101111
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Arithmetic Coding - Advantages

* Long blocks can be used

— Symbol blocks are sorted lexically rather than in probability
order

— Receiver can start decoding symbols before the entire code has
been received

— Transmitter and receiver can work out the codes on the fly
* no need to store entire codebook
e Transmitter and receiver can use identical finite-
precision arithmetic
— rounding errors are the same at transmitter and receiver

— rounding errors affect code lengths slightly but not transmission
accuracy
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Arithmetic Coding Receiver

O, probabilities

b
bbb 0.9744 = 0,111110
bab . bbb ] 0.9360 = 0.111011
/ babbaa bba [ ppoa| 08976 = 0.111001
. 7 pabp | 0-8400 = 0.110101
. - b Ban b:ba 0.8016 = 0.110011

0.7440 = 0.101111
ba baab

- 0.6864 = 0101011
baaa
0.6000 = 0.100110
aop | —2280 10,5616 = 0100011
abba 0.5040 = 0.100000
@ abab 0‘4464 = 0‘011100
aba i -
1 100111 pr—
0.3600 = 0.010111
aabb _
a e 0.3024 = 0.010011
aaba
0.2160 = 0.001101
aa aaab
0.1296 = 0.001000
aaa
aaaa

X=[a b], p=[0.6 0.4] 0.0000 = 0.000000
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Arithmetic Coding/Decoding

Transmitter Send Receiver
Input Min Max Min Test Max Output
00000000 11111111 00000000 10011001 11111111
b 10011001 1 1 1
a 1 11010111
b 10111110 1
b 11001101 110 10 100 b
a 110 11010011 10011001 11010111
a 110 11010000
a 110011 11001111 011 110101
10111110 11010111
b 11001110 11001117 1 10111110 11001101

11001101 11010011
11010000 11010011
11001111 11010000

LYo oo

Min/Max give the limits of the input or output interval; identical in transmitter and receiver.

= Blue denotes transmitted bits - they are compared with the corresponding bits of the receiver's test

value and Red bit show the first difference. identifies unchanged words.
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Arithmetic Coding Algorithm

Input Symbols: X=[a bl,p=[p q]
[min , max] = Input Probability Range
Note: only keep untransmitted bits of min and max
Coding Algorithm:
Initialize [min , max]=[000...0 , 111...1]
For each input symbol, s
If s=a then max=min+p(max—min) else min=min+p(max—min)
while min and max have the same MSB
transmit MSB and set min=(min<<1) and max=(max<<1)+1

Jan 2008

Adaptive Probabilities

Number of guesses for next letter (a-z, space):

oranges and lemons
17 78411211511111111

We can change the input symbol probabilities
based on the context (= the past input sequence)

Example: Bernoulli source with unknown p. Adapt p based

88

end while on symbol frequencies so far:
end for
1+ count(x; =b)
— p— <
X=[ab], p,=[lp, pl. p,=—""——
1+n
Jan 2008 89 Jan 2008 90
1.0000 = 0.000000
1+ count(x, = b) " o Memorize previously occurring substrings in the input data
P, = IS’I” o 25000 - 0.110011 — parse input into the shortest possible distinct ‘phrases’
bbba
+n * o o oTe0 =010 — number the phrases starting from 1 (0 is the empty string)
p =05 oy babn oster -0 s00ms 1011010100010...
i or? “ e T G50 o000 1234 567
P ; l/j;):,/;or% - abb e E%gggﬁé — each phrase consists of a previously occurring phrase
Ps _ aba = 03053- 001t (head) followed by an additional 0 or 1 (tail)
D= . o = oo — transmit code for head followed by the additional bit for tail
aaab
- 0.2000 = 0.001100 01001121402010...
- e — for head use enough bits for the max phrase number so far:

0.0000 = 0.000000

Coder and decoder only need to calculate the probabilities along the
path that actually occurs

— decoder constructs an identical dictionary
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Lempel-Ziv Example

Input = 1011010100010010001001010010  |mprovement

Dictionary Send Decode e Each head can 0n|y
0000 ¢ 1 1 be used twice so at
0001 1 00 0 B
0010 © 011 1 its s.econd use we
0011 11 101 01 can:

0100 01 1000 010 — Omit the tail bit
0101 010 0100 00 — Delete head from
0110 00 0010 10 the dictionary and
0111 10 1010 0100 re-use dictionary
1000 0100 10001 01001 entry

1001 01001 10010 010010
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LempelZiv Comments

Dictionary D contains K entries D(0), ..., D(K-1). We need to send M=ceil(log K) bits to
specify a dictionary entry. Initially k=1, D(0)= ¢ = null string and M=ceil(log K) = 0 bits.

Input Action

1 “1” ¢D so send “1” and set D(1)="1". Now K=2 = M=1.

0 “0” D so split it up as “¢"+"0” and send “0” (since D(0)= ¢) followed by “0”.
Then set D(2)="0" making k=3 = M=2.

1 “1" e D so don't send anything yet — just read the next input bit.

1 “11" ¢D so split it up as “1” + “1” and send “01” (since D(1)=“1" and M=2)
followed by “1”. Then set D(3)="11" making k=4 = M=2.

0 “0” e D so don't send anything yet — just read the next input bit.

1 “01” D so split it up as “0” + “1” and send “10” (since D(2)=“0" and M=2)
followed by “1”. Then set D(4)="01" making k=5 = M=3.

0 “0” e D so don't send anything yet — just read the next input bit.

1 “01” e D so don’t send anything yet — just read the next input bit.

0 “010” ¢D so split it up as “01” + “0” and send “100” (since D(4)="“01" and

M=3) followed by “0”. Then set D(5)="010" making K=6 = M=3.

So far we have sent 1000111011000 where dictionary entry numbers are in red.
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Lempel-Ziv properties

* Widely used
— many versions: compress, gzip, TIFF, LZW, LZ77, ...
— different dictionary handling, etc
e Excellent compression in practice
— many files contain repetitive sequences
— worse than arithmetic coding for text files
» Asymptotically optimum on stationary ergodic
source (i.e. achieves entropy rate)
— {X,} stationary ergodic = limsupn/(X,,) < H(X) with prob 1
* Proof: C&T chapter 12.10 e
— may only approach this for an enormous file
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Summary

e Stream Codes
— Encoder and decoder operate sequentially
* no blocking of input symbols required
— Not forced to send >1 bit per input symbol
« can achieve entropy rate even when H(X)<1
e Require a Perfect Channel

— A single transmission error causes multiple
wrong output symbols

— Use finite length blocks to limit the damage
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Lecture 7

e Markov Chains
e Data Processing Theorem
—you can’t create information from nothing
e Fano’s Inequality
— lower bound for error in estimating X from Y
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Markov Chains

If we have three random variables: x y, z
p(x,»,2)=p(z|x,y)p(y|x)p(x)
they form a x—>y—>zif
p(zlx,y)=p(z|y) < p(x,y,2) = p(z| y) p(y | X) p(x)

A Markov chain x— )~z means that
— the only way that x affects zis through the value of y
— if you already know y, then observing x gives you no additional
information about z i.e. I(x;z|y)=0< H(z|y)=H(z|X,y)
— if you know y, then observing z gives you no additional
information about x

A common special case of a Markov chain is when z=£))
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Markov Chain Symmetry

Iff xopy—sz

plxz|y) = PELDZPENPEIN _ )y 5
() p(»)

Hence x and z are conditionally independent given y
Also x—y—z iff z»y—sxsince
) r1y) PN @ px,2|¥)p(y) _ p(x,3,2)
p(y.2) p(y.2) p(».2)
=px[y,2)

Markov chain property is symmetrical

p(x|y)=p(x|y
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Data Processing Theorem

If xoy—szthen I(x;y) > I(x; 2)
— processing y cannot add new information about x
If x>y—szthen I(x;) > I(x; y| 2)

— Knowing z can only decrease the amount x tells you about y
Proof:

I(xy,2)= 1)+ 1(x; 2| y)=1(x; 2)+1(X;y | 2)
@
but I(x;z|y)=0
hence I(x;y)=1(x;2)+1(x;y|2)
so I(x;y)=>1(x;z) and I(x;¥)>1(Xx;)|2)
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Non-Markov: Conditioning can increase /

Noisy Channel: z=x+y Co——2)
= X=Y=[0,1]" py=p,=["2,%2]" )
— I(x ;=0 since independent 7
—but [x sy | 2= [0 1 2

XY 00| Y4
H(x|2=H(y|2)=H(x y|2)
= 0Vt I XVt 0x Vs = 1 01 Ya
since in each case z#1 = H()=0 10 v,
I(x, y|2) = H(x |2+H(y |2-H(X, ¥ |2) 4
=Votlata="Ys 11 Y4

If you know 2z, then x and y are no longer independent
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Long Markov Chains

If x> X, > X> X, > x> X,
then Mutual Information increases as you
get closer together:
—€.9. (x5, X,) 2 10X, Xy) 2 1(X, X5) 2 1(X,, Xo)
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Sufficient Statistics

If pdf of x depends on a parameter 6 and you extract a
statistic 7(x) from your observation,

then 0> x—->Tx) = [(6;T(x))<I(0;x)
T(x) is sufficient for @ if the stronger condition:
0->x->T(x)>0 < 1(6;T(x)=1(6;x)
S O0->TX)> x>0
< p(x|T(x),0) = p(x|T(x))

0 ¢, ity x =k
T(Xlzn)=zxi p(le=xl:n|0,Z)(‘=k)={n (; if %j#k
i=1 i

independent of & = sufficient
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Fano’s Inequality

If we estimate x from y, whatis p.=p(X#x) ?

H(x|y)<H(p,)+ p,log( X|-1) O—0—®
L Hx ) =H(p) 9 (Hx|y)-1)
‘ log(| X[ -1) log(| X|-1)

Proof: Define a random variable e =(x # x)?1:0

He,x|y)=H(x |y)+H(e|x,y)=H(e|y)+H(x|e,y)
= HX|y)+0<H(e)+H(x|e,y)
=H(e)+H(x|y,e=0)(1-p,)+H(x|y,e=Dp,
< H(p,)+0x(1-p,)+log( X|-1)p,

Fano’s inequality is used whenever you need to show that errors are inevitable




Jan 2008

Fano Example

X = {1:5}, p,=[0.35, 0.35,0.1,0.1, 0.1]7
Y= {1:2} if x<2 then y=x with probability 6/7
while if x>2 then y=1 or 2 with equal prob.
Our best strategy is to guess X =y
=Py =1 =10.6,0.1,0.1,0.1, 0.1]"
— actual error prob: p, =04

CHOx -1 _1771-1

> =0.3855
log( X|-1)  log(4)

Fano bound: 2.
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Summary

Markov: x sy sz pilxy)=pi|y)eoI(x;2]y)=0

Data Processing Theorem: if x—)—zthen
- Ix; N21x;2)
- lx;0n21Lx;y1 2

Fano’s Inequality: if x —y — X then

2 BN =H(p) HXY)-1 H(x|y)-1
T log(X[-1) T log(X|-1)  log|X|

Jan 2008

Lecture 8

* Weak Law of Large Numbers
e The Typical Set
— Size and total probability
» Asymptotic Equipartition Principle
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Strong and Weak Typicality

X={a, b,c d} p=[0.50.250.1250.125]
—logp=[1233] = H(p)=1.75 bits

Sample eight i.i.d. values

 strongly typical = correct proportions

e [weakly] typical = log p(X) = nH(X)
e not typical at all = log p(X) # nH(X)

Strongly Typical = Typical
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Convergence of Random Numbers

107

* Convergence
X, >y = Ve&>0,3ImsuchthatVa>m,|x, -y |<e

n—n
Example: X, =£2"", p=[Y;]
choosem =1-loge
« Convergence in probability
prob
X, >y = Ve>0, P(|x,-y>e)>0
Example: x, € {0; 1}, p=[l1- ifl; ifl]

forany small s, p(| x, |> &) =n"' —2250
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Weak law of Large Numbers

. . . 1
Given i.i.d. {x} ,Cesaro mean s,,:;le.
i=1
— Es,=Ex=u Vars,=n"'Var x =n"'c’
As n increases, Var s, gets smaller and the values
become clustered around the mean

prob
S, > u

& Ve>0, P(s,—uPée)—0

n—om
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Proof of WLLN

e Chebyshev’s Inequality
Vary =E(y —u) =Y. (v-u) p(»)

yell

> Y (y-u)p(y)z Zszp(y)=€2pr—,u\>g)

yiy-pl>e yiy—ul>e

1 n
e WLLN 5,==D>x, where E x, = prand Var x, = ¢
nig 2
o
52}7@5" —ul> £)<Vars, = — =0
prob n
Hence S, > U
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Typical Set

X" is the i.i.d. sequence {x} for1 <i<n
— Prob of a particular sequence is p(x):ﬁp(x,)
— E-logp(X)=nE —log p(x,) = nH(x) =l
: T;”:{XGX”: <€}
Example: I 02 o0 peae
— x; Bernoulli with p(x.=1)=p
—eg p([011000])=p*(1-p)*
— For p=0.2, H(X)=0.72 bits
— Red bar shows T ,®

—n"" og p(X)—~H(X)
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Typical Set Frames

NeL p02, 201, 0% N2, 502, 60,1 0% Ned,p02, 60,1, =15 N8, 902, 20,1, py=29%
b B o v

5108, s 25 % 45 1 08 25 & ds 4
Nog ) Wiogpt) Nog pts) Niogpte)

000000000000000@N 000 DBB00 1.0 000100000 ODODODO00 10000,
0000100001000000, 0000000010000000
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Typical Set: Properties

I

Individual prob: xeT” =log p(X) = —nH(x)+ne

N

Total prob: p(XxeT™)>1-¢ for n>N,

o

. N,
Size: aHO0-2) " || < pH )
e (1-¢)2 < |2

. n rob
PIoOf 2: _tiog p(x) =S —logp(x) > E ~log plx,) = H(X)

i=l

HenceVe >03N, s.t.Vn> N, p(‘— n” log p(X) —H(X)‘ >e)<e

Proof 3a: flen, 1-g<p(xeTM)< 3 o0 _gmit-o

XeT(™

Zp(x) > szrx(H(x)-t-s) — 2*/1(1‘/()()4—5)
)

xel" xel™

(n)
T;

Proof 3b: 1=3 p(0)=

(n)
7.
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Asymptotic Equipartition Principle

“Almost all events are almost equally surprising”
e P(XeT™)>1-¢ and  logp(X) = —nH(x)tne

|X" elements

Coding consequence
- xeT” 0"+ at most 1+n(H+¢) bits
—xeT™ :'1"+ at most 1+nloglX| bits
— L = Average code length
<2+n(H +g)+.9(n log\.XD

= n(H +e+eloglX|+2n™ )

< 2"+ elements

Source Coding & Data Compression

For any choice of 6 > 0, we can, by choosing block
size, n, large enough, do either of the following:

* make a lossless code using only H(x)+d bits per symbol
On average: j < n(H +e+eloglX|+ 2n’1)

* make a code with an error probability < ¢ using H(x)+ ¢
bits for each symbol

— just code T, using n(H+e+n™") bits and use a random wrong code
if xeT,
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What N, ensures that p<x € T;”))> 1-¢?

From WLLN, if Var(~log p(x,))= o then for any n and &

Jan 2008

Smallest high-probability Set

7. is a small subset of X" containing most of the
probability mass. Can you get even smaller ?

) 1 = ” P
¢ P(‘;E‘l"g"("l)"’(“ > SJST = plxer )SF For any 0 < &< 1, choose N, =—&"log ¢, then for any
- ( ) )) n>max(N,,N,) and any subset S" satisfying [s¢|< 27 x)-29
Choose N,=0c¢” = pxel,”)>1-¢
p(X € S(”)): p(X es™ r\T:”))+ p(X esm ﬁT;"))
For this choice of N, , if xeT,® < |S<’” max p(X)+ p(X eT™
xeT|
log p(X) = —nH(X)*ne =-nH(x)*o’s™ < prH=20) )l e) | o forn> N,
So within 7,0, p(x) can vary by a factor of 2%¢ =24 g<2s  forn>N, 2" <ol o
Answer: No
Lecture 9

Summary
e Typical Set
— Individual Prob X &7 =log p(x) = —nH(X)+ns
— Total Prob p(xeT")y>1-¢ for n>N,
— Size (1—g)2"Hx0-e) ”><ﬂ' ‘nr')‘gznimxw)

« No other high probability set can be much
smaller than 7"

< Asymptotic Equipartition Principle
— Almost all event sequences are equally surprising

= Source and Channel Coding
» Discrete Memoryless Channels
— Symmetric Channels

— Channel capacity
» Binary Symmetric Channel
 Binary Erasure Channel
* Asymmetric Channel

119
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Source and Channel Coding

Source Coding
Channel Coding

I i Out
n Compress Encode Noisy Decode Decompress -
Channel

e Source Coding
— Compresses the data to remove redundancy

e Channel Coding
— Adds redundancy to protect against channel

errors
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Discrete Memoryless Channel

* Input: xeX, Output yelY .
Noisy Y
Channel

e Time-Invariant Transition-Probability Matrix

(Qy\x),-,j :p()/:yj ‘ X:xi)
~ Hence p, =Qj,p,
— Q: each row sum = 1, average column sum = |X||}|"!
= Memoryless: p(y X, Yi..1) = PU4IX,)
e DMC = Discrete Memoryless Channel
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Binary Channels

 Binary Symmetric Channel [1—./’ fJ XO Eioy
-X=[01.¥=[01] s !

e Binary Erasure Channel I=ff 0 2y
-X=[01],¥=[0?1] (o fl—fJ '
1 1
e Z Channel 1 o 0—0
- X= = X Y
X=[01],¥=[01] [f HJ el

Symmetric:
Weakly Symmetric:
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Weakly Symmetric Channels

Weakly Symmetric:

- If xis uniform (i.e. p(x) =|X|") then yis uniform
PO =2 P[P =X 3 p(r 0 =X (X[ =y
xeX xeX

- Each row of Q has the same entropy so
HW|X)=Y pHY | x=x)=HQ,)Y p(x)= HQ,)
xeX xeX
where Q, . is the entropy of the first (or any other) row of the Q matrix

Symmetric:

Symmetric = weakly symmetric

an 2008
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Channel Capacity

e Capacity of a DMC channel: C=rr;ax I(x;y)

— Maximum is over all possible input distributions p,

— 3 only one maximum since /(x ;) is concave in p, for fixed p,,,
— We want to find the p, that maximizes I(x ;)

— Limits on C:

0<C <min(H(x), H(y))< min(log Pl

loglH) e

£,

X|

e Capacity for n uses of channel:

e =L max10x,:3,,)
n Py,
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Mutual Information Plot

-
Binary Symmetric Channel 1p 0
Bernoulli Input \(XY) X g y
1 1
1-f

10 Channel Error Prob (f)

Input Bernoulli Prob (p)

an 2008
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Mutual Information Concave in p,

Mutual Information /(x:)) is concave in p, for fixed p,,,
Proof: Let v and v have prob mass vectors u and v
— Define z bernoulli random variable with p(1) =1
— Letx=vuif =1 and x=vif =0 = p =Au+(1-A)v

Ix,z;y)=1(x; )+ 1(z;y | X)=1(z; )+ 1(X; ¥ | 2)
. but I(z;y | x)=H(y |xX)-H(y | x,2)=0 so
S 1Y)z 1(x;y|2)
O T =Gy | 2=D+1-Di(x;y |2 =0)
O— () =HW@A-DIEY)
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Mutual Information Convex in pyy

Mutual Information /(x,)) is convex in p,,, for fixed p,

Proof (b) define v, v, x etc: P : )
— py\x = ﬂ'pu\x + (l_l)pv\x T

[(x:¥,2) = 1(X;y | 2)+ 1(X;2) T 0!

= 10GY)+1(x:2| y) —

but I(x;z)=0 and I(x;z|y)>0s0
Ix;y)<1(x;3y|2)
=Mx;y|lz=D)+1-DI(x;y|z=0)
=AMUx;u)y+(1-1)I(x;V)

@
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n-use Channel Capacity

For Discrete Memoryless Channel:
I(Xlrn;yl:n) = H(yl:n)_H(ylzn | Xl:n)

=Z’1:HU/1 ‘yl:i—l)_iH(yi ‘Xi)
SiHWI)_iHUi|Xi):il(xi;yi)

with equality if x; are independent = y; are independent

We can maximize /(x;y) by maximizing each 1(x;y,)
independently and taking x; to be i.i.d.

— We will concentrate on maximizing /(x; J) for a single channel use
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Capacity of Symmetric Channel

If channel is weakly symmetric:

128

Ix:y)=HWY)-Hy | x)=HY)-HQ,)<log|§|-H(Q,)

- Information Capacity of a WS channel is log\-H(Q, )

For a binary symmetric channel (BSC): 0 7 0
- =2 X VR
- HQ,)=H() 1 ; 1
— Iy <1 -H(f) N -

.. Information Capacity of a BSC is 1-H(f)
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Binary Erasure Channel (BEC)
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Asymmetric Channel Capacity

) 0 1-f 0 r
[lf.f S0 J Letp,=[a a 1-2a]"=p=Q'p,=p, 0:a 7 0
0o f 1-f X 7y H(y)=-2aloga—(1-2a)log(l-2a Y
* lia 7 107
; H(y | x)=2aH(f)+(1-2a)H(1) = 2aH(f) &
1Y) = H(X)~H(x |y) ! _ - 212 ——2
=H(x)- p(y =0)x0— p(y =DH(X)- p(y =1)x0 To find C, maximize I(x ;y) = H(Y) — H(y | %)
=H(X)-H(x)f I=-2aloga—(1-2a)log(l-2a)-2aH(f) I-f f o0
=(1=H(x) §=7210ge—210ga+2]0ge+2]0g(1—2a)—2H(f)=0 Q‘[ fo=s 0}
a 0 0 1
<1- _
<1-f log! "2 logla ' ~2)=H(f) = a=(2+2"")'
a
. (- ~24) =-log(i-2
since a fraction f of the bits are lost, the capacity is only 1-f = C=-2alogla2"")-(1-2a)log(1~2a) =-logl1-20)
and this is achieved when x is uniform Examples: f=0=H(f)=0=a=";= C=log3=1.585 bits/use
f=Y%=H(f)=1=a="%= C=log2=1 bits/use
Lecture 10 Significance of Mutual Information
. . * Consider blocks of n symbols: . 2o
- Jointly Typical Sets Y 2 5

« Joint AEP

e Channel Coding Theorem
— Random Coding
— Jointly typical decoding

X[ Noisy | N
Channel

— An average input sequence x;,, corresponds to about 270+
typical output sequences

— There are a total of 2" typical output sequences

— For nearly error free transmission, we select a number of input
sequences whose corresponding sets of output sequences hardly
overlap

— The maximum number of distinct sets of output sequences is
Qn(HW)-HOM) = Qnl(y %)
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Jointly Typical Set

xy" is the i.i.d. sequence {x,y;} for1<i<n
N
— Prob of a particular sequence is  p(x.Y) =[] p(x.,»)

i=1

— E-logp(X,y)=nE-logp(x;,y;) =nH(X,¥)

J = {x,y eXy:

-n log p(x)— H(x)|< &,
[-nlog ply) = H(y)| <&,
- log p(x.y) - HOx, )| < 2
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Jointly Typical Example

. . 1
Binary Symmetric Channel 0 0
=02, p,=(075 025) X Iy
_(065 035y, b, [0 015 1 > 1
Py =02 B0 B =005 02 I

Jointly Typical example (for any ¢&):
x=11111000000000000000
y=11110111000000000000
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Jointly Typical Diagram

Each point defines both an x sequence and a y sequence

Dots represent

jointly typical
QnH(Y) pairs (x,y)

Typical in both X, y: 2"HXHH)

nlogl|

Inner rectangle
represents pairs
that are typical
in X or y but not
necessarily
jointly typical

Qnlogi\| || onH()

All sequences: 27oe(X¥)

* There are about 277 typical x’s in all

« Each typical y is jointly typical with about 27#» of these typical x’s

« The jointly typical pairs are a fraction 27/ of the inner rectangle

« Channel Code: choose x's whose J.T. y's don't overlap; use J.T. for decoding
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Joint Typical Set Properties

1. Indiv Prob: x.yeJ” = logp(x,y)=-nH(x,y)*ns
2. Total Prob: p(x,yeJL”))>1—5 for n>N,

3. Size: (1—5)2”("’”’”’”)”><M‘J£.”’ < G+e)

Proof 2: (use weak law of large numbers)
Choose N, such that Vn > N,, pﬂ—n" logp(x)—H(x)‘ > 5)< g

Similarly choose N,, N, for other conditions and set N, = max(N,, N,, N;)

Proof 3: 1-z < 3 p(x,y) <] max pxy)=|7j 0]
Xyl xyels

12 3 pey) 2| min pocy)=| e
x.yel" oyels
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Joint AEP

If p,~p,and p, =p, with x" and )/ independent:
(1=)2 "0 < plxr,yre 7 )< 27039 for s N,

Proof: |J| x (Min Prob) < Total Prob < |J| x (Max Prob)
plxy'e )= ¥ pexyn= Y p<)p(y")
x\y'es" x\y'es"”

J| max p(x)p(y")

x'y'es ™

p(X',y'e Jﬁ”)s

< 2n(H(x,y)+s)zfn(H(X)fS)zfn(H(y)76) — 2*"(1()( )-3¢)

min _p(x")p(y")

x.y'es"

p(x',y'e J:,”))Z ‘J:.”)

> (1-g)27" 1% for p> N,
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Channel Codes

wel:M Xin Noisy Vi [Decoder we0:M
Encoder
Channel a(y)

= Assume Discrete Memoryless Channel with known Q,,,
e An (M,n) code is
— A fixed set of M codewords x(w)eX" for w=1:M
— A deterministic decoder g(y)e1:M
 Error probability 2, = plgly(w)=w)= 3 ply X008, gy
el
— Maximum Error Probability A" = maxy Dy

1<wsM

M
— Average Error probabilit P = LN
g p y B MZ .




Jan 2008

Achievable Code Rates

The rate of an (M,n) code: R=(log M)/n bits/transmission

A rate, R, is achievable if
— 3 a sequence of ([2%],1) codes for n=12,...
— max prob of error AW—0 as n—»x
we will normally write (2**,x) to mean ([2"].n)

The capacity of a DMC is the sup of all achievable rates

Max error probability for a code is hard to determine

— Shannon’s idea: consider a randomly chosen code

— show the expected average error probability is small

— Show this means 3 at least one code with small max error prob
— Sadly it doesn't tell you how to find the code
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Channel Coding Theorem

* Arate R is achievable if R<C and not achievable if R>C
— If R<C, 3 a sequence of (2"f,n) codes with max prob of error
AM—0 as n—x

— Any sequence of (2"%,n) codes with max prob of error 2"—0 as
n—»o0 must have R<C

0.;
A very counterintuitive result: .| oo
Despite channel errors you can g
get arbitrarily low bit error e o1
rates provided that R<C 5
3 005 Impossible
2 3
Rate R/IC

Jan 2008

Lecture 11

Channel Coding Theorem

Jan 2008 142

Channel Coding Principle

* Consider blocks of n symbols: 2o

¥ 2nH)
X [ Noisy | Vi
Channel

— An average input sequence x;., corresponds to about
210 typical output sequences

— Random Codes: Choose 2"® random code vectors X(w)
« their typical output sequences are unlikely to overlap much.

— Joint Typical Decoding: A received vector y is very
likely to be in the typical output set of the transmitted
x(w) and no others. Decode as this w.

Jan 2008
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Random (27%,n) Code

Choose ¢ = error prob, joint typicality = N, , choose n>N,
Choose p, so that /(x ;))=C, the information capacity

Use p, to choose a code € with random x(w)eX", w=1:2"%

— the receiver knows this code and also the transition matrix Q
Assume (for now) the message We1:2"% is uniformly distributed
If received value is y; decode the message by seeing how many
X(w)'s are jointly typical with y

— if x(k) is the only one then £ is the decoded message

— if there are 0 or >2 possible 4's then 1 is the decoded message
— we calculate error probability averaged over all € and all W

2" 2"k (@)
PE)=> p@2" Y 2,(6) =273 p(O)2,(€) = Z POAE) =p(E|w=1)

w=l €
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Channel Coding Principle

* Assume we transmit x(1) and receive y
- Define the events e, = {x(m.y e/ for wel:2"

send x(1) ey true — very likely

X Noisy | Yin —
Channel

ejUes true — unlikely €2 true —unlikely

* We have an error if either ¢, false or e, true for w>2
* The x(w) for w= 1 are independent of x(1) and hence also

independent of y. So p(e, true) <27"*¥73) forany w1
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Error Probability for Random Code

« We transmit x(1), receive y and decode using joint typicality
* We have an error if either ¢, false or e, true for w>2

okt

plEIW =1)= ple,ue, ue,u--ue,, )< ple )+ Ye,
” w2

< €+22—n(l(x;y)—3$) — g+2nR27n(I(X:y)73£)
i=2

<4200 <op for R<C—3¢ and n > ——98%

C-R-3¢
= Since average of P, over all codes is < 2¢ there must be at least
one code for which this is true: this code has 2’”"2@ <2

* Now throw away the worst half of the codewords; the remaining
ones must all have 4, < 4¢. The resultant code has rate R—n'=R.
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Code Selection & Expurgation

= Since average of P, over all codes is < 2e there must be at least
one code for which this is true.
Proof: LS LS

2e>K™! ZPE(;‘) >K! Zmin(Pe(;'))= mm(P;f))

i=1 i=1

« Expurgation: Throw away the worst half of the codewords; the
remaining ones must all have 4 < 4¢.

Proof: Assume A, are in descending order

M aM aM
26>M7Y A, MY A MY Ay 2y,

w=1 w=1 w=l

= Ay <de = A,<4s Vw>hHM

M' =Y x2""messages in n channeluses = R'=n"'logM'=R-n""'
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Summary of Procedure

e Given R'<C, choose e<(C-R") and set R=R"+e¢ = R<C -3¢
- Set n:max{N[,—(logg)/(C—R—3g), g"}
* Find the optimum p, so that I(x; ) =C

* Choosing codewords randomly (using p,) and using joint typicality
as the decoder, construct codes with 2" codewords

« Since average of P, over all codes is < 2¢ there must be at least
one code for which this is true. Find it by exhaustive search.

* Throw away the worst half of the codewords. Now the worst
codeword has an error prob <4¢ withrate R*"=R-n'>R-¢

* The resultant code transmits at a rate R with an error probability
that can be made as small as desired (but » unnecessarily large).
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Lecture 12

e Converse of Channel Coding Theorem
— Cannot achieve R>C
— Minimum bit-error rate
e Capacity with feedback
— no gain but simpler encode/decode
 Joint Source-Channel Coding
— No point for a DMC

wel 2" Encoder |-, Noisy | /= [Decoder we0 2"
Channel 2(y)
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Converse of Coding Theorem

* Fano's Inequality: if P, is error prob when estimating w fromy,
Hw|y)<1+P" logW|=1+nRP"

e Hence nR=HW)=HW|y)+IWw;y)
SHW|Y)+I(X(W);y)
<1+nRP" +I(X;y)
<1+nRP" +nC

pwpReCor |, ReC
¢ R nsn R

= Hence for large n, P, has a lower bound of (R-C)/R if w equiprobable
— If R>C was achievable for small », it could be achieved also for large n by
concatenation. Hence it cannot be achieved for any n.

A
wel2™ X, Nois: Yis we0:2"™
i Y = | Decoder
Encoder Channel g(y)
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Minimum Bit-error Rate

A
Vim Xi:n i Vi Vim
i» Encoder : Noisy : Decoder o
Channel

Suppose
— Vg is i.i.d. bits with H(v)=1 A
— The bit-error rate is P, :E{p(V,. # Vi)}:E{p(ei)}

(a) (b) . .
Then nC 2 I(Xl e N) B I(Vlnk;vlnk) = H(Vl.nk)’H(VL«,R |V| uR)

R © R, N
=SR-3 H©, Vi) 2nR=3 H,17,) =nRU-E{H©,10)))
i)nR(l —];:{H(e, v, )}) gnR(l - E{I-;(le,)}) (Ze)nR(l ~H(E P,,,.)) =nR(1-H(B))

Hence
R<CU-H®))"
P,>H'(1-C/R)

& oos|

F)
Rate RIC
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Channel with Feedback

wel:2"R

A
ﬂ X; Noisy | % w
Jrp- Encoder }—»’ Channel Decoder

« Assume error-free feedback: does it increase capacity ?
e A (2% n) feedback code is

— A sequence of mappings x;= x,(w,y,.. ;) for i=1:n

— A decoding function W =g(¥,,)

= Arate R is achievable if 3 a sequence of (2"%,n) feedback
codes such that P" = P(W #w)——0

» Feedback capacity, Cyz>C, is the sup of achievable rates
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Capacity with Feedback

X

1wy)=Hy)-Hy W) 2o o e o]
= HO)~ S HO Vi)
=H(y)—2ﬂ(y, VoW X))
- H(y)—iz'lﬂm %)
Si””f"i*’“ 1X) =§ll(x,»;y,»)Snc
Hence

nR=HWwW)=HW|y)+Iw;y) <1+nRP" +nC

pn s R-C-n"
=1L, TR The DMC does not benefit from feedback: C,, = C
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Example: BEC with feedback

e Capacity is 1

0 0
e Encode algorithm
— If y=2, retransmit bit i x 2 7y
— Average number of transmissions per bit: 1 1
1=

1
1 2=
+f+f+ =7
< Average number of bits per transmission = 1-f
» Capacity unchanged but encode/decode algorithm much
simpler.
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Joint Source-Channel Coding

N

Vi X ; Y v,

— ! Encoder | Noisy | Decoder |—
Channel

* Assume v satisfies AEP and [V|<eo

— Examples: i.i.d.; markov; stationary ergodic
e Capacity of DMC channel is C

— if ime-varying: C = 1i_{11n"1(x;y)

* Joint Source Channel Coding Theorem:
3 codes with P =P@,, #v,,)———0 iff HV)<C

— errors arise from incorrect (i) encoding of ¥ or (ii) decoding of ¥

source coding and channel coding
might as well be done separately since same capacity
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Source-Channel Proof (<)

< For n>N, there are only 2" v's in the typical
set: encode using n(H(V)+e) bits
— encoder error < g

e Transmit with error prob less than ¢ so long as
HWV)+ e<C

e Total error prob <2¢
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Source-Channel Proof (=)

A

Y X [Noisy | Yin %

L Encoder — Noisy ! Decoder —
Channel

Fano’s Inequality: ~ H(v|¥)<1+P"nlog]V|

HW)<n'H(v,,)
= nilH(VI:n ‘ VAI:n)+ "711(V1vn;|;l:n)

<n 1+ P nloglV))+n ' 1(x,: 1,
<n™'+P" logll|+C

let n—>w = P” >0 = HW)<C
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Separation Theorem

e For a (time-varying) DMC we can design the
source encoder and the channel coder
separately and still get optimum performance

— Correlated Channel and Source
— Multiple access with correlated sources

« Multiple sources transmitting to a single receiver
— Broadcasting channels

= one source transmitting possibly different information to
multiple receivers
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Lecture 13

e Continuous Random Variables
e Differential Entropy
— can be negative
— not a measure of the information in x
— coordinate-dependent
e Maximum entropy distributions
— Uniform over a finite range
— Gaussian if a constant variance
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Continuous Random Variables

Changing Variables

. pdf: f,(x) CDF: E®=[ f.od

« For g(x) monotonic: ¥ =g(x) < x=g"'()
F0=F(e'0) or 1-F(g"'»)

ey AR (o YdeT ()
== £le' ) o

eft] e o0
* Examples:

Suppose  f,(x)=0.5 for xe(0,2) = F,(x)=0.5x
(@) y=4x = x=025y = f,(»)=05x025=0.125 for ye(0.8)

b)) z=x' = x=2z" = f,(2)=05x%z""=0.125z" for ze(0,16)
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Joint Distributions Distributions

Joint pdf: Sy (x,3)
Marginal pdf:  f.=[ 1, @ra
Independence: < f, ,(x.»)=f,(x)f,(»)

Conditional pdf: _ Sy y)
Sy (X) 5,0

Example: i / D
Sy =1for ye(O,),xe(y,y+1) :

X S
S

AN

X

fay =1f0r xe(y,y+1)

1
fy\x =

——for y e (max(0,x—1), min(x,1))
min(x,] —x)
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Quantised Random Variables

e Given a continuous pdf f(x), we divide the range of xinto
bins of width A s
— For each i, 3x, with f(x,)A= J:_A S (x)dx
Define a discrete random variable Y
= ¥={x} and p,= {ix)A}
— Scaled,quantised version of f{x) with slightly unevenly spaced x,
H) ==Y, f(x)Alog(f(x)4)
= —logA-Y" £ (x)log(f (x)A

- —logA-[" f(x)log f(x)dx =~logA+h(x)

Differential entropy: h(x)=- j'“; S ()log £, (x)dx
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Differential Entropy

Differential Entropy: h(x)=—[" 7, ()log , (x)dx = E~log f, (x)
Bad News:

— h(x) does not give the amount of information in x

— h(x) is not necessarily positive

— h(x) changes with a change of coordinate system
Good News:

— h,(X)—~hy(x) does compare the uncertainty of two continuous
random variables

— Relative Entropy and Mutual Information still work fine
— If the range of x is normalized to 1 and then xis quantised to »

bits, the entropy of the resultant discrete random variable is
approximately i(x)+n
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Differential Entropy Examples

= Uniform Distribution: x ~U(a,b)
- f(x)=(b-a)™ for xe(a,b) and f(x)=0 elsewhere
— b0 =-[(b-a)" log(b-ay 'dx=log(b ~a)
— Note that h(x) <0 if (h-a) < |
 Gaussian Distribution: x ~ N(u,o?)
- @ =ro?)" expl-hx-?0?)
- hx0)=—~(loge)|” f(x)In f(x)dx

=—(loge)[ f(x)(-4In2z0%) ~Ya(x - )’ ?)

=Yi(loge)in2ro”) + o E((x - )?))
=v(loge)(in(270?) +1) =Y log(2me0?) = log(4.10) bits
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Multivariate Gaussian

Given mean, m, and symmetric +ve definite covariance matrix K,

Xy ~NMK) & 100 =22K[ " exp(- ta(x—m) K" (x—m))

h(f) =~(loge)[ £ (x)x (- Va(x—m)" K" (x—m) ~ V2 In[22K ) dx
=Y log(e)x (Inf27K| + E((x - m)" K (x~m)))
= v log(e)x (In27K |+ E tr{(x—m)(x—m) K ))

= s log(e)x (Inf27K | + tr(E(x - m)(x-m) K "))
= vhlog(e)x (Inf27K|+ tr(KK ")) = log(e)x (In22K| + )
=alogle” )+ V2 log(27K])

= log(27eK]|) bits
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Other Differential Quantities

Joint Differential Entropy

WYY ==[[ oy 5 )08 £y, (5, )y = E~log £, (x,7)
Conditional Differer::ial Entropy

WX | ) ==[[ £,., (. 0)og £, (x| )dxdy = h(x, y) = h(y)
Mutual Information J

1063)= [[ £, 3 log Lr D)

S ) f, ()
Relative Differential Entropy of two pdf's:

D(/ 1 9)= jf(x)logf())
=, (X)~E, logg(x)

dxdy = h(Xx)+h(y)—h(x,y)
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Differential Entropy Properties

Chain Rules  i(x,y)=h(x)+h(y | X)=h(y)+h(x|y)
Ix,y;2)=1(x;2)+1(y; 2| X)

Information Inequality: D(f| g)=0
Proof: Define S ={x: f(x)>0}

DU 19)= | r0010g 50 dx=E[1 gﬁ)

LT 0 70
240 _ 40
= IOg[E /'(X)j 1°g[j 70y ”’X]

= log[jg(x)dx] <logl=0
N
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Information Inequality Corollaries

167

Mutual Information > 0
1)) =D(fyy 1 £ /)20
Conditioning reduces Entropy
h(X)=h(x|y)=1(x;¥)20
Independence Bound

h(Xlzn) =ih(xi ‘ Xl:i—l)s ih(){i)
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Change of Variable

Change Variable: y =g(x)
dg™'(y)

from earlier  f,(»)= fx(g"(y)i

h(y)=~Elog(f,(y)) =~Elog(f, (g (¥)))~Elog ;—‘j
——Elog(f, (x))- Elog ] —h(x)—Elog@‘
dy, dy

Examples:
— Translation: y=x+a = dy/dx=1 = h(y)=h(x)

— Scaling: Y=cx = dyldi=c = h(y)=h(x)-log”|
— Vector version:  y,, =Ax,, = h(y)=h(x)+logdet(A)|

not
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Concavity & Convexity

< Differential Entropy:
- h(x¥isa function of f,(x) = 3 a maximum
* Mutual Information:
- Ix;)isa function of £, (x) for fixed f,,,.(»)
- I(x; y) is a convex function of f,, (v) for fixed f, (x)
Proofs:
Exactly the same as for the discrete case: p,=[1-4, A]”

, on A !
—& ! QD: % 1 ®
o @—‘0; o v ol
|

‘ o

H(x)>H(x|2) I(x )2 1(x;y|2) I(x ;) <I(x;y|2)

e
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Uniform Distribution Entropy

What distribution over the finite range (a,b) maximizes the
entropy ?

Answer: A uniform distribution u(x)=(b-a)'
Proof:
Suppose f(x) is a distribution for x e(a,b)
0<D(f|lu) =—h,(x)—E, logu(x)
=—h,(x)+log(b—a)

= h(x)<log(b—a)
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Maximum Entropy Distribution

What zero-mean distribution maximizes the entropy on
(—o0, 00)” for a given covariance matrix K ?

Answer: A multivariate Gaussian ¢(x) = [22K| " exp(-%2x"K 'x)
Proof:  0<D(f || $)=—h, ()~ E, logd(x)
= h,(x) < ~(loge)E, (- ¥4 In(27K])- ex K 'x)
= vi(loge)in(27K|)+ tr(E, xx"K))
= Ys(loge)in(272K])+ tx(1))
=Y log(27eK|) = h,(x)

Jan 2008

Lecture 14

« Discrete-time Gaussian Channel Capacity
— Sphere packing

e Continuous Typical Set and AEP

e Gaussian Channel Coding Theorem

« Bandlimited Gaussian Channel
— Shannon Capacity
— Channel Codes
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Capacity of Gaussian Channel

Discrete-time channel: y,=x+ z Z

— Zero-mean Gaussian i.i.d. z ~ N(0,N) X, \j: Y,

— Average power constraint n"Zx,2 <P
i=1
Ey?’=E(Xx+2)’ =EX*+2E(X)E(2)+EZ*<P+N

Information Capacity
— Define information capacity: C = max 1(x;)
/(X;)’)(f hY)=h(y | x) =h(y)-h(x +2]|X)
= h(y)=-h(z|x) =hy)=-h(2)
<Yslog2me(P+ N)—"log27eN

= ‘/zlog(1+PN") = %[P;'N]ds

The optimal input is Gaussian & the worst noise is Gaussian
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Gaussian Channel Code Rate

z
i A
R -nR
wel2 Encoder X ° y Decoder we0:2

* An (M,n) code for a Gaussian Channel with power
constraint is
— A set of M codewords x(w)eX" for w=1:M with X(w)"x(w) < nP Vw
— A deterministic decoder g(y)<0:M where 0 denotes failure
— Errors:  codeword: 4, max : A" average:P"

» Rate R is achievable if 3 seq of (2"%,r) codes with 1 — 0

n—®

* Theorem: R achievable iff R<C= 1/zlog(1+ PN")
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Sphere Packing

= Each transmitted x; is received as a
probabilistic cloud vy,
— cloud ‘radius’ = Var(y[x) =+/nN

= Energy of y, constrained to n(P+N) so
clouds must fit into a hypersphere of
radius /n(P+N)

e Volume of hypersphere oc 1"

e Max number of non-overlapping clouds:

M _ 2’/:nlog(l+PN")
(nN )'/’"
e Max rate is %log(1+PN1)
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Continuous AEP

Typical Set:
For any €>0 and any n, the typical set with respect to fx) is

T ={xe 8" : |- log (%)~ h(x)| <)
where  Sis the support of f< {x: f(x)>0}

f(x):ll[f(x,) since x; are independent

i=1

h(x)=E~log f(x)=-n"Elog f(x)
Typical Set Properties
1. p(xeT™)>1-¢ for n>N,
2. (-2 " VolT ) < 27000

where Vol(4) = jdx

xed
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Continuous AEP Proof

Proof 1: By weak law of large numbers
—n' log f(x,,) = —n"zn:logf()(,)‘ﬁ:E—logf(X) =h(x)

i=l

rob
Reminder: x, 5y = ves 0,3N, suchthat Vi > N,, P(x,-y|>¢)<e
Proof 2a:  1-s< [f(x)dx for n>N,
)

< pnhx)-) jdx = pnlhx0-6) Vol(Tj"’)
"
Proof 2b: 1= [ 700dx> [ 7(0dx
s 7"
> pnli(x)+e) J' dx = -2 Vol(];‘”’)

7
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Jointly Typical Set

Jointly Typical: x,y, i.i.d from %2 with £, (x,.y))
- log £, (X) = h(x)
-t log £,()—h(y)| < &,
[ log £, (%y) ~h(x. )| <

J" = {X,y eR™:

<e,

Properties:
1. Indivp.d.: xyeJ" =logf,, (X y)=-nh(x,y)tne
2. Total Prob: p(x,yer.”’)>1—s for n>N,
3. Size: (11— £)270070) "]y ) < thtx v
4. Indep Xy':  (1—g)2 W) 4 plx,yre g0 )< a nlitey)se)
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Gaussian Channel Coding Theorem

Ris achievable iff R<C ="%log(l+PN"')
Proof (<):
Choose ¢ >0
Random codebook:  x,e®R" for w=1:2"" where x, arei.i.d.~N(0,P—¢)
Use Joint typicality decoding
Errors: 1. Power too big p(XTX > nP)% 0 = <gforn>M,
2.ynotJT.withx px.yeJ")<e for n>N,

"
3. another x J.T. withy > p(x,,y, € JI") < (2" —1)x 2720
J=2
Total Err P < &+&+2" XN R3) < 34 for large nif R < I(X;Y)-3¢

£

Expurgation: Remove half of codebook™: 1™ < 6¢
We have constructed a code achieving rate R—n"'
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Gaussian Channel Coding Theorem

Proof (=): Assume P —0 and »'x"x< P for each x(w)

nR=HW)=1W:y,)+ HW|Y,,)
I, +HWY,,)
=hW,) =W, | X))+ HW )

< h(y)-h(z,)+ HW | y,,)

i=1

<Y I(x;y)+1+nRP"

i1
< valog(l+ PN+ 1+ nRP
i=1

R<%logli+ PN )+ n™' + RP® > Yilog(i+PN™)
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Bandlimited Channel

Channel bandlimited to fe(—W,W) and signal duration 7

» Nyquist: Signal is completely defined by 2WT samples

e Can represent as a n=2WT-dimensional vector space with
prolate spheroidal functions as an orthonormal basis

— white noise with double-sided p.s.d. /2N, becomes
i.i.d gaussian N(0,'2N,) added to each coefficient

— Signal power constraint = P = Signal energy < PT
= Energy constraint per coefficient: n-'X’x<PT/2WT='2W-'P
- Capacity: C =Valogll + 1 PNy 2w
= Wlog(l + Nng"P) bits/second
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Shannon Capacity

Bandwidth = 7 Hz, Signal variance = %W ' P,Noise variance = V2N,

Signal Power = P, Noise power = NJ¥, Min bit energy = E, = PC™'
Capacity = C = Wlog(l + PN[;IW")bits per second
Define: Wy =PN;' = C/W, = (7 1, )logll+ (W /W,)") - loge
=C W =EN,' = n2=-1.6dB
« For fixed power, high bandwidth is better — Ultra wideband

15 30,

° 20,

! g

2z 5 10|

5] =z

g os o

8 0
0 -10

2 4 0.5 1 15
Bandwidth / W, Bandwidth/Capacity (Hz/bps)
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Practical Channel Codes

Code Classification:
— Very good: arbitrarily small error up to the capacity
— Good: arbitrarily small error up to less than capacity
— Bad: arbitrarily small error only at zero rate (or never)
Coding Theorem: Nearly all codes are very good
— but nearly all codes need encode/decode computation oc 2
Practical Good Codes:
— Practical: Computation & memory o n* for some
— Convolution Codes: convolve bit stream with a filter
« Concatenation, Interleaving, turbo codes (1993)
— Block codes: encode a block at a time
+ Hamming, BCH, Reed-Solomon, LD parity check (1995)
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Channel Code Performance

* Power Limited
— High bandwidth
— Spacecraft, Pagers
— Use QPSK/4-QAM
— Block/Convolution Codes
e Bandwidth Limited
— Modems, DVB, Mobile
phones
— 16-QAM to 256-QAM
— Convolution Codes
* Value of 1 dB for space

— Better range, lifetime,
weight, bit rate

— $80 M (1999)

parkijerkl

Thepint i
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Lecture 15

» Parallel Gaussian Channels
— Waterfilling
* Gaussian Channel with Feedback
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Parallel Gaussian Channels

« n gaussian channels (or one channel n times)
— e.g. digital audio, digital TV, Broadband ADSL
» Noise is independent z ~ N(0,N))

Z,
* Average Power constraint Ex’x < P 1
X Y
e Information Capacity: C= max I(X;Yy)
S(XXE X X<P | |
* R<C < R achievable | p |

— proof as before
* What is the optimal fx) ? " £/
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Parallel Gaussian: Max Capacity

Need to find fix): C= max I(X;y)

F(XRE x"x<P
106y) = h(y) = h(y | X) = h(y) — h(z| )
=)~ h(2)= )~ 3 h(z)

?i(h(y,)—h(z,)) (g)i‘/zlog(HP,.N,")
=1

i=l

Equality when: (a) y; indep = x; indep; (b) x;~ N(0, P,)

We need to find the P, that maximise Z‘/zlog(“ENfl)
i=1
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Parallel Gaussian: Optimal Powers

We need to find the P; that maximise log(e)zl/zln(HRN,“)
— subject to power constraint Y P =P =l
— use Lagrange multiplier -

J=Y vin(+PN)-23 P VA
i=l i=l
ol | -l -1 P
=%(P+N,) —A=0 = PB+N,="%A 3
ap = BN : Pl p,
-1
AlsoY P=P = A:'/zn(mZN,]
i=l i=l N N3
1| N,

Water Filling: put most power into
least noisy channels to make equal
power + noise in each channel
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Very Noisy Channels

e Must have P20 Vi

* If 441 <N, then set P=0 and A
recalculate 1 P
1 P2 ]v3
(not examinable) N, N,

— Max f(x) subject to Ax+b=0 and
g,(x)20 for iel: M with f,g, concave
M

- set J()=/(0-2 ug,(x)-A Ax

— Solution X, A, 4 iff
VJ(X,)=0, AX+b=0, g;(x))20, £2>0, g (X,)=0
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Correlated Noise

e Suppose y =X +z where E zz"= K, and E xx"= Ky
* We want to find Ky to maximize capacity subject to
power constraint: EY x?<nP < t(Ky)<nP

— Find noise eigenvectoré: K, =QDQ" with QQ" =1

- Now Qfy=Q™x+Q7z=Q™x+w
where E ww’ = E Q7zz'Q = E Q’K,Q = D is diagonal
* = ¥, are now independent

— Power constraint is unchanged  r(Q"K Q)= tr(K ,QQ" )=tr(K ,)
— Choose Q'K,Q=LI-D where L=P+n"t(D)
= K,=Q(LI-D)Q"
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Power Spectrum Water Filling

Nise S

e If z is from a stationary process p
then diag(D) — power spectrum b /\ [\
L

— To achieve capacity use waterfilling on :
noise power spectrum 4 J

P=[ max(L-N(f)0)df : |

h T

max(L - N( f),o)J i

c=[" vlog1
L, Og( TN
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Gaussian Channel + Feedback

Does Feedback add capacity ? w «
G Y
— White noise — No -I
— Coloured noise — Not much
& X,
1Wsy) = h(y) = h(y [w) = h(Y) = 2 by, |W. ;)
i=l

- h(y)—éh(y, Wi X Zi)
- h(y)—gmz, W1 Xiss210)
- h(y)—gh(z, 12,.)

= (y)~h(z)

= maximize I(w;y) by maximizing A(y) = y gaussian

‘K ‘
Y
= we can take z and x =Yy — z jointly gaussian

=Ylog K

IK:|
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Gaussian Feedback Coder

L . Z
X and z jointly gaussian =

w X
X =Bz+v(w) “(+)
where v is indep of z and *

B is strictly lower triangular since x; indep of z for j>i.

Y

y=X+z=(B+)z+v

K, =Eyy’ = E(B+1zz" B+1) +wW')=B+DK,B+1) +K,

K, = Exx” = E(Bzz'B" +w') =BK,B +K,

LK ‘(B+I)KZ(B+I)7+KV‘
1K, | S

subject to K, =u(BK,B” +K, )<nP

Capacity: C, max an :Taé%n" lo
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Gaussian Feedback: Toy Example

21 00
=2, P=2, K,= B=
"o C (1 2]’ (b o} " det(K,)

X=Bz+v

Goal: Maximize (w.r.t. K, and b) 10
det(Ky) =det(B+ DK, (B+1Y +K,) 4

Subject to: {5 =5

K, must be positive definite
Power constraint : tr(BK B + K, )< 4

&

©

Solution (via numerically search):
b=0:  det(K,)=16 C=0.604 bits
b=0.69: det(K,)=20.7  C=0.697 bits

Power: V1 V2 bz1
IS

,4
el

<

hy
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Max Benefit of Feedback: Lemmas

Lemma 1: K, K, , =2(K +K,)
K., +K, ,=E(x+z)x+z) +E(x-z)x-2)
= E(xx’ +xz"+zx" 422"+ xx"—xz' —zx" +22")
= E2xx” +222")=2(K, +K,)
Lemma 2: If F,G are +ve definite then det(F+G)>det(F)
Consider two indep random vectors f~N(0,F), g~N(0,G)
v log((27e)' det(F +G))= h(f +g)
2h(f+g|g)=h(f|Q)
= h(f) = log((27e)" det(F))

Hence: det(2(K,+K,)) = det(K,.,+K, ,) > det(K,_,) = det(K,)
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Maximum Benefit of Feedback

E

w
X
oo 1o

L, det(K)
C, s < max an” log
’ (K, )<nP det(K,)

< max Yn™ logw

(K )<nP det(K,)
= max %nfllogw
(K, )<nP det(K . )
det(K, +K,)

=%+ max Y%n'log

=%+C, bits/transmission
(K )<nP det(K,)

Having feedback adds at most %2 bit per transmission
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Lecture 16

e Lossy Coding

» Rate Distortion
— Bernoulli Scurce
— Gaussian Source

e Channel/Source Coding Duality

Jan 2008 108

Lossy Coding

A
X, x,,)el:2"k X,,
. | Encoder | f%,)€ Decoder | i
() a()

Distortion function: d(x,x)>0
— examples: () dy(x,%) = (x— %) (i) dyy (x,%) :{

=

0 x=
1 x#x
A n
- sequences:  d(x,%)=n"Y. d(x,%)

i1

Distortion of Code £,0.¢,0: D=E,_,.d(x,%)=E d(x,g(f(x)))

Rate distortion pair (R,D) is achievable for source X if
3 asequence £,() and g,() such that limE, _,,d(X,g,(f,(X))) <D
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Rate Distortion Function

Rate Distortion function for {x} where p(x) is known is
R(D) =inf R such that (R,D) is achievable

Theorem: R(D)=minI(x;x) over all p(x,x) such that:
(@ p(x)is correct
(b) E,,d(x,X)<D

— this expression is the Information Rate Distortion function for X
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R(D) bound for Bernoulli Source

200

Bernoulli: X =[0,1], py=[1-p, p] assume p <

— Hamming Distance:  d(x,X)=x® %

— If D>p, R(D)=0 since we can set g( )=0
- ForD<p<Y%,if Ed(x,X)<D then
I(x;X)=H(X)-H(x|X)
=H(p)-H(X®X|X)
>H(p)-H(X®X)
2H(p)-H(D)

FD).p0205

Hence R(D) > H(p) — H(D)
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R(D) for Bernoulli source

We know optimum satisfies R(D) > H(p) — H(D)
— We show we can find a p(x,x) that attains this.

— Peculiarly, we consider a channel with X as the
input and error probability D
1-D

Now choose r to give x the correct 1-r 0 0 1-p
probabilities: 2 X
r(1-D)+(1-r)D=p b

rol 1 p
= r=(p-D)1-2D)" 1-D

Now I(x;X)=H(x)-H(x|X)=H(p)-H(D)
and p(x #X)=D

Hence R(D) = H(p) — H(D)
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R(D) bound for Gaussian Source

e Assume X ~N(0,0°)and d(x,%)=(x—%)’
e Want to minimize I(x;X) subject to E(x —X)* <D

1068) = h(X)—h(x | %)
=Yslog2mec’ —h(x — X | X)
> log2mec” — h(X — X)
>V log2rec’® —‘/leg(Z;reVar(X —)?))
>V log2rec” —Yslog2meD

0_2
I(x; X) > max(‘/z logF,OJ
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R(D) for Gaussian Source

To show that we can find a p(X,x) that achieves the bound, we
construct a test channel that introduces distortion D<g?

2~ N(0,D)
X~ N(0,6>-D) X~ N(O,5%)
I(x;X) = h(x)=h(x | X) 2
=Y log2mec® —h(x — X | X)
2.5
=Ylog2mec® —h(Z| X) 9 achievable
2
o
=Ylog—
210g D
o 2
= D(R)= [27) 2
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Lloyd Algorithm

Problem: Find optimum quantization levels for Gaussian pdf
a. Bin boundaries are midway between quantization levels
b. Each quantization level equals the mean value of its own bin

Lloyd algorithm: Pick random quantization levels then apply
conditions (a) and (b) in turn until convergence.

B level quantration

N —
2 / Y ] : W 0.15}
/ \ R e —
03] / \ |3 4 o
/ kY P |
(- b -
i ] phalalals :'\|\-h!
T - R |

Solid lines are bin boundaries. Initial levels uniform in [-1,+1]
Best mean sq error for 8 levels = 0.0345¢. Predicted D(R) = (0/8)> = 0.01565*

o 0° g T 2
10 10/ 10
Iteration Iteration
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Vector Quantization

To get D(R), you have to quantize many values together
— True even if the values are independent

D=0.035 D=0.028
2.5 2.5
o
o o o o o
2 2
o o
15 15
o o o o o o
1 1| o o
o o o o o
o
05 0sl® ©
o o o o ° o o °
0 0
05 1 15 2 25 0 05 1 15 2 25

Two gaussian variables: one quadrant only shown
— Independent quantization puts dense levels in low prob areas
— Vector quantization is better (even more so if correlated)
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Multiple Gaussian Variables

« Assume x,., are independent gaussian sources with
different variances. How should we apportion the
available total distortion between the sources?

- Assume x,~N(0,02)and d(x,%)=n"'(x-X) (x=%)< D

1()(1:,1;)?1:02 ZI(X[;)?[)

i=1

n n 2
> ZR(DI) = Zmax[l/z log 3 ,0]
i=1 i=1

We must find the D, that minimize Zmax[‘/zlogg ,Oj
i=1 i
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Reverse Waterfilling

n 2 n
Minimize Zmax[‘/zlog 9 ,0] subject to Y D, <nD

i=1 Dx i=1
Use a lagrange multiplier: Yilogo?
B n 0_12 n R
Jfg‘/zlong +/1§D, tR‘ 5 || R,
' VilogD ¥ =T - ¥

ﬂ:—%D,‘+l:0 = D =%A'=D,

oD,

>'D,=nD,=nD = D,=D X, X, X

i=1 1 2
Choose R, for equal distortion Vlogo;

! R

= If 52<D then set R=0 and increase D, to loely [y R, RF"F
maintain the average distortion equal to D

« If x are correlated then reverse waterfill
the eigenvectors of the correlation matrix

P
YslogD
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Channel/Source Coding Duality

Noisy channel

e Channel Coding
— Find codes separated enough to
give non-overlapping output
images.
— Image size = channel noise
— The maximum number (highest
rate) is when the images just fill
the sphere. Lossy encode
e Source Coding
— Find regions that cover the sphere
— Region size = allowed distortion

— The minimum number (lowest rate)
is when they just don’t overlap Sphere Covering

Sphere Packing
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Channel Decoder as Source Coder

2 ~N(O,D)

1in
Y~ NO,6*-D) X, ~ N(0,0%)

e For R=C= %10g(1+(o‘2 —D)D’l) , we can find a channel
encoder/decoder so that p(W #w) <& and E(x,-y,)’ =D
* Reverse the roles of encoder and decoder. Since
p(W ¢Vf/)< g,also p(X #y)<eand E(x,-X,)’ =E(x,-y,)’ =D
Z,,,~N©0.D)

A

.
w Yiay X, ~N0O,& Wen X,
: (f)_w Decoder |-~ Encoder |——»-

We have encoded x at rate R=':log(c*D") with distortion D
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High Dimensional Space

In n dimensions

. A
— “Vol” of unit hypercube: 1 " £ il
— “Vol” of unit-diameter hypersphere: ! ! 2
Van— 2 0.79 3.14
7 (van—%)!/n! n odd
V,= Vo y- 3 0.52 3.14
77" 27" /(Van)! n even
4 031 2.47
— “Area” of unit-diameter hypersphere: 10 2563 502
d iy
4, :7(2r) vl =2nV, 100 | 1.9e-70 | 3.7e-68
r=V2

— >63% of V, is in shell (1-n")R<r<R

Most of n-dimensional

Proof: (L-n) ¢ =03679 o
non space I1s Iin the corners
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Lecture 17

« Rate Distortion Theorem
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Review

Rate Distortion function for x whose p,(x) is known is
R(D)=inf R suchthat 3f,,g, with imE __.d(x,X)<D
Rate Distortion Theorem: Hw
R(D)=min/(x;X)over all p(%|x) such that E, ,d(x,X)<D

B

)
25
s 7 achievable
5|

f

R(D) curve depends on your choice of d(,)

o5+
IMpossii
05

T s
oie

Jan 2008 213

Rate Distortion Bound

Suppose we have found an encoder and decoder at rate R,
with expected distortion D for independent x; (worst case)

We want to prove that R, >R(D)=R(E d(x;X))
— We show first that R, =n"' > I(x;;X,)
— We know that  1(X;;X,)> R(E d(x;X%)
— and use convexity to show
n' S R(E d(x;;%))2 R(E d(x;%))= R(D)
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Convexity of R(D)

3.!

If p(x|x) and p,(x|x) are
associated with (D, R,) and (D,, R,)
on the R(D) curve we define
PR [x)=Ap, (R x)+(1-A)p,(X|x)  Fasf

Then 4
E,d(x,8)=AD,+(1-A)D,=D, 0* ©,R)

R(D,)<1, (X;X)

2.5

R(D)
o
)

o

<AL, (X X)+ (1= DI, (X3 X)
=AR(D))+(1-A)R(D,)
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Proof that R > R(D)

nR, ZH()?]:,,):H()?IM)_H(XI:H [ Xi)

=1(X,,;X,,)
2 I(x;3X)
i

> RE d(x;: %) =n> n ' R(E d(x,: %)

i=l

> nR[n’liE dx;; )?,,)] =nR(E d(x,,;%.,))

i=1

>nR(D)
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Rate Distortion Achievability

A

X, x,,)el:2"k X,,
v | Encoder | f%1,) Decoder | i
1,0 g,0)

We want to show that for any D, we can find an encoder
and decoder that compresses x,,, to nR(D) bits.

* pyis given

« Assume we know the p(¥[x) that gives I(x;X)=R(D)

= Random Decoder: Choose 2"% random X, ~p,
— There must be at least one code that is as good as the average

* Encoder: Use joint typicality to design

— We show that there is almost always a suitable codeword
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Distortion Typical Set

Distortion Typical: (x;,,)e XxX drawn i.i.d. ~p(x%)

Jm :{)(,)A(E.X”xj(”:

d.e

—n"'log p(x)—H(x)\ <e,
=" log p(R)— H(X)| < &,
\— 7~ log p(x, %) - H(X,)?)‘ <e
ld(x,%) - E d(x, %)| < &
Properties:
1. Indivp.d.:  xXeJ{ = log p(x,X)=—nH(x,X)tne

2. Total Prob: p(x,f(eJ,‘,j’g’)>1—g for n>N,
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Conditional Probability Bound

Lemma: xXxeJ{” = p(X)= p&[x)2reehe)

Proof:  p(x|x)=2&:X)

p(X)p(x)
2—n(H(X,)?)*€)

_ p(s*()zn(l()(;)?H}s)

- p() o)

IN
>0

p(
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Curious but necessary Inequality

219

Lemma: u,ve[0,l],m>0 = (I-uv)"<l-u+e™

Proof: u=0: ¢ >0 = (1-0)"<1-0+e™

u=1: Define f(v)=e’-1+v = [f'(v)=1-e"
f(O)=0and f'(v)>0forv>0 = f(v)>0forve[0,l]

Hence for ve[0,]], 0<l-v<e” =(1-v)"<e™

O<u<l1: Define g (u)=1-uv)"
= g'(x) = m(m -1’ (1-uv)"? > 0= g, () convex
(I=uv)" = g, () <(1-u)g,(0)+ug,(1)

=(l-wl+u(l-v)" <l-u+ue™ <l-u+e™
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Achievability of R(D): preliminaries

A

fix,,)el2mk

* Choose D and find a p(z | x) such that 7(x;X)=R(D); Ed(x,X)< D
Choose 6 >0 and define p, ={ p(&)=) p(x)p(&|x) }

= Decoder: For each wel:2" choose g,(w) =%, drawni.i.d.~p’
= Encoder: f,(x)=minwsuch that (x%,)eJ") else 1if no such w
= Expected Distortion: D =E,, d(x,)

— over all input vectors x and all random decode functions, g

— for large n we show D =D+ so there must be one good
code
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Expected Distortion

We can divide the input vectors x into two categories:

a) if wsuchthat (xX,)eJ{" thend(x,X,)<D+¢
since E d(X,X) <D

b) if no such w exists we must have d(x,X,)<d,..

since we are assuming that d(,) is bounded. Supose

the probability of this situation is P,.

Hence D =E,, d(X,X)
<(1-P)D+5)+Pd

<D+¢+Pd

max

max

We need to show that the expected value of P, is small
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Error Probability

Define the set of valid inputs for code g
V(g) = {x: 3w with (x, g(w) e J }
We have P =2.p(g) 2. p(X)=> p(x) > p(g)
g

xel (g) X gxelh(g)
Define K (x,%) =1if (x,%) e J{") else 0
Prob that a random X does not match x is 1—Zp($<)K(x,>”<)
X

2! 3
Prob that an entire code does not match is (I—Zp(k)K(x, f()j

Hence P, = Zp(x)[l —Zp(f()K(x,X)]
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Achievability for average code

Since X.% € J{) = p(%)> p(x| x)200=e)
b
p.= Z;:(x)(l -3 PEOK(X, k))

< Zp(x)(l =2 PRIOK(X.8) 2*""‘”’*”’]

Using I—uv)" <l—-u+e ™
with =Y p(R[X)K (X,%); v=2""007m0 =%
X

<y p(X)[l =Y pRIXK (G R) +exp(-2 U0y )j
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Achievability for average code

P< Zp(x)[l =3 PR OK () expl-2 el ))

= (1 + exp(— prlicxbsselyk ))— > PO PRI XK (X,%)

“1-3 p K (X,%) +expl- prle-rcris )

= P{(X, )¢ J5 }+ exp(— 2"(R’1‘X‘)?"3£))

—F0

n—x

Hence V5 >0, D = E, , d(x,%) can be made < D+6
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Achievability

Since V6 >0, D = E, , d(x,%) can be made < D+6

there must be at least one g with E, d(x,X) <D +06

Hence (R,D) is achievable for any R>R(D)
£0 80

thatis limE, (X,X)<D

A

fx;,) el X

In fact a stronger result is true:
V6 >0,Dand R > R(D),7f,, g, with p(d(X,X) <D +6) —> 1

n
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Lecture 18

» Revision Lecture
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Summary (1)

e Entropy:  H(x) =2 p(x)x~log,p(x)=E ~log,(py (x))
xeX

— Bounds: 0< H(x)<logX|
— Conditioning reduces entropy: H(y |X)<H()
— Chain Rule: H(x,) = Y HOx X ) < S HX)

HOG, 17,0 X HOxY)
« Relative Entropy: -

D(p|la)=E, log(p(x)/q(x))=0
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Summary (2)

e Mutual Information: @M
Iy;x)=HWY)-HWY | Xx) H( g
=HOO)+H(Y)-Hx,y)=Dp,, Ip,p,)
— Positive and Symmetrical: 7(x;y)=1(y;x)=0

—x, yindep &  Hx.¥)=H)+H(X) < [(X:y) =0
—Chain Rule:  70x,:0) =Y 10671 %,.)

X, independent = I(X,,3,,)= D 1(X;;,)
i=1

pU Xy V) =pWi X)) = I(x,, ;ym)gzl(xr;yr)
i1
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Summary (3)

e Convexity: f”(x) >0 = flx) convex = Ef(x) > (EX)
— H(p) concave in p
- I(x; y) concave in p, for fixed p,,,
— I(x; y) convex in p,,, for fixed p,
e Markov: X >y -z p(zlx,y)=piz|y)=I1(x;2]y)=0
= Ix; ) 21(x;2 and I(x; )2 1% Y| 2

. c c Hx|y)-1
e Fano: X>Yys>Xx=pX#x)>2—F2"—
=) log(| X|~1)
= Entropy Rate: H(X) = lim n'H(x,,)
— Stationary process HX)<H(x,|X,,,)
— Markov Process: H(X)=limH(x,|x,)

— Hidden Markov: H(yn ‘ylm—l’Xl) < H(”) = H(yn |y1:n—1)
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Summary (4)

» Kraft: Uniquely Decodable = %D’I' <1 = 3 prefix code
* Average Length: Uniquely Decodgiole = L.=EIX)>HyX
e Shannon-Fano: Top-down 50% splits. Ly < Hp(x)+1
e Shannon: I =[-log, p(x)] L;<H,(x)+1
e Huffman: Bottom-up design. Optimal. L, <H,(x)+1
— Designing with wrong probabilities, g = penalty of D(p||q)
— Long blocks disperse the 1-bit overhead
e Arithmetic Coding: cixVy= Zp(xf)
— Long blocks reduce 2-bit overhead <
— Efficient algorithm without calculating all possible probabilities
— Can have adaptive probabilities
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Summary (5)

e Typical Set
— Individual Prob  XeZ” =logp(X) = —nH(x)%ne
— Total Prob p(xeT)>1-¢ for n>N,
— Size (=g 2 el < g

— No other high probability set can be much smaller
« Asymptotic Equipartition Principle
— Almost all event sequences are equally surprising
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Summary (6)

* DMC Channel Capacity: C:rr;axI(X;y)
< Coding Theorem ’

— Can achieve capacity: random codewords, joint typical decoding
— Cannot beat capacity: Fano

« Feedback doesn't increase capacity but simplifies coder
« Joint Source-Channel Coding doesn'’t increase capacity
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Summary (7)

e Differential Entropy: #(x)=E-log f,(x)
— Not necessarily positive
= h(xta)=h(x),  h(ax)=h(9+loglal,  h(X\y)<h(x)
= 106 ) =h(0 + h()) - h(x, ) 20, D(fg)=E log(flg) = 0
e Bounds:
— Finite range: Uniform distribution has max: i(x) = log(b—a)
— Fixed Covariance: Gaussian has max: i(x) = Yslog((27e)"[K|)
e Gaussian Channel
— Discrete Time: C=Ylog(1+PN")
— Bandlimited: C=W log(1+PN,'W")
« For constant C: E,N,'=PC™'N,' = (W/c)(z“" er 71)Waln2 =-1.6dB
— Feedback: Adds at most Y% bit for coloured noise .
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Summary (8)

« Parallel Gaussian Channels: Total power constraint 2.5 =P
— White noise: Waterfilling: £ =max(B, - N,,0)
— Correlated noise: Waterfill on noise eigenvectors
- Rate Distortion: R(D)=  min  I(Xx;X)
P g1 Ed (X X)<D
— Bernoulli Source with Hamming d: R(D) = max(H(p,)-H(D),0)
Gaussian Source with mean square d: R(D) = max(%:log(c? D),0)

— Can encode at rate R: random decoder, joint typical encoder

— Can'’t encode below rate R: independence bound

e Lloyd Algorithm: iterative optimal vector quantization




