Information Theory

Mike Brookes E4.40, ISE4.51, SO20 Lectures

Entropy Properties

- 1 Entropy 6
- 2 Mutual Information 19

Losless Coding

- 3 Symbol Codes -30
- 4 Optimal Codes 41
- 5 Stochastic Processes 55
- 6 Stream Codes 68

Channel Capacity

- 7 Markov Chains 83
- 8 Typical Sets 93
- 9 Channel Capacity 105
- 10 Joint Typicality 118

- 11 Coding Theorem 128
- 12 Separation Theorem 135

Continuous Variables

- 13 Differential Entropy 145
- 14 Gaussian Channel 159
- 15 Parallel Channels 172

Lossy Coding

- 16 Lossy Coding 184
- 17 Rate Distortion Bound 198

Revision

- 18 Revision 212
- 19
- 20

Jan 2008

Claude Shannon

- "The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point." (Claude Shannon 1948)
- Channel Coding Theorem:

It is possible to achieve near perfect communication of information over a noisy channel

- In this course we will:
 - Define what we mean by information
 - Show how we can compress the information in a source to its theoretically minimum value and show the tradeoff between data compression and distortion.
 - the tradeoff between data compression and distortion.

 Prove the Channel Coding Theorem and derive the information capacity of different channels.

1916 - 2001

Textbooks

Book of the course:

 Elements of Information Theory by T M Cover & J A Thomas, Wiley 2006, 978-0471241959 £30 (Amazon)

Alternative book – a denser but entertaining read that covers most of the course + much else:

Information Theory, Inference, and Learning Algorithms, D MacKay, CUP, 0521642981 £28 or free at http://www.inference.phy.cam.ac.uk/mackay/itila/

Assessment: Exam only - no coursework.

Acknowledgement: Many of the examples and proofs in these notes are taken from the course textbook "Elements of Information Theory" by T M Cover & J A Thomas and/or the lecture notes by Dr L Zheng based on the book.

Jan 2008

Notation

- Vectors and Matrices
 - v=vector, V=matrix, ⊙=elementwise product
- Scalar Random Variables
 - -x = R.V, x = specific value, X = alphabet
- Random Column Vector of length N
 - $-\mathbf{x}=$ R.V, $\mathbf{x}=$ specific value, $\mathbf{X}^{N}=$ alphabet
 - $-x_i$ and x_i are particular vector elements
- Ranges
 - -a:b denotes the range a, a+1, ..., b

Jan 2008

Discrete Random Variables

• A random variable x takes a value x from the alphabet X with probability $p_x(x)$. The vector of probabilities is \mathbf{p}_x .

Examples:

 $X = [1;2;3;4;5;6], \mathbf{p}_{x} = [\frac{1}{6}; \frac{1}{6}; \frac{1}{6}; \frac{1}{6}; \frac{1}{6}; \frac{1}{6}; \frac{1}{6}]$

 \mathbf{p}_{X} is a "probability mass vector"

"english text"

X = [a; b;..., y; z; <space>] $\mathbf{p}_{x} = [0.058; 0.013; ...; 0.016; 0.0007; 0.193]$

Note: we normally drop the subscript from p_x if unambiguous

Expected Values

• If g(x) is real valued and defined on X then

$$E_{X} g(X) = \sum_{x \in X} p(x)g(x)$$

often write E for E_X

Examples:

$$X = [1;2;3;4;5;6], \mathbf{p}_{x} = [1/6; 1/6; 1/6; 1/6; 1/6; 1/6]$$

 $E \ X = 3.5 = \mu$

$$E x^2 = 15.17 = \sigma^2 + \mu^2$$

 $E \sin(0.1x) = 0.338$

$$E - \log_2(p(X)) = 2.58$$
 This is the "entropy" of X

Shannon Information Content

- The Shannon Information Content of an outcome with probability p is -log₂p
- Example 1: Coin tossing

$$-X = [Heads; Tails], p = [\frac{1}{2}; \frac{1}{2}], SIC = [1; 1] bits$$

- Example 2: Is it my birthday?
 - $X = [No; Yes], p = [^{364}/_{365}; ^{1}/_{365}],$ SIC = [0.004; 8.512] bits

Unlikely outcomes give more information

Jan 20

Minesweeper

- · Where is the bomb?
- 16 possibilities needs 4 bits to specify

Guess Prob SIC 1. No $^{15}/_{16}$ 0.093 bits Entropy

The entropy, $H(X) = E - \log_2(p_x(X)) = -\mathbf{p}_x^T \log_2 \mathbf{p}_x$

- -H(x) = the average Shannon Information Content of x
- -H(x) = the average information gained by knowing its value
- the average number of "yes-no" questions needed to find x is in the range [H(x),H(x)+1)

We use $\log(x) \equiv \log_2(x)$ and measure H(x) in bits

- if you use \log_e it is measured in nats
- 1 nat = $\log_2(e)$ bits = 1.44 bits

•
$$\log_2(x) = \frac{\ln(x)}{\ln(2)}$$
 $\frac{d \log_2 x}{dx} = \frac{\log_2 e}{x}$

H(X) depends only on the probability vector \mathbf{p}_X not on the alphabet X, so we can write $H(\mathbf{p}_Y)$

Jan 200

Entropy Examples

(1) Bernoulli Random Variable

$$\mathbf{X} = [0;1], \ \mathbf{p}_{\mathbf{x}} = [1-p;p]$$

 $H(\mathbf{x}) = -(1-p)\log(1-p) - p\log p$
Very common – we write $H(p)$ to mean $H([1-p;p])$.

(2) Four Coloured Shapes

$$X = [\bullet; \bullet; \bullet], \phi_x = [1/2; 1/4; 1/8]$$

 $H(x) = H(\mathbf{p}_x) = \sum_{x = 1}^{x} -\log(p(x))p(x)$
 $= 1 \times \frac{1}{2} + 2 \times \frac{1}{4} + 3 \times \frac{1}{8} + 3 \times \frac{1}{8} = 1.75 \text{ bits}$

Jan 200

Bernoulli Entropy Properties

$$X = [0;1], \mathbf{p}_{x} = [1-p; p]$$

$$H(p) = -(1-p)\log(1-p) - p\log p$$

$$H'(p) = \log(1-p) - \log p$$

$$H''(p) = -p^{-1}(1-p)^{-1}\log e$$

Quadratic Bounds

$$H(p) \le 1 - 2\log e(p - \frac{1}{2})^2$$

= $1 - 2.89(p - \frac{1}{2})^2$
 $H(p) \ge 1 - 4(p - \frac{1}{2})^2$
 $\ge 2\min(p, 1 - p)$
Proofs in problem sheet

Joint and Conditional Entropy

Joint Entropy: H(x,y)

p(x,y)	y =0	<i>y</i> =1
x =0	1/2	1/4
<i>x</i> =1	0	1/4

$$H(X, y) = E - \log p(X, y)$$

$$= -\frac{1}{2}\log\frac{1}{2} - \frac{1}{4}\log\frac{1}{4} - 0\log 0 - \frac{1}{4}\log\frac{1}{4} = 1.5 \text{ bits} \qquad \text{Note: } 0\log 0 = 0$$

Conditional Entropy : H(y | x)

$$\begin{array}{c|cccc} p(y|x) & y=0 & y=1 \\ \hline x=0 & {}^{2}/_{3} & {}^{1}/_{3} \\ x=1 & 0 & 1 \\ \end{array}$$

$$H(y \mid X) = E - \log p(y \mid X)$$

$$=-\frac{1}{2}\log\frac{2}{3}-\frac{1}{4}\log\frac{1}{3}-0\log 0-\frac{1}{4}\log 1=0.689$$
 bits

Conditional Entropy – view 1

Additional Entropy:

$$p(y \mid X) = p(X, y) \div p(X)$$

$$H(y \mid X) = E - \log p(y \mid X)$$

$$\begin{array}{c|ccccc} p(x, y) & y=0 & y=1 & p(x) \\ x=0 & y_2 & y_4 & 3/4 \\ x=1 & 0 & y_4 & y_4 \end{array}$$

$$= E \left\{-\log p(x, y)\right\} - E \left\{-\log p(x)\right\}$$

=
$$H(x, y) - H(x) = H(\frac{1}{2}, \frac{1}{4}, 0, \frac{1}{4}) - H(\frac{1}{4}) = 0.689$$
 bits

H(Y|X) is the average <u>additional</u> information in Y when you know X

Jan 200

Conditional Entropy - view 2

Average Row Entropy:

$$H(y \mid x) = E - \log p(y \mid x) = \sum_{x,y} -p(x,y) \log p(y \mid x)$$

$$= \sum_{x,y} -p(x)p(y \mid x)\log p(y \mid x) = \sum_{x \in X} p(x) \sum_{y \in \mathbb{J}} -p(y \mid x)\log p(y \mid x)$$
$$= \sum_{x \in X} p(x)H(y \mid x = x) = \frac{3}{4} \times H(\frac{1}{2}) + \frac{1}{4} \times H(0) = 0.689 \text{ bits}$$

Take a weighted average of the entropy of each row using p(x) as weight

Jan 20

Chain Rules

Probabilities

$$p(X, Y, Z) = p(Z \mid X, Y)p(Y \mid X)p(X)$$

Entropy

$$H(x, y, z) = H(z \mid x, y) + H(y \mid x) + H(x)$$

$$H(x_{1:n}) = \sum_{i=1}^{n} H(x_i \mid x_{1:i-1})$$

The log in the definition of entropy converts <u>products</u> of probability into <u>sums</u> of entropy

Jan 200

Summary

- Entropy: $H(x) = \sum_{x \in X} -\log_2(p(x))p(x) = E -\log_2(p_X(x))$
 - Bounded
- $0 \le H(\mathbf{X}) \le \log |\mathbf{X}|$

· Chain Rule:

$$H(X, Y) = H(Y \mid X) + H(X)$$

· Conditional Entropy:

$$H(y \mid x) = H(x,y) - H(x) = \sum_{x \in X} p(x)H(y \mid x)$$

- Conditioning reduces entropy $H(y \mid x) \leq H(y)$
- ♦ = inequalities not yet proved

Jan 2008

Lecture 2

- Mutual Information
 - If x and y are correlated, their mutual information is the average information that y gives about x
 - ullet E.g. Communication Channel: x transmitted but y received
- · Jensen's Inequality
- · Relative Entropy
 - Is a measure of how different two probability mass vectors are
- · Information Inequality and its consequences
 - Relative Entropy is always positive
 - Mututal information is positive
 - Uniform bound
 - · Conditioning and Correlation reduce entropy

Mutual Information

The mutual information is the average amount of information that you get about x from observing the value of y

$$I(x; y) = H(x) - H(x \mid y) = H(x) + H(y) - H(x, y)$$
Information in x When you already know y

Mutual information is

symmetrical
$$I(x;y) = I(y;x)$$

$$H(x|y) \begin{pmatrix} I(x;y) \end{pmatrix} H(y|x)$$

Use ";" to avoid ambiguities between I(x,y,z) and I(x,y,z)

Mutual Information Example

p(X, y)	y =0	<i>y</i> =1
x =0	1/2	1/4
x =1	0	1/4

- If you try to guess y you have a 50% chance of being correct.
- However, what if you know x?
 - Best guess: choose y = x
 - If x = 0 (p = 0.75) then 66% correct prob
 - If x=1 (p=0.25) then 100% correct prob
 - Overall 75% correct probability

 $I(x;y) = H(x) - H(x \mid y)$ = H(x) + H(y) - H(x,y)H(x) = 0.811, H(y) = 1, H(x,y) = 1.5I(x; y) = 0.311

Conditional Mutual Information

Conditional Mutual Information

$$I(x; y | z) = H(x | z) - H(x | y, z)$$

= $H(x | z) + H(y | z) - H(x, y | z)$

Note: Z conditioning applies to both X and Y

Chain Rule for Mutual Information

$$I(X_{1}, X_{2}, X_{3}; y) = I(X_{1}; y) + I(X_{2}; y \mid X_{1}) + I(X_{3}; y \mid X_{1}, X_{2})$$
$$I(X_{1:n}; y) = \sum_{i=1}^{n} I(X_{i}; y \mid X_{1:i-1})$$

Review/Preview

These sum to 1

- Entropy: $H(x) = \sum_{x \in X} -\log_2(p(x))p(x) = E -\log_2(p_X(x))$
 - Always positive $H(x) \ge 0$
- Chain Rule: $H(x,y) = H(x) + H(y|x) \le H(x) + H(y)$
 - Conditioning reduces entropy $H(y|x) \le H(y)$
- Mutual Information:

$$I(y;x) = H(y) - H(y|x) = H(x) + H(y) - H(x,y)$$

- Positive and Symmetrical $I(x; y) = I(y; x) \ge 0$
- x and y independent $\Leftrightarrow H(x,y) = H(y) + H(x)$ $\Leftrightarrow I(x; y) = 0$
- ♦ = inequalities not yet proved

Convex & Concave functions

f(x) is strictly convex over (a,b) if

$$f(\lambda u + (1-\lambda)v) < \lambda f(u) + (1-\lambda)f(v) \quad \forall u \neq v \in (a,b), 0 < \lambda < 1$$

- every chord of f(x) lies above f(x)
- -f(x) is concave $\Leftrightarrow -f(x)$ is convex
- Examples
 - Strictly Convex: x^2 , x^4 , e^x , $x \log x [x \ge 0]$
 - Strictly Concave: $\log x, \sqrt{x}$ $[x \ge 0]$
 - Convex and Concave: x
 - Test: $\frac{d^2f}{dx^2} > 0 \quad \forall x \in (a,b)$ $\Rightarrow f(x)$ is strictly convex

"convex" (not strictly) uses "≤" in definition and "≥" in test

Concave is like this

Jensen's Inequality

Jensen's Inequality: (a) f(x) convex $\Rightarrow Ef(x) \ge f(Ex)$

(b) f(x) strictly convex $\Rightarrow Ef(x) > f(Ex)$ unless x constant

Proof by induction on |X|

-|X|=1: $E f(X) = f(E X) = f(x_1)$

 $- |X| = k: \quad E f(x) = \sum_{i=1}^{k} p_i f(x_i) = p_k f(x_k) + (1 - p_k) \sum_{i=1}^{k-1} \frac{p_i^{'}}{1 - p_k} f(x_i)$

 $\geq p_{k}f(x_{k}) + (1 - p_{k})f\left(\sum_{i=1}^{k-1} \frac{p_{i}}{1 - p_{k}} x_{i}\right) \xrightarrow{\text{Assume JI is true for } |X| = k-1}$ $\geq f\left(p_{k}x_{k} + (1 - p_{k})\sum_{i=1}^{k-1} \frac{p_{i}}{1 - p_{k}} x_{i}\right) = f(E x)$

Can replace by ">" if f(x) is strictly convex unless $p_k \in \{0,1\}$ or $x_k = E(x \mid x \in \{x_{1:k-1}\})$

Mnemonic example:

 $f(x) = x^2$: strictly convex

$$X = [-1; +1]$$

$$\mathbf{p} = [\frac{1}{2}; \frac{1}{2}]$$

$$E x = 0$$

$$f(E x)=0$$

$$E f(x) = 1 > f(E x)$$

Jan 2008

Relative Entropy

Relative Entropy or Kullback-Leibler Divergence

between two probability mass vectors **p** and **q**

$$D(\mathbf{p} \parallel \mathbf{q}) = \sum_{\mathbf{x} \in \mathcal{X}} p(\mathbf{x}) \log \frac{p(\mathbf{x})}{q(\mathbf{x})} = E_{\mathbf{p}} \log \frac{p(\mathbf{x})}{q(\mathbf{x})} = E_{\mathbf{p}} \left(-\log q(\mathbf{x}) \right) - H(\mathbf{x})$$

where $E_{\mathbf{p}}$ denotes an expectation performed using probabilities \mathbf{p}

 $\mathit{D}(p\|q)$ measures the "distance" between the probability mass functions p and q.

We must have p_i =0 whenever q_i =0 else $D(\mathbf{p}||\mathbf{q})$ = ∞

Beware: $D(\mathbf{p}||\mathbf{q})$ is not a true distance because:

- (1) it is asymmetric between p, q and
- (2) it does not satisfy the triangle inequality.

Jan 200

Relative Entropy Example

 $X = [1 \ 2 \ 3 \ 4 \ 5 \ 6]^T$

$$\mathbf{p} = \begin{bmatrix} \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{bmatrix} \Rightarrow H(\mathbf{p}) = 2.585$$

$$\mathbf{q} = \begin{bmatrix} \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{2} \end{bmatrix} \Rightarrow H(\mathbf{q}) = 2.161$$

$$D(\mathbf{p} \| \mathbf{q}) = E_{\mathbf{p}}(-\log q_x) - H(\mathbf{p}) = 2.935 - 2.585 = 0.35$$

$$D(\mathbf{q} \parallel \mathbf{p}) = E_{\mathbf{q}}(-\log p_x) - H(\mathbf{q}) = 2.585 - 2.161 = 0.424$$

Jan 200

Information Inequality

Information (Gibbs') Inequality: $D(\mathbf{p} \parallel \mathbf{q}) \ge 0$

• Define $A = \{x : p(x) > 0\} \subseteq X$

• Proof
$$-D(\mathbf{p} \| \mathbf{q}) = -\sum_{x \in A} p(x) \log \frac{p(x)}{q(x)} = \sum_{x \in A} p(x) \log \frac{q(x)}{p(x)}$$

 $\leq \log \left(\sum_{x \in A} p(x) \frac{q(x)}{p(x)} \right) = \log \left(\sum_{x \in A} q(x) \right) \leq \log \left(\sum_{x \in A} q(x) \right) = \log 1 = 0$

If $D(\mathbf{p}||\mathbf{q})=0$: Since $\log()$ is strictly concave we have equality in the proof only if q(x)/p(x), the argument of \log , equals a constant.

But
$$\sum_{y \in X} p(x) = \sum_{y \in Y} q(x) = 1$$
 so the constant must be 1 and $\mathbf{p} = \mathbf{q}$

Jan 200

Information Inequality Corollaries

Uniform distribution has highest entropy
 Set q = [|X|⁻¹, ..., |X|⁻¹]^T giving H(q)=log|X| bits
 D(p || q) = E_p{-log q(x)}-H(p) = log |X|-H(p) ≥ 0

· Mutual Information is non-negative

$$I(y;x) = H(x) + H(y) - H(x,y) = E \log \frac{p(x,y)}{p(x)p(y)}$$
$$= D(\mathbf{p}_{x,y} || \mathbf{p}_x \otimes \mathbf{p}_y) \ge 0$$

with equality only if $p(x,y) \equiv p(x)p(y) \Leftrightarrow x$ and y are independent.

Jan 2008

More Corollaries

Conditioning reduces entropy

$$0 \le I(x; y) = H(y) - H(y \mid x) \Rightarrow H(y \mid x) \le H(y)$$

with equality only if x and y are independent.

· Independence Bound

$$H(\mathbf{X}_{1:n}) = \sum_{i=1}^{n} H(\mathbf{X}_{i} \mid \mathbf{X}_{1:i-1}) \leq \sum_{i=1}^{n} H(\mathbf{X}_{i})$$

with equality only if all x, are independent.

E.g.: If all x_i are identical $H(x_{1:n}) = H(x_1)$

Conditional Independence Bound

• Conditional Independence Bound

$$H(X_{1:n} | \mathbf{y}_{1:n}) = \sum_{i=1}^{n} H(X_i | X_{1:i-1}, \mathbf{y}_{1:n}) \le \sum_{i=1}^{n} H(X_i | \mathbf{y}_i)$$

Mutual Information Independence Bound

If all x_i are independent or, by symmetry, if all y_i are independent: $I(\textbf{X}_{1:n}; \textbf{y}_{1:n}) = H(\textbf{X}_{1:n}) - H(\textbf{X}_{1:n} \mid \textbf{y}_{1:n})$

$$\geq \sum_{i=1}^{n} H(X_{i}) - \sum_{i=1}^{n} H(X_{i} | Y_{i}) = \sum_{i=1}^{n} I(X_{i}; Y_{i})$$

E.g.: If n=2 with x_i i.i.d. Bernoulli (p=0.5) and $y_1=x_2$ and $y_2=x_1$, then $I(x_i; y_i)=0$ but $I(x_{1:2}; y_{1:2})=2$ bits.

Jan 2008

Summary

• Mutual Information $I(x;y) = H(x) - H(x|y) \le H(x)$

• Jensen's Inequality: f(x) convex $\Rightarrow Ef(x) \ge f(Ex)$

• Relative Entropy: $-D(\mathbf{p} \| \mathbf{q}) = 0$ iff $\mathbf{p} = \mathbf{q}$ $D(\mathbf{p} \| \mathbf{q}) = E_{\mathbf{p}} \log \frac{p(\mathbf{x})}{a(\mathbf{x})} \ge 0$

Corollaries

- Uniform Bound: Uniform p maximizes H(p)

- I(x; y) ≥ 0 \Rightarrow Conditioning reduces entropy

- Indep bounds: $H(X_{1:n}) \le \sum_{i=1}^{n} H(X_i)$ $H(X_{1:n} \mid Y_{1:n}) \le \sum_{i=1}^{n} H(X_i \mid Y_i)$

 $I(\mathbf{X}_{1:n}; \mathbf{y}_{1:n}) \geq \sum_{i=1}^{n} I(\mathbf{X}_i; \mathbf{y}_i) \quad \text{if } \mathbf{X}_i \text{ or } \mathbf{y}_i \text{ are indep}$

Jan 200

Lecture 3

- · Symbol codes
 - uniquely decodable
 - prefix
- · Kraft Inequality
- · Minimum code length
- · Fano Code

Jan 200

Symbol Codes

- Symbol Code: C is a mapping $X \rightarrow D^+$
 - $D^+=$ set of all finite length strings from D
 - e.g. $\{E, F, G\} \rightarrow \{0,1\}^+ : C(E)=0, C(F)=10, C(G)=11$
- Extension: C^+ is mapping $X^+ \to D^+$ formed by concatenating $C(x_i)$ without punctuation
 - e.g. $C^+(EFEEGE) = 01000110$
- Non-singular: $x_1 \neq x_2 \Rightarrow C(x_1) \neq C(x_2)$
- Uniquely Decodable: C+ is non-singular
 - that is $C^+(x^+)$ is unambiguous

Jan 200

Prefix Codes

- Instantaneous or Prefix Code:
 No codeword is a prefix of another
- Prefix \Rightarrow Uniquely Decodable \Rightarrow Non-singular

Examples:

$$-C(E,F,G,H) = (0, 1, 00, 11)$$

$$-C(E,F) = (0, 101)$$

$$-C(E,F) = (1, 101)$$

$$-C(E,F,G,H) = (00, 01, 10, 11)$$

$$-C(E,F,G,H) = (0, 01, 011, 111)$$

$$\overline{P}U$$

Jan 200

Code Tree

Prefix code: C(E,F,G,H) = (00, 11, 100, 101)

Form a *D*-ary tree where $D = |\mathbf{D}|$

- D branches at each node
- Each node along the path to a leaf is a prefix of the leaf
 ⇒ can't be a leaf itself
- Some leaves may be unused all used $\Rightarrow |X|-1$ is a multiple of D-1

111011000000→ FHGEE

Kraft Inequality (binary prefix)

- Label each node at depth l with 2-l
- Each node equals the sum of all its leaves
- Codeword lengths: $l_1, l_2, ..., l_{|\mathbf{X}|} \Rightarrow \sum_{i=1}^{|\mathbf{X}|} 2^{-l_i} \le 1$
- Equality iff all leaves are utilised
- Total code budget = 1
 Code 00 uses up ¼ of the budget
 Code 100 uses up ¹/₈ of the budget

Kraft Inequality

If uniquely decodable C has codeword lengths $l_1,\,l_2,\,...,\,l_{|X|}$, then $\sum_{i=1}^{|X|}D^{-l_i}\leq 1$

Proof: Let $S = \sum_{i=1}^{|X|} D^{-l_i}$ and $M = \max l_i$ then for any N,

$$S^{N} = \left(\sum_{i=1}^{|\mathbf{X}|} D^{-l_{i}}\right)^{N} = \sum_{i_{1}=1}^{|\mathbf{X}|} \sum_{i_{2}=1}^{|\mathbf{X}|} \cdots \sum_{i_{N}=1}^{|\mathbf{X}|} D^{-(l_{i_{1}} + l_{i_{2}} + \dots + l_{i_{N}})} = \sum_{\mathbf{x} \in \mathbf{X}^{N}} D^{-\operatorname{length}\{C^{+}(\mathbf{x})\}}$$

$$= \sum_{l=1}^{NM} D^{-l} \mid \mathbf{x} : l = \operatorname{length}\{C^{+}(\mathbf{x})\} \mid \leq \sum_{l=1}^{NM} D^{-l} D^{l} = \sum_{l=1}^{NM} 1 = NM$$

If S > 1 then $S^N > NM$ for some N. Hence $S \le 1$

Jan 200

Converse to Kraft Inequality

If $\sum_{i=1}^{|\mathbf{X}|} D^{-l_i} \leq 1$ then \exists a <u>prefix</u> code with codeword lengths $l_1, l_2, ..., l_{|\mathbf{X}|}$

Proof:

- Assume $l_i \leq l_{i+1}$ and think of codewords as base-D decimals $0.d_1d_2...d_{li}$
- Let codeword $c_k = \sum_{k=1}^{k-1} D^{-l_k}$ with l_k digits
- For any j < k we have $c_k = c_j + \sum_{i=j}^{k-1} D^{-l_i} \ge c_j + D^{-l_j}$
- So c_j cannot be a prefix of c_k because they differ in the first l_i digits.

⇒ non-prefix symbol codes are a waste of time

Jan 200

Kraft Converse Example

Suppose $\mathbf{l} = [2; 2; 3; 3; 3] \Rightarrow \sum_{i=1}^{5} 2^{-l_i} = 0.875 \le 1$

l_k	$c_k = \sum_{i=1}^{k-1} D^{-l_i}$	Code
2	$0.0 = 0.00_2$	00
2	$0.25 = 0.01_2$	01
3	$0.5 = 0.100_2$	100
3	$0.625 = 0.101_2$	101
3	$0.75 = 0.110_2$	110

Each c_k is obtained by adding 1 to the LSB of the previous row For code, express c_k in binary and take the first l_k binary places

Jan 20

Minimum Code Length

If l(x) = length(C(x)) then C is optimal if $L_C = E l(X)$ is as small as possible.

Uniquely decodable code $\Rightarrow L_C \ge H(X)/\log_2 D$

Proof: We define
$$\mathbf{q}$$
 by $q(x) = c^{-1}D^{-l(x)}$ where $c = \sum_{x} D^{-l(x)} \le 1$

$$L_{C} - H(x)/\log_{2} D = E l(x) + E \log_{D} p(x)$$

$$= E \left(-\log_{D} D^{-l(x)} + \log_{D} p(x)\right) = E \left(-\log_{D} cq(x) + \log_{D} p(x)\right)$$

$$= E \left(\log_{D} \frac{p(x)}{q(x)}\right) - \log_{D} c = \log_{D} 2\left(D(\mathbf{p} \parallel \mathbf{q}) - \log_{C}\right) \ge 0$$

with equality only if c=1 and $D(\mathbf{p}||\mathbf{q})=0 \Rightarrow \mathbf{p}=\mathbf{q} \Rightarrow l(x)=-\log_D(x)$

Jan 2008

Fano Code

Fano Code (also called Shannon-Fano code)

- . Put probabilities in decreasing order
- 2. Split as close to 50-50 as possible; repeat with each half

$$H(\mathbf{p}) = 2.81 \text{ bits}$$

$$L_{SF} = 2.89$$
 bits

Always $H(\mathbf{p}) \le L_F \le H(\mathbf{p}) + 1 - 2\min(\mathbf{p})$ $\le H(\mathbf{p}) + 1$

Not necessarily optimal: the best code for this \mathbf{p} actually has L=2.85 bits

Summary

· Kraft Inequality for D-ary godes:

- any uniquely decodable C has $\sum_{i=1}^{|A_i|} D^{-l_i} \le 1$
- If $\sum_{i=1}^{|X|} D^{-l_i} \le 1$ then you can create a prefix code
- Uniquely decodable $\Rightarrow L_C \ge H(X)/\log_2 D$
- · Fano code
 - Order the probabilities, then repeatedly split in half to form a tree.
 - Intuitively natural but not optimal

Jan 200

Lecture 4

- · Optimal Symbol Code
 - Optimality implications
 - Huffman Code
- Optimal Symbol Code lengths
 - Entropy Bound
- · Shannon Code

Jan 20

Huffman Code

An Optimal Binary prefix code must satisfy:

- 1. $p(x_i) > p(x_j) \implies l_i \le l_j$ (else swap codewords)
- 2. The two longest codewords have the same length (else chop a bit off the longer codeword)
- 3. ∃ two longest codewords differing only in the last bit (else chop a bit off all of them)

Huffman Code construction

- 1. Take the two smallest $p(x_i)$ and assign each a different last bit. Then merge into a single symbol.
- 2. Repeat step 1 until only one symbol remains

Jan 200

Huffman Code Example

 $X = [a, b, c, d, e], p_X = [0.25 \ 0.25 \ 0.2 \ 0.15 \ 0.15]$

a
$$0.25$$
 0.25 0.25 0.55

Read diagram backwards for codewords:

 $C(X) = [00 \ 10 \ 11 \ 010 \ 011], L_C = 2.3, H(x) = 2.286$

For D-ary code, first add extra zero-probability symbols until |X|-1 is a multiple of D-1 and then group D symbols at a time

Jan 200

Huffman Code is Optimal Prefix Code

Huffman traceback gives codes for progressively larger alphabets:

We want to show that all these codes are optimal including C_5

Jan 2008

Huffman Optimality Proof

Suppose one of these codes is sub-optimal:

- $\exists m > 2$ with \mathbf{c}_m the first sub-optimal code (note \mathbf{c}_2 is definitely optimal)
- An optimal \mathbf{c}_m' must have $L_{Cm} \leq L_{Cm}$
- Rearrange the symbols with longest codes in \mathbf{c}'_m so the two lowest probs p_i and p_j differ only in the last digit (doesen't change optimality)
- Merge x_i and x_j to create a new code \mathbf{c}'_{m-1} as in Huffman procedure
- L $_{Cm-1}$ =L $_{Cm}$ p_{i} p_{j} since identical except 1 bit shorter with prob p_{i} + p_{i}
- But also $L_{Cm-1}=L_{Cm}-p_i-p_j$ hence $L_{Cm-1}< L_{Cm-1}$ which contradicts assumption that \mathbf{c}_m is the first sub-optimal code

Note: Huffman is just one out of many possible optimal codes

How short are Optimal Codes?

Huffman is optimal but hard to estimate its length.

If l(x) = length(C(x)) then C is optimal if $L_C = E l(x)$ is as small as possible.

We want to minimize $\sum_{x \in X} p(x)l(x)$ subject to

$$1. \quad \sum_{x} D^{-l(x)} \le 1$$

2. all the l(x) are integers

Simplified version:

Ignore condition 2 and assume condition 1 is satisfied with equality.

less restrictive so lengths may be shorter than actually possible \Rightarrow lower bound

Optimal Codes (non-integer l_i)

• Minimize $\sum_{i=1}^{|X|} p(x_i) l_i$ subject to $\sum_{i=1}^{|X|} D^{-l_i} = 1$

Use lagrange multiplier:

$$\begin{split} \text{Define} \quad J &= \sum_{i=1}^{|\mathbf{X}|} p(x_i) l_i + \lambda \sum_{i=1}^{|\mathbf{X}|} D^{-l_i} \quad \text{and set} \quad \frac{\partial J}{\partial l_i} = 0 \\ \frac{\partial J}{\partial l_i} &= p(x_i) - \lambda \ln(D) D^{-l_i} = 0 \quad \Rightarrow \quad D^{-l_i} = p(x_i) / \lambda \ln(D) \\ \text{also} \quad \sum_{i=1}^{|\mathbf{X}|} D^{-l_i} = 1 \quad \Rightarrow \quad \lambda = 1/\ln(D) \quad \Rightarrow \quad l_i = -\log_D(p(x_i)) \end{split}$$

with these
$$l_i$$
, $E l(x) = E - \log_D(p(x)) = \frac{E - \log_2(p(x))}{\log_2 D} = \frac{H(x)}{\log_2 D}$

no uniquely decodable code can do better than this (Kraft inequality)

Shannon Code

Round up optimal code lengths: $l_i = \lceil -\log_D p(x_i) \rceil$

- l_i are bound to satisfy the Kraft Inequality (since the optimum lengths do)
- · Hence prefix code exists: put l_i into ascending order and set

$$c_k = \sum_{i=1}^{k-1} D^{-i_i}$$
 or $c_k = \sum_{i=1}^{k-1} p(x_i)$ equally good since $p(x_i) \ge D^{-i_k}$

 $\frac{H(X)}{\log_2 D} \le L_C < \frac{H(X)}{\log_2 D} + 1$ · Average length:

Note: since Huffman code is optimal, it also satisfies these limits

Shannon Code Examples

Example 1
$$\mathbf{p}_{x} = [0.5 \quad 0.25 \quad 0.125 \quad 0.125]$$
 (good)
$$-\log_{2}\mathbf{p}_{x} = [1 \quad 2 \quad 3 \quad 3]$$

$$\mathbf{l}_{x} = [-\log_{2}\mathbf{p}_{x}] = [1 \quad 2 \quad 3 \quad 3]$$

$$L_{C} = 1.75 \text{ bits, } H(x) = 1.75 \text{ bits}$$
 Dyadic probabilities
$$\mathbf{p}_{x} = [0.99 \quad 0.01]$$

$$-\log_{2}\mathbf{p}_{x} = [0.0145 \quad 6.64]$$

$$\mathbf{l}_{x} = [-\log_{2}\mathbf{p}_{x}] = [1 \quad 7] \quad \text{(obviously stupid to use 7)}$$

$$L_{C} = 1.06 \text{ bits, } H(x) = 0.08 \text{ bits}$$

We can make H(x)+1 bound tighter by encoding longer blocks as a super-symbol

Shannon versus Huffman

Shannon
$$\mathbf{p}_x = [0.36 \quad 0.34 \quad 0.25 \quad 0.05] \implies H(x) = 1.78 \text{ bits}$$

$$-\log_2 \mathbf{p}_x = [1.47 \quad 1.56 \quad 2 \quad 4.32]$$

$$\mathbf{l}_s = \begin{bmatrix} -\log_2 \mathbf{p}_x \end{bmatrix} = \begin{bmatrix} 2 \quad 2 \quad 2 \quad 5 \end{bmatrix}$$

$$L_s = 2.15 \text{ bits}$$

Huffman

$$I_H = \begin{bmatrix} 1 & 2 & 3 & 3 \end{bmatrix}$$
 a $0.36 - 0.36 -$

Individual codewords may be longer in Huffman than Shannon but not the average **Shannon Competitive Optimality**

• l(x) is length of a uniquely decodable code

•
$$l_S(x) = \lceil -\log p(x) \rceil$$
 is length of Shannon code
then $p(l(x) \le l_S(x) - c) \le 2^{1-c}$

Proof: Define $\mathbf{A} = \{x : p(x) < 2^{-l(x)-c+1}\}$ x with especially short l(x)

$$\begin{split} p(l(x) \leq & \lceil -\log p(x) \rceil - c) \leq p(l(x) < -\log p(x) - c + 1) = p(x \in A) \\ &= \sum_{x \in A} p(x) \quad \leq \sum_{x \in A} \max(p(x) \mid x \in A) < \sum_{x \in A} 2^{-l(x) - c + 1} \\ &\leq \sum_{x \in A} 2^{-l(x) - c + 1} = 2^{-(c - 1)} \sum_{x \in A} 2^{-l(x)} \leq 2^{-(c - 1)} \end{split}$$
 Kraft inequality

No other symbol code can do much better than Shannon code most of the time

Dyadic Competitive optimality

If **p** is dyadic $\Leftrightarrow \log p(x_i)$ is integer, $\forall i \Rightarrow \text{Shannon is optima}$ then $p(l(x) < l_s(x)) \le p(l(x) > l_s(x))$ with equality iff $l(x) \equiv l_s(x)$ Proof:

- Define $sgn(x) = \{-1,0,+1\}$ for $\{x < 0, x = 0, x > 0\}$

- Note: $sgn(i) \le 2^i - 1$ for all integers i equality iff i=0 or 1

$$\begin{split} p\big(l_S(X) > l(X)\big) - p\big(l_S(X) < l(X)\big) &= \sum_x p(x) \mathrm{sgn}\big(l_S(x) - l(x)\big) \\ & \stackrel{\mathsf{A}}{\leq} \sum_x p(x) \Big(2^{l_S(x) - l(x)} - 1\Big) = -1 + \sum_x 2^{-l_S(x)} 2^{l_S(x) - l(x)} & \text{sgn() property dyadic } \Rightarrow p = 2^{-1} \\ &= -1 + \sum_x 2^{-l(x)} \le -1 + 1 = 0 & \text{Kraft inequality} \end{split}$$

Rival code cannot be shorter than Shannon more than half the time. equality @ A $\Rightarrow l(x) = l_3(x) - \{0,1\}$ but $l(x) < l_3(x)$ would violate Kraft @ B since Shannon has $\Sigma = 1$

Jan 20

Shannon with wrong distribution

If the real distribution of x is p but you assign Shannon lengths using the distribution q what is the penalty?

Answer: $D(\mathbf{p}||\mathbf{q})$

Proof:
$$E l(X) = \sum_{i} p_{i} \left[-\log q_{i} \right] < \sum_{i} p_{i} (1 - \log q_{i})$$
$$= \sum_{i} p_{i} \left(1 + \log \frac{p_{i}}{q_{i}} - \log p_{i} \right)$$
$$= 1 + D(\mathbf{p} \| \mathbf{q}) + H(\mathbf{p})$$

Therefore

$$H(\mathbf{p}) + D(\mathbf{p} \parallel \mathbf{q}) \le E l(\mathbf{X}) < H(\mathbf{p}) + D(\mathbf{p} \parallel \mathbf{q}) + 1$$

Proof of lower limit is similar but without the 1

If you use the wrong distribution, the penalty is $\mathit{D}(\mathbf{p}\|\mathbf{q})$

Jan 200

Summary

• Any uniquely decodable code: $E l(x) \ge H_D(x) = \frac{H(x)}{\log x}$

• Fano Code: $H_D(x) \le E l(x) \le H_D(x) + 1$

- Intuitively natural top-down design

· Huffman Code:

- Bottom-up design

Optimal ⇒ at least as good as Shannon/Fano

• Shannon Code: $l_i = \lceil -\log_D p_i \rceil$ $H_D(x) \le E l(x) \le H_D(x) + 1$

- Close to optimal and easier to prove bounds

Note: Not everyone agrees on the names of Shannon and Fano codes

Jan 200

Lecture 5

· Stochastic Processes

Entropy Rate

Markov Processes

· Hidden Markov Processes

Jan 200

Stochastic process

Stochastic Process $\{x_i\} = x_1, x_2, ...$

Entropy:
$$H(\{x_i\}) = H(x_1) + H(x_2 | x_1) + ... = \infty$$

Entropy Rate:
$$H(X) = \lim_{n \to \infty} \frac{1}{n} H(X_{1:n})$$
 if limit exists

- Entropy rate estimates the additional entropy per new sample.

- Gives a lower bound on number of code bits per sample.
- If the x_i are not i.i.d. the entropy rate limit may not exist.

Examples:

- x_i i.i.d. random variables: $H(X) = H(x_i)$
- $-x_i$ indep, $H(x_i) = 0.10011100001111000000000...$ no convergence

Jan 2008

Lemma: Limit of Cesàro Mean

$$a_n \to b \implies \frac{1}{n} \sum_{k=1}^{n} a_k \to b$$

Proof:

 $\bullet \quad \text{Choose} \quad \varepsilon>0 \quad \text{and find} \quad N_0 \quad \text{such that} \quad |\ a_n-b\ |< \frac{1}{2}\varepsilon \quad \ \, \forall n>N_0$

• Set $N_1 = 2N_0\varepsilon^{-1}\max(|a_r - b|)$ for $r \in [1, N_0]$

$$\begin{array}{ll} \bullet & \text{Then} & \forall n > N_1 & \quad n^{-1} \sum_{k=1}^n \left| a_k - b \right| = n^{-1} \sum_{k=1}^{N_0} \left| a_k - b \right| + n^{-1} \sum_{k=N_0+1}^n \left| a_k - b \right| \\ & \leq N_1^{-1} N_0 \Big(\! \sqrt{2} \, N_0^{-1} \, N_1 \varepsilon \Big) + n^{-1} n \Big(\! \sqrt{2} \, \varepsilon \Big) \\ & = \! \sqrt{2} \varepsilon + \! \sqrt{2} \varepsilon = \varepsilon \end{array}$$

The partial means of a_k are called Cesàro Means

Stationary Process

Stochastic Process $\{x_i\}$ is stationary iff

$$p(X_{1:n} = a_{1:n}) = p(X_{k+(1:n)} = a_{1:n}) \quad \forall k, n, a_i \in X$$

If $\{x_i\}$ is stationary then H(X) exists and

$$H(\mathbf{X}) = \lim_{n \to \infty} \frac{1}{n} H(\mathbf{X}_{1:n}) = \lim_{n \to \infty} H(\mathbf{X}_n \mid \mathbf{X}_{1:n-1})$$

Proof: $0 \le H(x_n \mid x_{1:n-1}) \stackrel{\text{(a)}}{\le} H(x_n \mid x_{2:n-1}) \stackrel{\text{(b)}}{=} H(x_{n-1} \mid x_{1:n-2})$

(a) conditioning reduces entropy, (b) stationarity

Hence $H(\mathbf{X}_{n}|\mathbf{X}_{1:n-1})$ is +ve, decreasing \Rightarrow tends to a limit, say b

Hence from Cesàro Mean Iemma:

$$H(X_k | X_{1k-1}) \to b \implies \frac{1}{n} H(X_{1n}) = \frac{1}{n} \sum_{k=1}^{n} H(X_k | X_{1k-1}) \to b = H(X)$$

Block Coding

If x_i is a stochastic process

- encode blocks of n symbols
- 1-bit penalty of Shannon/Huffman is now shared between n symbols

$$n^{-1}H(X_{1:n}) \le n^{-1}E l(X_{1:n}) \le n^{-1}H(X_{1:n}) + n^{-1}$$

If entropy rate of x_i exists ($\leftarrow x_i$ is stationary)

$$n^{-1}H(X_{1:n}) \rightarrow H(X) \Rightarrow n^{-1}E l(X_{1:n}) \rightarrow H(X)$$

The extra 1 bit inefficiency becomes insignificant for large blocks

Jan 20

Block Coding Example

$$X = [A;B], p_x = [0.9; 0.1]$$

 $H(x_i) = 0.469$

•
$$n=1$$
 sym A B prob 0.9 0.1 $n^{-1}E \ l = 1$

•
$$n=2$$
 sym AA AB BA BB prob 0.81 0.09 0.09 0.01 $n^{-1}E \ l = 0.645$ code 0 11 100 101

•
$$n=3$$
 sym AAA AAB ... BBA BBB prob 0.729 0.081 ... 0.009 0.001 $n^{-1}E\ l=0.583$ code 0 101 ... 10010 10011

Jan 2008

Markov Process

Discrete-valued Stochastic Process $\{x_i\}$ is

- Independent iff $p(x_n|x_{0:n-1})=p(x_n)$
- Markov iff $p(x_n|x_{0:n-1}) = p(x_n|x_{n-1})$
 - time-invariant iff $p(X_n=b|X_{n-l}=a)=p_{ab}$ indep of n
 - Transition matrix: $\mathbf{T} = \{t_{ab}\}$
 - Rows sum to 1: T1 = 1 where 1 is a vector of 1's
 - $\mathbf{p}_n = \mathbf{T}^T \mathbf{p}_{n-1}$
 - Stationary distribution: $\mathbf{p}_{S} = \mathbf{T}^{T} \mathbf{p}_{S}$

Independent Stochastic Process is easiest to deal with, Markov is next easies

Jan 20

Stationary Markov Process

If a Markov process is

- a) irreducible: you can go from any a to any b in a finite number of steps
 - irreducible iff $(\mathbf{I}+\mathbf{T}^T)^{|X|-1}$ has no zero entries
- b) aperiodic: $\forall a$, the possible times to go from a to a have highest common factor = 1

then it has exactly one stationary distribution, \mathbf{p}_{ς} .

- $\mathbf{p}_{\$}$ is the eigenvector of \mathbf{T}^T with $\lambda = 1$: $\mathbf{T}^T \mathbf{p}_{\$} = \mathbf{p}_{\$}$
- $\mathbf{T}^n \xrightarrow[n \to \infty]{} \mathbf{1} \mathbf{p}_{\$}^T \text{ where } \mathbf{1} = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}^T$

Jan 2008

Chess Board

Random Walk

- $\mathbf{p}_1 = [1 \ 0 \ ... \ 0]^T$ - $H(\mathbf{p}_1) = 0$
- $\mathbf{p}_{\$} = \frac{1}{40} \times [3\ 5\ 3\ 5\ 8\ 5\ 3\ 5\ 3]^T$
 - $H(\mathbf{p}_{\$}) = 3.0855$

• $H(\mathbf{X}) = \lim_{n \to \infty} H(\mathbf{X}_n \mid \mathbf{X}_{n-1}) = \sum_{i,j} -p_{\S,i} t_{i,j} \log(t_{i,j})$ - $H(\mathbf{X}) = 2.2365$

Time-invariant and $\mathbf{p}_1 = \mathbf{p}_S \Rightarrow$ stationary

Chess Board Frames

$H(p_1){=}0, H(p_1\mid p_0){=}0$			

H(p ₂)=1.58	H(p ₂)=1.58496, H(p ₂ p ₃)=1.58496			
	•			
	-	-		

196, H(p ₂ p	1.58496	
•		
•		
29. H(p ₀ p	g)=2.20683	

ALOHA Wireless Example

M users share wireless transmission channel

- For each user independently in each timeslot:
 - if its queue is non-empty it transmits with prob q
 - a new packet arrives for transmission with prob p
- If two packets collide, they stay in the queues
- At time t_i queue sizes are $\mathbf{x}_i = (n_1, ..., n_M)$
 - {x_t} is Markov since p(x_t) depends only on x_{t-1}

Transmit vector is
$$\mathbf{y}_{i}$$
: $p(y_{i,t} = 1) = \begin{cases} 0 & x_{i,t} = 0 \\ q & x_{i,t} > 0 \end{cases}$

- $\{y_i\}$ is not Markov since $p(y_i)$ is determined by \mathbf{x}_i but is not determined by \mathbf{y}_{i-1} . $\{y_i\}$ is called a Hidden Markov Process.

ALOHA example

y = (x > 0)e is a deterministic function of the Markov [x; e]

Hidden Markov Process

If $\{x_i\}$ is a stationary Markov process and y=f(x) then {y_i} is a stationary Hidden Markov process.

What is entropy rate $H(\mathbf{y})$?

- Stationarity
$$\Rightarrow H(y_n | y_{1:n-1}) \ge H(\mathbf{V})$$
 and $\rightarrow H(\mathbf{V})$

- Also
$$H(y_n | y_{1:n-1}, x_1) \stackrel{(1)}{\leq} H(\mathbf{J})$$
 and $\stackrel{(2)}{\longrightarrow} H(\mathbf{J})$

So $H(\mathbf{y})$ is sandwiched between two quantities which converge to the same value for large n.

Proof of (1) and (2) on next slides

Hidden Markov Process - (1)

Proof (1):
$$H(y_n \mid y_{1:n-1}, X_1) \leq H(\mathbf{y})$$

 $H(y_n \mid y_{1:n-1}, X_1) = H(y_n \mid y_{1:n-1}, X_{-k:1}) \quad \forall k$ x markov
 $= H(y_n \mid y_{1:n-1}, X_{-k:1}, y_{-k:1}) = H(y_n \mid y_{-k:n-1}, X_{-k:1}) \quad y = f(X)$
 $\leq H(y_n \mid y_{-k:n-1}) \quad \forall k$ conditioning reduces entropy
 $= H(y_{k+n} \mid y_{0:k+n-1}) \underset{k \to \infty}{\longrightarrow} H(\mathbf{y})$ y stationary

Just knowing x_{l} in addition to $y_{l:n-l}$ reduces the conditional entropy to below the entropy rate.

Hidden Markov Process - (2)

Proof (2):
$$H(y_n \mid y_{1:n-1}, x_1) \underset{n \to \infty}{\to} H(\mathbf{J})$$
 Note that
$$\sum_{n=1}^k I(x_1; y_n \mid y_{1:n-1}) = I(x_1; y_{1:k})$$
 chain rule
$$\leq H(x_1)$$
 defⁿ of $I(A; B)$

Hence
$$I(x_1; y_n | y_{1:n-1}) \xrightarrow[n \to \infty]{} 0$$
 bounded sum of non-negative terms

So
$$H(y_n \mid y_{1:n-1}, x_1) = H(y_n \mid y_{1:n-1}) - I(x_1; y_n \mid y_{1:n-1})$$
 defⁿ of $I(A; B)$ $\underset{n \to \infty}{\longrightarrow} H(\mathbf{y}) - 0$

The influence of x_1 on y_n decreases over time.

Summary

• Entropy Rate:

$$H(X) = \lim_{n \to \infty} \frac{1}{n} H(X_{1:n})$$

$$-\{x_i\}$$
 stationary: $H(X) = \lim_{n \to \infty} H(x_n \mid X_{1:n-1})$

$$H(X) = H(X_n \mid X_{n-1}) = \sum_{i,j} -p_{S,i}t_{i,j}\log(t_{i,j})$$

-y = f(x): Hidden Markov:

$$H(y_n | y_{1:n-1}, x_1) \le H(y_n | y_{1:n-1})$$

with both sides tending to $H(\mathbf{y})$

Lecture 6

- · Stream Codes
- · Arithmetic Coding
- Lempel-Ziv Coding

Huffman: Good and Bad

 Shortest possible symbol code Bad

- Redundancy of up to 1 bit per symbol
 - Expensive if H(x) is small
 - ullet Less so if you use a block of N symbols
 - Redundancy equals zero iff $p(x_i)=2^{-k(i)} \forall i$
- Must recompute entire code if any symbol probability changes
 - A block of N symbols needs $|X|^N$ pre-calculated probabilities

Arithmetic Coding

- Take all possible blocks of Nsymbols and sort into lexical order, \mathbf{x}_r for r=1: $|\mathbf{X}|^N$
- Calculate cumulative probabilities in binary:

$$Q_r = \sum_{i \le r} p(\mathbf{x}_i), Q_0 = 0$$

- To encode x., transmit enough binary places to define the interval (Q_{r-1}, Q_r) unambiguously.
- Use first l_r places of $m_r 2^{-l_r}$ where l_r is least integer with

$$Q_{r-1} \le m_r 2^{-l_r} < (m_r + 1)2^{-l_r} \le Q_r$$

Arithmetic Coding - Code lengths

- The interval corresponding to x_r has width $p(x_r) = Q_r Q_{r-1} = 2^{-d_r}$
- $\bullet \quad \text{Define} \qquad k_r = \left\lceil d_r \right\rceil \ \Rightarrow \ d_r \leq k_r < d_r + 1 \ \Rightarrow \ {}^{1\!\!/_{\!\!2}} p(x_r) < 2^{-k_r} \leq p(x_r)$
- Q_{r-1} rounded up to k_r bits • Set $m_r = [2^{k_r} Q_{r-1}] \implies Q_{r-1} \le m_r 2^{-k_r}$
- If $(m_r + 1)2^{-k_r} \le Q_r$ then set $l_r = k_r$; otherwise
 - set $l_r = k_r + 1$ and redefine $m_r = \left[2^{l_r} Q_{r-1} \right] \implies (m_r 1) 2^{-l_r} < Q_{r-1} \le m_r 2^{-l_r}$ - now $(m_r + 1)2^{-l_r} = (m_r - 1)2^{-l_r} + 2^{-k_r} < Q_{r-1} + p(x_r) = Q_r$
- We always have $l_r \le k_r + 1 < d_r + 2 = -\log(p_r) + 2$
 - Always within 2 bits of the optimum code for the block (k_r) is Shannon len)

Arithmetic Coding - Advantages

- Long blocks can be used
 - Symbol blocks are sorted lexically rather than in probability
 - Receiver can start decoding symbols before the entire code has been received
 - Transmitter and receiver can work out the codes on the fly
 - · no need to store entire codebook
- Transmitter and receiver can use identical finiteprecision arithmetic
 - rounding errors are the same at transmitter and receiver
 - rounding errors affect code lengths slightly but not transmission accuracy

Arithmetic Coding Receiver

Arithmetic Coding/Decoding

I manual.		smitter	Send		Receiver	Man	Outmak
Input	Min	Max		Min	Test	Max	Output
	00000000	11111111		00000000	10011001	11111111	
b	10011001	1 1111111	1		1 0011001		
а	1 0011001	11010111					
b	10111110	1 1010111					
b	11001101	110 10111	10		100 11001		b
а	110 01101	11010011		10011001	11010111	11111111	
а	110 01101	11010000					
a	11001101	11001111	011		11010111		a
				10011001	10111110	11010111	b
b	11001110	11001111	1	10111110	11001101	11010111	b
				11001101	11010011	11010111	а
				11001101	11010000	11010011	а
				11001101	11001111	11010000	

- Min/Max give the limits of the input or output interval; identical in transmitter and receiver
- Blue denotes transmitted bits they are compared with the corresponding bits of the receiver's test value and Red bit show the first difference. Gray Identifies unchanged words.

Arithmetic Coding Algorithm

Input Symbols: $X = [a \ b], p = [p \ q]$ [min, max] = Input Probability Range

Note: only keep untransmitted bits of min and max

Coding Algorithm:

Initialize [min, max] = [000...0, 111...1]For each input symbol, s If s=a then max=min+p(max-min) else min=min+p(max-min)while min and max have the same MSB transmit MSB and set min=(min << 1) and max=(max << 1)+1end for

- Decoder is almost identical. Identical rounding errors ⇒ no symbol errors.
- Simple to modify algorithm for |X|>2 and/or D>2
- Need to protect against range underflow when [x y] = [011111..., 100000...].

Adaptive Probabilities

Number of guesses for next letter (a-z, space):

We can change the input symbol probabilities based on the context (= the past input sequence)

Example: Bernoulli source with unknown p. Adapt p based on symbol frequencies so far:

$$X = [a \ b], \ \mathbf{p}_n = [1 - p_n \ p_n], \ p_n = \frac{1 + \text{count}(x_i = b)}{1 + n}$$

Adaptive Arithmetic Coding

Coder and decoder only need to calculate the probabilities along the path that actually occurs

Lempel-Ziv Coding

Memorize previously occurring substrings in the input data

- parse input into the shortest possible distinct 'phrases'
- number the phrases starting from 1 (0 is the empty string) 1011010100010...

12 3 4 5 6 7

- each phrase consists of a previously occurring phrase (head) followed by an additional 0 or 1 (tail)
- transmit code for head followed by the additional bit for tail 01001121402010...
- for head use enough bits for the max phrase number so far: 1<u>0001</u>1<u>10</u>1<u>100</u>0<u>010</u>0<u>001</u>0...
- decoder constructs an identical dictionary

prefix codes are underlined

Lempel-Ziv Example

Input = 101101010001001001001010010 Improvement

Dictiona	ry	Send	Decode
0000	ф	1	1
0001	1	00	0
0010	0	011	11
0011	11	101	01
0100	01	1000	010
0101	010	0100	00
0110	00	0010	10
0111	10	1010	0100
1000	0100	10001	01001
1001	01001	10010	010010

- Each head can only be used twice so at its second use we can:
 - Omit the tail bit
 - Delete head from the dictionary and re-use dictionary entry

LempelZiv Comments

Dictionary D contains K entries D(0). ... D(K-1). We need to send $M=\text{ceil}(\log K)$ bits to specify a dictionary entry. Initially K=1, $D(0)=\phi=\text{null}$ string and $M=\text{ceil}(\log K)=0$ bits.

Input	Action
1	"1" $\notin D$ so send "1" and set $D(1)$ ="1". Now K =2 $\Rightarrow M$ =1.
0	"0" $\notin D$ so split it up as " ϕ " + "0" and send "0" (since $D(0) = \phi$) followed by "0".
	Then set $D(2)="0"$ making $K=3 \Rightarrow M=2$.
1	"1" ∈ D so don't send anything yet – just read the next input bit.
1	"11" $\notin D$ so split it up as "1" + "1" and send "01" (since $D(1)$ = "1" and M =2)
	followed by "1". Then set $D(3)="11"$ making $K=4 \Rightarrow M=2$.
0	"0" ∈ D so don't send anything yet – just read the next input bit.
1	"01" $\notin D$ so split it up as "0" + "1" and send "10" (since $D(2)$ = "0" and M =2)

- followed by "1". Then set D(4)="01" making $K=5 \Rightarrow M=3$.

 "0" $\in D$ so don't send anything yet just read the next input bit.
 "01" $\in D$ so don't send anything yet just read the next input bit.
 "01" $\in D$ so split it up as "01" + "0" and send "100" (since D(4)= "01" and M=3) followed by "0". Then set D(5)="010" making $K=6 \Rightarrow M=3$. n

So far we have sent 1000111011000 where dictionary entry numbers are in red.

Lempel-Ziv properties

- · Widely used
 - many versions: compress, gzip, TIFF, LZW, LZ77, ...
 - different dictionary handling, etc
- · Excellent compression in practice
 - many files contain repetitive sequences
 - worse than arithmetic coding for text files
- Asymptotically optimum on stationary ergodic source (i.e. achieves entropy rate)
 - $\{X_i\}$ stationary ergodic $\Rightarrow \limsup n^{-1}l(X_{1:n}) \le H(X)$ with prob 1 Proof: C&T chapter 12.10
 - may only approach this for an enormous file

Summary

- Stream Codes
 - Encoder and decoder operate sequentially
 - · no blocking of input symbols required
 - Not forced to send ≥1 bit per input symbol
 - can achieve entropy rate even when H(X) < 1
- Require a Perfect Channel
 - A single transmission error causes multiple wrong output symbols
 - Use finite length blocks to limit the damage

Lecture 7

- Markov Chains
- Data Processing Theorem
 - you can't create information from nothing
- Fano's Inequality
 - lower bound for error in estimating X from Y

Markov Chains

If we have three random variables: x, y, z

$$p(x, y, z) = p(z \mid x, y)p(y \mid x)p(x)$$

they form a Markov chain $x \rightarrow y \rightarrow z$ if

$$p(z \mid x, y) = p(z \mid y) \Leftrightarrow p(x, y, z) = p(z \mid y)p(y \mid x)p(x)$$

A Markov chain $x \rightarrow y \rightarrow z$ means that

- the only way that x affects z is through the value of y
- if you already know y, then observing x gives you no additional information about z, i.e. $I(x;z|y) = 0 \Leftrightarrow H(z|y) = H(z|x,y)$
- if you know y, then observing z gives you no additional information about x.

A common special case of a Markov chain is when z = f(y)

Markov Chain Symmetry

Iff $x \rightarrow y \rightarrow z$

$$p(x,z \mid y) = \frac{p(x,y,z)}{p(y)} \stackrel{\text{(a)}}{=} \frac{p(x,y)p(z \mid y)}{p(y)} = p(x \mid y)p(z \mid y)$$

(a) p(z | x, y) = p(z | y)

Z

Hence x and z are conditionally independent given y

Also $x \rightarrow y \rightarrow z$ iff $z \rightarrow y \rightarrow x$ since

$$p(x|y) = p(x|y) \frac{p(z|y)p(y)}{p(y,z)} \stackrel{\text{(a)}}{=} \frac{p(x,z|y)p(y)}{p(y,z)} = \frac{p(x,y,z)}{p(y,z)}$$
$$= p(x|y,z) \qquad \qquad \text{(a)} \quad p(x,z|y) = p(x|y)p(z|y)$$

Markov chain property is symmetrical

Data Processing Theorem

If $x \rightarrow y \rightarrow z$ then $I(x; y) \ge I(x; z)$

processing y cannot add new information about x

If $x \rightarrow y \rightarrow z$ then $I(x; y) \ge I(x; y \mid z)$

– Knowing z can only decrease the amount x tells you about y

$$I(x;y,z) = I(x;y) + I(x;z \mid y) = I(x;z) + I(x;y \mid z)$$
 but $I(x;z \mid y) = 0$ hence $I(x;y) = I(x;z) + I(x;y \mid z)$ so $I(x;y) \ge I(x;z)$ and $I(x;y) \ge I(x;y \mid z)$

(a) I(x;z)=0 iff x and z are independent; Markov $\Rightarrow p(x,z|y)=p(x|y)p(z|y)$

Non-Markov: Conditioning can increase I

Noisy Channel: z = x + y

 $-X = V = [0,1]^T$ $\mathbf{p}_X = \mathbf{p}_Y = [\frac{1}{2}, \frac{1}{2}]^T$

-I(x;y)=0 since independent

– bu

If $I(x; y \mid z) = \frac{1}{2}$		0	1	2	
XY	00	1/4			
H(x z) = H(y z) = H(x, y z) = 0×\frac{1}{4}+1\frac{1}{2}+0\frac{1}{4} = \frac{1}{2}	01		1/4		
since in each case $z\neq 1 \Rightarrow H()=0$ I(x, y z) = H(x z) + H(y z) - H(x, y z)	10		1/4		
	11			1/4	

If you know z, then x and y are no longer independent

Long Markov Chains

If $X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4 \rightarrow X_5 \rightarrow X_6$

then Mutual Information increases as you get closer together:

- e.g.
$$I(X_3, X_4) \ge I(X_2, X_4) \ge I(X_1, X_5) \ge I(X_1, X_6)$$

Sufficient Statistics

If pdf of x depends on a parameter θ and you extract a statistic T(x) from your observation,

then
$$\theta \to X \to T(X) \Rightarrow I(\theta; T(X)) \le I(\theta; X)$$

T(x) is <u>sufficient</u> for θ if the stronger condition:

$$\theta \to X \to T(X) \to \theta \quad \Leftrightarrow \quad I(\theta; T(X)) = I(\theta; X)$$
$$\Leftrightarrow \theta \to T(X) \to X \to \theta$$
$$\Leftrightarrow p(X \mid T(X), \theta) = p(X \mid T(X))$$

Example: $X_i \sim \text{Bernoulli}(\theta)$,

$$T(\mathbf{X}_{1:n}) = \sum_{i=1}^{n} \mathbf{X}_{i} \qquad p(\mathbf{X}_{1:n} = \mathbf{X}_{1:n} \mid \theta, \sum \mathbf{X}_{i} = k) = \begin{cases} {}_{n}C_{k}^{-1} & \text{if } \sum \mathbf{X}_{i} = k \\ 0 & \text{if } \sum \mathbf{X}_{i} \neq k \end{cases}$$

independent of $\theta \Rightarrow$ sufficient

Fano's Inequality

If we estimate x from y, what is $p_e = p(\hat{x} \neq x)$?

$$H(x \mid y) \le H(p_e) + p_e \log(|\mathbf{X}| - 1)$$

$$\Rightarrow p_e \ge \frac{(H(x \mid y) - H(p_e))^{(a)}}{\log(|\mathbf{X}| - 1)} \ge \frac{(H(x \mid y) - 1)}{\log(|\mathbf{X}| - 1)}$$
(a) the see weaker but 6

Proof: Define a random variable $e = (\hat{x} \neq x)$?1:0

$$\begin{split} H(e,x\,|\,y) &= H(x\,|\,y) + H(e\,|\,x,y) = H(e\,|\,y) + H(x\,|\,e,y) & \text{chain rule} \\ \Rightarrow H(x\,|\,y) + 0 &\leq H(e) + H(x\,|\,e,y) & \text{H\geq0$}, H(e\,|\,y) \leq H(e) \\ &= H(e) + H(x\,|\,y,e = 0)(1-p_e) + H(x\,|\,y,e = 1)p_e \\ &\leq H(p_e) + 0 \times (1-p_e) + \log(|\,\boldsymbol{X}\,|\,-1)p_e & H(e) = H(p_e) \end{split}$$

Fano's inequality is used whenever you need to show that errors are inevitable

Fano Example

 $X = \{1:5\}, \mathbf{p}_{X} = [0.35, 0.35, 0.1, 0.1, 0.1]^{T}$

 $y = \{1:2\}$ if $x \le 2$ then y = x with probability 6/7 while if x > 2 then y = 1 or 2 with equal prob.

Our best strategy is to guess $\hat{X} = Y$

$$-\mathbf{p}_{x|y=1} = [0.6, 0.1, 0.1, 0.1, 0.1]^T$$

– actual error prob: $p_e = 0.4$

Fano bound:
$$p_e \ge \frac{H(x|y)-1}{\log(|x|-1)} = \frac{1.771-1}{\log(4)} = 0.3855$$

Main use: to show when error free transmission is impossible since $p_e > 0$

Summary

- Markov: $x \to y \to z \Leftrightarrow p(z \mid x, y) = p(z \mid y) \Leftrightarrow I(x; z \mid y) = 0$
- Data Processing Theorem: if $x \rightarrow y \rightarrow z$ then
 - $I(X; y) \ge I(X; z)$
 - $I(X; y) \ge I(X; y \mid Z)$ can be false if not Markov
- Fano's Inequality: if $x \rightarrow y \rightarrow \hat{x}$ then

$$p_e \geq \frac{H(\boldsymbol{X} \mid \boldsymbol{y}) - H(p_e)}{\log(|\boldsymbol{X}| - 1)} \geq \frac{H(\boldsymbol{X} \mid \boldsymbol{y}) - 1}{\log(|\boldsymbol{X}| - 1)} \geq \frac{H(\boldsymbol{X} \mid \boldsymbol{y}) - 1}{\log|\boldsymbol{X}|}$$

weaker but easier to use since independent of p_{ε}

Lecture 8

- · Weak Law of Large Numbers
- The Typical Set
 - Size and total probability
- Asymptotic Equipartition Principle

Strong and Weak Typicality

 $X = \{a, b, c, d\}, p = [0.5 \ 0.25 \ 0.125 \ 0.125]$ -log $p = [1 \ 2 \ 3 \ 3] \implies H(p) = 1.75$ bits

Sample eight i.i.d. values

- strongly typical \Rightarrow correct proportions aaaabbcd $-\log p(\mathbf{x}) = 14 = 8 \times 1.75$
- [weakly] typical $\Rightarrow \log p(\mathbf{x}) = nH(\mathbf{x})$ aabbbbbb $-\log p(\mathbf{x}) = 14 = 8 \times 1.75$
- not typical at all $\Rightarrow \log p(\mathbf{x}) \neq nH(\mathbf{x})$ dddddddd $-\log p(\mathbf{x}) = 24$

Strongly Typical ⇒ Typical

Convergence of Random Numbers

Convergence

$$X_n \underset{n \to \infty}{\longrightarrow} Y \implies \forall \varepsilon > 0, \exists m \text{ such that } \forall n > m, |X_n - Y| < \varepsilon$$

Example: $X_n = \pm 2^{-n}, \quad p = [\frac{1}{2}; \frac{1}{2}]$
 $\text{choose } m = 1 - \log \varepsilon$

• Convergence in probability (weaker than convergence)

$$\begin{split} x_n & \xrightarrow{\mathrm{prob}} y \quad \Rightarrow \quad \forall \, \varepsilon > 0, \quad P\big(|\, x_n - y\,| > \varepsilon\big) \to 0 \\ & \text{Example: } x_n \in \{0; 1\}, \quad p = [1 - n^{-1}; \, n^{-1}] \\ & \text{for any small } \varepsilon \,, \, p(|\, x_n \,| > \varepsilon) = n^{-1} \xrightarrow{\quad n \to \infty} \to 0 \end{split}$$

Note: y can be a constant or another random variable

Weak law of Large Numbers

Given i.i.d.
$$\{x_i\}$$
 , Cesáro mean $s_n = \frac{1}{n} \sum_{i=1}^n x_i$
- $E s_n = E x = \mu$ Var $s_n = n^{-1} \text{Var } x = n^{-1} \sigma^2$

As n increases, $\operatorname{Var} S_n$ gets smaller and the values become clustered around the mean

WLLN:
$$s_n \xrightarrow{\text{prob}} \mu$$

 $\Leftrightarrow \forall \varepsilon > 0, P(|s_n - \mu| > \varepsilon) \xrightarrow{} 0$

The "strong law of large numbers" says that convergence is actually almost sure provided that X has finite variance

Proof of WLLN

· Chebyshev's Inequality

$$\begin{aligned} \operatorname{Var} y &= E \big(y - \mu \big)^2 = \sum_{y \in \Psi} \big(y - \mu \big)^2 \, p(y) \\ &\geq \sum_{y : |y - \mu| > \varepsilon} \big(y - \mu \big)^2 \, p(y) \geq \sum_{y : |y - \mu| > \varepsilon} \varepsilon^2 \, p(y) = \varepsilon^2 \, p \big(|y - \mu| > \varepsilon \big) \end{aligned}$$
 For any choice of ε

• WLLN
$$S_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 where $E X_i = \mu$ and $\operatorname{Var} X_i = \sigma^2$
$$\varepsilon^2 p(|S_n - \mu| > \varepsilon) \le \operatorname{Var} S_n = \frac{\sigma^2}{n} \underset{n \to \infty}{\longrightarrow} 0$$
Hence $S_n \to \mu$

Actually true even if $\sigma = \infty$

Typical Set

 \mathbf{x}^n is the i.i.d. sequence $\{x_i\}$ for $1 \le i \le n$

- Prob of a particular sequence is $p(\mathbf{x}) = \prod_{i=1}^{n} p(x_i)$
- $E \log p(\mathbf{x}) = n E \log p(x_i) = nH(\mathbf{x})$
- Typical set: $T_{\varepsilon}^{(n)} = \left\{ \mathbf{x} \in \mathbf{X}^n : \left| -n^{-1} \log p(\mathbf{x}) H(\mathbf{X}) \right| < \varepsilon \right\}$

Example:

- $-x_i$ Bernoulli with $p(x_i=1)=p$
- $-e.g. p([0\ 1\ 1\ 0\ 0\ 0])=p^2(1-p)^4$
- For p=0.2, H(X)=0.72 bits
- Red bar shows $T_{0.1}^{(n)}$

Typical Set Frames

0000100001000000, 0000000010000000

Typical Set: Properties

- 1. Individual prob: $\mathbf{x} \in T_{\varepsilon}^{(n)} \Rightarrow \log p(\mathbf{x}) = -nH(\mathbf{x}) \pm n\varepsilon$
- $p(\mathbf{X} \in T_{\varepsilon}^{(n)}) > 1 \varepsilon \text{ for } n > N_{\varepsilon}$ 2. Total prob:
- $(1-\varepsilon)2^{n(H(x)-\varepsilon)} \stackrel{n>N_{\varepsilon}}{<} |T_{\varepsilon}^{(n)}| \leq 2^{n(H(x)+\varepsilon)}$ 3. Size:

Proof 2: $-n^{-1}\log p(\mathbf{x}) = n^{-1}\sum_{i=1}^{n} -\log p(x_i) \xrightarrow{\text{prob}} E -\log p(x_i) = H(x)$ Hence $\forall \varepsilon > 0 \ \exists N_{\varepsilon} \ \text{s.t.} \ \forall n > N_{\varepsilon} \quad p(\left| -n^{-1} \log p(\mathbf{X}) - H(\mathbf{X}) \right| > \varepsilon) < \varepsilon$

 $\text{f.l.e.}\, n, \quad 1-\varepsilon < p(\mathbf{X} \in T_\varepsilon^{(n)}) \leq \sum_{\mathbf{x} \in T_\varepsilon^{(n)}} 2^{-n(H(\mathbf{X})-\varepsilon)} = 2^{-n(H(\mathbf{X})-\varepsilon)} \Big| T_\varepsilon^{(n)} \Big|$

Proof 3b: $1 = \sum_{\mathbf{x}} p(\mathbf{x}) \geq \sum_{\mathbf{x} \in T_{\epsilon}^{(n)}} p(\mathbf{x}) \geq \sum_{\mathbf{x} \in T_{\epsilon}^{(n)}} 2^{-n(H(x)+\varepsilon)} = 2^{-n(H(x)+\varepsilon)} \left| T_{\epsilon}^{(n)} \right|$

Asymptotic Equipartition Principle

- for any ε and for $n > N_{\varepsilon}$ "Almost all events are almost equally surprising"
- $p(\mathbf{X} \in T_{\varepsilon}^{(n)}) > 1 \varepsilon$ and $\log p(\mathbf{X}) = -nH(X) \pm n\varepsilon$

Coding consequence

- $\mathbf{x} \in T_{\varepsilon}^{(n)}$: '0' + at most $1+n(H+\varepsilon)$ bits
- $-\mathbf{x} \notin T_{\varepsilon}^{(n)}$: '1' + at most 1+ $n\log |\mathbf{X}|$ bits
- -L = Average code length $\leq 2 + n(H + \varepsilon) + \varepsilon (n \log |X|)$
 - $= n(H + \varepsilon + \varepsilon \log |X| + 2n^{-1})$

Source Coding & Data Compression

For any choice of $\delta > 0$, we can, by choosing block size, n, large enough, do either of the following:

- make a <u>lossless</u> code using only $H(x) + \delta$ bits per symbol on <u>average</u>: $L \le n(H + \varepsilon + \varepsilon \log |\mathbf{X}| + 2n^{-1})$
- make a code with an error probability $< \varepsilon$ using $H(x) + \delta$ bits for each symbol
 - just code T_{ε} using $n(H+\varepsilon+n^{-1})$ bits and use a random wrong code if $\mathbf{x} \notin T_{\varepsilon}$

What N_{ε} ensures that $p(\mathbf{x} \in T_{\varepsilon}^{(n)}) > 1 - \varepsilon$?

From WLLN, if $Var(-\log p(x_i)) = \sigma^2$ then for any n and ε

$$\varepsilon^2 p \left(\left| \frac{1}{n} \sum_{i=1}^n -\log p(x_i) - H(X) \right| > \varepsilon \right) \le \frac{\sigma^2}{n} \quad \Rightarrow \quad p \left(\mathbf{x} \notin T_\varepsilon^{(n)} \right) \le \frac{\sigma^2}{n \varepsilon^2} \quad \text{Chebyshev}$$

Choose
$$N_{\varepsilon} = \sigma^2 \varepsilon^{-3} \implies p(\mathbf{x} \in T_{\varepsilon}^{(n)}) > 1 - \varepsilon$$

 $N_{arepsilon}$ increases radidly for small arepsilon

For this choice of $N_{c,i}$ if $\mathbf{x} \in T_{c}^{(n)}$

$$\log p(\mathbf{X}) = -nH(X) \pm n\varepsilon = -nH(X) \pm \sigma^2 \varepsilon^{-2}$$

So within $T_{\varepsilon}^{(n)}$, $p(\mathbf{x})$ can vary by a factor of $2^{2\sigma^2\varepsilon^{-2}}$

Within the Typical Set, $p(\mathbf{x})$ can actually vary a great deal when ϵ is small

Jan 200

Smallest high-probability Set

 $T_{\varepsilon}^{(n)}$ is a small subset of X^n containing most of the probability mass. Can you get even smaller ?

For any $0 < \varepsilon < 1$, choose $N_0 = -\varepsilon^{-1} \log \varepsilon$, then for any $n > \max(N_0, N_\varepsilon)$ and any subset $S^{(n)}$ satisfying $|S^{(n)}| < 2^{n(H(x) - 2\varepsilon)}$

$$\begin{split} p \Big(\mathbf{x} \in S^{(n)} \Big) &= p \Big(\mathbf{x} \in S^{(n)} \cap T_{\varepsilon}^{(n)} \Big) + p \Big(\mathbf{x} \in S^{(n)} \cap \overline{T_{\varepsilon}^{(n)}} \Big) \\ &< \left| S^{(n)} \right| \max_{\mathbf{x} \in T_{\varepsilon}^{(n)}} p(\mathbf{x}) + p \Big(\mathbf{x} \in \overline{T_{\varepsilon}^{(n)}} \Big) \\ &< 2^{n(H-2\varepsilon)} 2^{-n(H-\varepsilon)} + \varepsilon \qquad \text{for } n > N_{\varepsilon} \\ &= 2^{-n\varepsilon} + \varepsilon < 2\varepsilon \qquad \text{for } n > N_{0}, \quad 2^{-n\varepsilon} < 2^{\log \varepsilon} = \varepsilon \end{split}$$

Answer: No

Jan 200

Summary

- Typical Set
 - Individual Prob $\mathbf{x} \in T_{\varepsilon}^{(n)} \Rightarrow \log p(\mathbf{x}) = -nH(\mathbf{x}) \pm n\varepsilon$
 - Total Prob
- $p(\mathbf{X} \in T_{\varepsilon}^{(n)}) > 1 \varepsilon \text{ for } n > N_{\varepsilon}$
- Size
- $(1-\varepsilon)2^{n(H(x)-\varepsilon)} \stackrel{n>N_{\varepsilon}}{<} |T_{\varepsilon}^{(n)}| \le 2^{n(H(x)+\varepsilon)}$
- No other high probability set can be much smaller than $T_{\varepsilon}^{(n)}$
- · Asymptotic Equipartition Principle
 - Almost all event sequences are equally surprising

Jan 200

Lecture 9

- · Source and Channel Coding
- Discrete Memoryless Channels
 - Symmetric Channels
 - Channel capacity
 - Binary Symmetric Channel
 - · Binary Erasure Channel
 - Asymmetric Channel

Jan 200

Source and Channel Coding

- Source Coding
 - Compresses the data to remove redundancy
- Channel Coding
 - Adds redundancy to protect against channel errors

Jan 2008

Discrete Memoryless Channel

• Input: $x \in X$, Output $y \in Y$

• Time-Invariant Transition-Probability Matrix

$$\left(\mathbf{Q}_{y|x}\right)_{i,j} = p\left(y = y_j \mid x = x_i\right)$$

- Hence $\mathbf{p}_{v} = \mathbf{Q}_{v|x}^{T} \mathbf{p}_{x}$
- $-\mathbf{Q}$: each row sum = 1, average column sum = $|\mathbf{X}||\mathbf{y}|^{-1}$
- Memoryless: $\mathbf{p}(y_n|X_{1:n}, y_{1:n-1}) = \mathbf{p}(y_n|X_n)$
- DMC = Discrete Memoryless Channel

Binary Channels

- · Binary Symmetric Channel $-X = [0\ 1], V = [0\ 1]$
- Binary Erasure Channel -X = [01], V = [0?1]
- Z Channel $-X = [0\ 1], y = [0\ 1]$

Symmetric: rows are permutations of each other; columns are permutations of each other Weakly Symmetric: rows are permutations of each other; columns have the same sum

Weakly Symmetric Channels

Weakly Symmetric:

- All columns of **Q** have the same sum = $|X|||y||^{-1}$
 - If x is uniform (i.e. $p(x) = |X|^{-1}$) then y is uniform $p(y) = \sum_{x} p(y \mid x) p(x) = |\mathbf{X}|^{-1} \sum_{x} p(y \mid x) = |\mathbf{X}|^{-1} \times |\mathbf{X}| |\mathbf{U}|^{-1} = |\mathbf{U}|^{-1}$
- All rows are permutations of each other
 - Each row of Q has the same entropy so $H(y \mid X) = \sum p(x)H(y \mid X = x) = H(\mathbf{Q}_{1,:}) \sum p(x) = H(\mathbf{Q}_{1,:})$

where $\boldsymbol{Q}_{\boldsymbol{l}_{\mathrm{G}}}$ is the entropy of the first (or any other) row of the \boldsymbol{Q} matrix

- Symmetric: 1. All rows are permutations of each other
 - 2. All columns are permutations of each other

Symmetric ⇒ weakly symmetric

Channel Capacity

- Capacity of a DMC channel: $C = \max_{x} I(x; y)$
 - Maximum is over all possible input distributions \mathbf{p}_{x}
 - $-\exists$ only one maximum since I(x;y) is concave in \mathbf{p}_x for fixed $\mathbf{p}_{y|x}$
 - We want to find the \mathbf{p}_x that maximizes I(x; y)

 $0 \le C \le \min(H(X), H(Y)) \le \min(\log |X|, \log |Y|)$

 $C^{(n)} = \frac{1}{n} \max_{\mathbf{p}} I(\mathbf{X}_{1:n}; \mathbf{y}_{1:n})$

• Capacity for *n* uses of channel:

= proved in two pages time

Mutual Information Plot

Mutual Information Concave in \mathbf{p}_{V}

Mutual Information I(x; y) is concave in \mathbf{p}_x for fixed $\mathbf{p}_{y|x}$

Proof: Let u and v have prob mass vectors \mathbf{u} and \mathbf{v}

- Define z: bernoulli random variable with $p(1) = \lambda$
- Let x = u if z=1 and x=v if $z=0 \Rightarrow \mathbf{p}_x = \lambda \mathbf{u} + (1-\lambda)\mathbf{v}$

$$I(X,Z;Y) = I(X;Y) + I(Z;Y \mid X) = I(Z;Y) + I(X;Y \mid Z)$$

but I(z; y | x) = H(y | x) - H(y | x, z) = 0 so $I(x;y) \ge I(x;y|z)$

$$= \lambda I(x; y \mid z = 1) + (1 - \lambda)I(x; y \mid z = 0)$$

= $\lambda I(u; y) + (1 - \lambda)I(v; y)$

Deterministic

Special Case: $y=x \Rightarrow I(X; X)=H(X)$ is concave in \mathbf{p}_{X}

Mutual Information Convex in \mathbf{p}_{YX}

Mutual Information I(x,y) is convex in \mathbf{p}_{yx} for fixed \mathbf{p}_x

Proof (b) define
$$u_i$$
, v_i , x etc:
$$\mathbf{p}_{y|x} = \lambda \mathbf{p}_{u|x} + (1 - \lambda) \mathbf{p}_{v|x}$$

 $I(X; Y, Z) = I(X; Y \mid Z) + I(X; Z)$

but I(x;z) = 0 and $I(x;z \mid y) \ge 0$ so

$$I(x;y) \le I(x;y \mid z)$$

$$= \lambda I(x;y \mid z=1) + (1-\lambda)I(x;y \mid z=0)$$

$$= \lambda I(x;u) + (1-\lambda)I(x;v)$$

= Deterministic

n-use Channel Capacity

For Discrete Memoryless Channel:

$$\begin{split} I(X_{1:n}; y_{1:n}) &= H(y_{1:n}) - H(y_{1:n} \mid X_{1:n}) \\ &= \sum_{i=1}^{n} H(y_i \mid y_{1:i-1}) - \sum_{i=1}^{n} H(y_i \mid X_i) & \text{Chain; Memoryless} \\ &\leq \sum_{i=1}^{n} H(y_i) - \sum_{i=1}^{n} H(y_i \mid X_i) = \sum_{i=1}^{n} I(X_i; y_i) & \text{Conditioning Reduces} \\ & \text{Entropy} \end{split}$$

with equality if x_i are independent $\Rightarrow y_i$ are independent

We can maximize $I(\mathbf{x}; \mathbf{y})$ by maximizing each $I(x_i; y_i)$ independently and taking x_i to be i.i.d.

- We will concentrate on maximizing I(x, y) for a single channel use

Jan 200

Capacity of Symmetric Channel

If channel is weakly symmetric:

$$I(X; y) = H(y) - H(y \mid X) = H(y) - H(\mathbf{Q}_{1,:}) \le \log |\mathbf{y}| - H(\mathbf{Q}_{1,:})$$

with equality iff input distribution is uniform

 \therefore Information Capacity of a WS channel is $\log |y| - H(\mathbf{Q}_1)$

For a binary symmetric channel (BSC):

 $|\mathbf{M}| = 2$

- $|\mathbf{y}| = 2$
- $H(\mathbf{Q}_{1,:}) = H(f)$
- $I(x, y) \le 1 H(f)$
- :. Information Capacity of a BSC is 1-H(f)

Jan 200

Binary Erasure Channel (BEC)

$$I(x;y) = H(x) - H(x \mid y)$$

$$= H(x) - p(y = 0) \times 0 - p(y = ?)H(x) - p(y = 1) \times 0$$

$$= H(x) - H(x)f$$

$$= (1 - f)H(x)$$

$$\leq 1 - f$$
since max value of $H(x) = 1$
with equality when x is uniform

since a fraction f of the bits are lost, the capacity is only 1-f and this is achieved when x is uniform

Jan 200

Asymmetric Channel Capacity

Let
$$\mathbf{p}_{x} = [a \ a \ 1-2a]^{T} \Rightarrow \mathbf{p}_{y} = \mathbf{Q}^{T} \mathbf{p}_{x} = \mathbf{p}_{x}$$

$$H(y) = -2a \log a - (1-2a)\log(1-2a)$$

$$H(y|x) = 2aH(f) + (1-2a)H(1) = 2aH(f)$$
To find C , maximize $I(x;y) = H(y) - H(y|x)$

$$I = -2a \log a - (1-2a)\log(1-2a) - 2aH(f)$$

$$\frac{dI}{da} = -2\log e - 2\log a + 2\log e + 2\log(1-2a) - 2H(f) = 0$$

$$\log \frac{1-2a}{a} = \log(a^{-1}-2) = H(f) \Rightarrow a = (2+2^{H(f)})^{-1}$$

$$\Rightarrow C = -2a\log(a2^{H(f)}) - (1-2a)\log(1-2a) = -\log(1-2a)$$
Note:
$$d(\log x) = x^{-1} \log e$$

Examples: $f=0\Rightarrow \mathrm{H}(f)=0\Rightarrow a={}^{1}/_{3}\Rightarrow C=\log 3=1.585$ bits/use $f={}^{1}/_{2}\Rightarrow \mathrm{H}(f)=1\Rightarrow a={}^{1}/_{3}\Rightarrow C=\log 2=1$ bits/use

Jan 200

Lecture 10

- Jointly Typical Sets
- Joint AEP
- · Channel Coding Theorem
 - Random Coding
 - Jointly typical decoding

Jan 2008

Significance of Mutual Information

• Consider blocks of n symbols:

- An average input sequence $x_{1:n}$ corresponds to about $2^{nH(y|x)}$ typical output sequences
- There are a total of $2^{nH(y)}$ typical output sequences
- For nearly error free transmission, we select a number of input sequences whose corresponding sets of output sequences hardly overlap
- The maximum number of distinct sets of output sequences is $2^{n(H(y)-H(y|x))} = 2^{nI(y;x)}$

Channel Coding Theorem: for large n can transmit at any rate < C with negligible errors

Jointly Typical Set

 $x_{i}y^{n}$ is the i.i.d. sequence $\{x_{i}, y_{i}\}$ for $1 \le i \le n$

- Prob of a particular sequence is $p(\mathbf{x}, \mathbf{y}) = \prod_{i=1}^{n} p(x_i, y_i)$
- $E \log p(\mathbf{x}, \mathbf{y}) = n E \log p(x_i, y_i) = nH(x, y)$
- Jointly Typical set:

$$\begin{split} J_{\varepsilon}^{(n)} &= \left\{ \mathbf{x}, \mathbf{y} \in \mathbf{X} \mathbf{y}^n : \left| -n^{-1} \log p(\mathbf{x}) - H(\mathbf{X}) \right| < \varepsilon, \\ &\left| -n^{-1} \log p(\mathbf{y}) - H(\mathbf{y}) \right| < \varepsilon, \\ &\left| -n^{-1} \log p(\mathbf{x}, \mathbf{y}) - H(\mathbf{X}, \mathbf{y}) \right| < \varepsilon \right\} \end{split}$$

Jointly Typical Example

Binary Symmetric Channel

$$f = 0.2, \quad \mathbf{p}_x = (0.75 \quad 0.25)^T$$

$$\mathbf{p}_y = (0.65 \quad 0.35)^T, \quad \mathbf{P}_{xy} = \begin{pmatrix} 0.6 & 0.15\\ 0.05 & 0.2 \end{pmatrix}$$

Jointly Typical example (for any ε):

- - all combinations of x and y have exactly the right frequencies

Jointly Typical Diagram

Dots represent jointly typical pairs (x,v)

Inner rectangle represents pairs that are typical in x or y but not necessarily jointly typical

- There are about $2^{nH(x)}$ typical \mathbf{x} 's in all
- Each typical ${\bf y}$ is jointly typical with about $2^{\mathit{nH}(x|y)}$ of these typical ${\bf x}$'s
- The jointly typical pairs are a fraction $2^{-nl(x;y)}$ of the inner rectangle
- · Channel Code: choose x's whose J.T. y's don't overlap; use J.T. for decoding

Joint Typical Set Properties

- 1. Indiv Prob: $\mathbf{x}, \mathbf{y} \in J_{\varepsilon}^{(n)} \implies \log p(\mathbf{x}, \mathbf{y}) = -nH(\mathbf{x}, \mathbf{y}) \pm n\varepsilon$
- 2. Total Prob: $p(\mathbf{x}, \mathbf{y} \in J_{\varepsilon}^{(n)}) > 1 \varepsilon$ for $n > N_{\varepsilon}$
- $(1-\varepsilon)2^{n(H(x,y)-\varepsilon)} \stackrel{n>N_{\varepsilon}}{<} \left| J_{\varepsilon}^{(n)} \right| \le 2^{n(H(x,y)+\varepsilon)}$

Proof 2: (use weak law of large numbers)

Choose N_1 such that $\forall n > N_1$, $p(-n^{-1}\log p(\mathbf{x}) - H(\mathbf{x})) > \varepsilon < \frac{\varepsilon}{2}$ Similarly choose N_2,N_3 for other conditions and set $N_\varepsilon = \max(N_1,N_2,N_3)$

Proof 3:
$$1-\varepsilon < \sum_{\mathbf{x},\mathbf{y}\in J_{\varepsilon}^{(n)}} p(\mathbf{x},\mathbf{y}) \le \left|J_{\varepsilon}^{(n)}\right| \max_{\mathbf{x},\mathbf{y}\in J_{\varepsilon}^{(n)}} p(\mathbf{x},\mathbf{y}) = \left|J_{\varepsilon}^{(n)}\right| 2^{-n(H(x,y)-\varepsilon)} \quad n>N_{\varepsilon}$$

$$1 \ge \sum_{\mathbf{x},\mathbf{y}\in J_{\varepsilon}^{(n)}} p(\mathbf{x},\mathbf{y}) \ge \left|J_{\varepsilon}^{(n)}\right| \max_{\mathbf{x},\mathbf{y}\in J_{\varepsilon}^{(n)}} p(\mathbf{x},\mathbf{y}) = \left|J_{\varepsilon}^{(n)}\right| 2^{-n(H(x,y)+\varepsilon)} \quad \forall n$$

Joint AEP

If $\mathbf{p}_{x} = \mathbf{p}_{x}$ and $\mathbf{p}_{y'} = \mathbf{p}_{y'}$ with x' and y' independent:

$$(1-\varepsilon)2^{-n(I(x,y)+3\varepsilon)} \le p(\mathbf{x}',\mathbf{y}' \in J_{\varepsilon}^{(n)}) \le 2^{-n(I(x,y)-3\varepsilon)} \text{ for } n > N_{\varepsilon}$$

Proof: $|J| \times (Min Prob) \leq Total Prob \leq |J| \times (Max Prob)$

$$\begin{split} p(\mathbf{x}', \mathbf{y}' \in J_{\varepsilon}^{(n)}) &= \sum_{\mathbf{x}', \mathbf{y} \in J_{\varepsilon}^{(n)}} p(\mathbf{x}', \mathbf{y}') = \sum_{\mathbf{x}', \mathbf{y}' \in J_{\varepsilon}^{(n)}} p(\mathbf{x}') p(\mathbf{y}') \\ p(\mathbf{x}', \mathbf{y}' \in J_{\varepsilon}^{(n)}) &\leq \left| J_{\varepsilon}^{(n)} \right| \max_{\mathbf{x}', \mathbf{y}' \in J_{\varepsilon}^{(n)}} p(\mathbf{x}') p(\mathbf{y}') \\ &\leq 2^{n(H(\mathbf{x}, \mathbf{y}) + \varepsilon)} 2^{-n(H(\mathbf{x}) - \varepsilon)} 2^{-n(H(\mathbf{y}) - \varepsilon)} = 2^{-n(I(\mathbf{x}', \mathbf{y}) - 3\varepsilon)} \\ p(\mathbf{x}', \mathbf{y}' \in J_{\varepsilon}^{(n)}) &\geq \left| J_{\varepsilon}^{(n)} \right| \min_{\mathbf{x}', \mathbf{y}' \in J_{\varepsilon}^{(n)}} p(\mathbf{x}') p(\mathbf{y}') \end{split}$$

$$p(\mathbf{x}', \mathbf{y}' \in J_{\varepsilon}^{(n)}) \ge |J_{\varepsilon}^{(n)}| \min_{\mathbf{x}, \mathbf{y} \in J_{\varepsilon}^{(n)}} p(\mathbf{x}') p(\mathbf{y}')$$
$$\ge (1 - \varepsilon) 2^{-n(l(x;y) + 3\varepsilon)} \text{ for } n > N_{\varepsilon}$$

Channel Codes

- Assume Discrete Memoryless Channel with known $\mathbf{Q}_{_{\mathit{MX}}}$
- An (M,n) code is
 - A fixed set of M codewords $\mathbf{x}(w) \in X^n$ for w=1:M
 - A deterministic decoder $g(\mathbf{y}) \in 1:M$
- Error probability
 - Maximum Error Probability \(\lambda^{(n)} \)
 - Average Error probability

 $\delta_C = 1$ if C is true or 0 if it is false

Achievable Code Rates

- The rate of an (M,n) code: $R=(\log M)/n$ bits/transmission
- · A rate, R, is achievable if
 - ∃ a sequence of ([2^{nR}],n) codes for n=1,2,...
 - max prob of error $\lambda^{(n)} \rightarrow 0$ as $n \rightarrow \infty$
 - Note: we will normally write $(2^{nR}, n)$ to mean $(\lceil 2^{nR} \rceil, n)$
- · The capacity of a DMC is the sup of all achievable rates
- · Max error probability for a code is hard to determine
 - Shannon's idea: consider a randomly chosen code
 - show the expected average error probability is small
 - Show this means ∃ at least one code with small max error prob
 - Sadly it doesn't tell you how to find the code

Channel Coding Theorem

- A rate R is achievable if R<C and not achievable if R>C
 - If R<C, ∃ a sequence of (2^{nR},n) codes with max prob of error $\lambda^{(n)} \rightarrow 0$ as $n \rightarrow \infty$
 - Any sequence of $(2^{nR},n)$ codes with max prob of error $\lambda^{(n)} \rightarrow 0$ as $n \rightarrow \infty$ must have $R \le C$

A very counterintuitive result:

Despite channel errors you can get arbitrarily low bit error rates provided that R<C

Lecture 11

· Channel Coding Theorem

Channel Coding Principle

• Consider blocks of *n* symbols:

- An average input sequence $x_{1:n}$ corresponds to about $2^{nH(y|x)}$ typical output sequences
- Random Codes: Choose 2^{nR} random code vectors $\mathbf{x}(w)$ · their typical output sequences are unlikely to overlap much.
- Joint Typical Decoding: A received vector y is very likely to be in the typical output set of the transmitted $\mathbf{x}(w)$ and no others. Decode as this w.

Channel Coding Theorem: for large n_i can transmit at any rate R < C with negligible errors

Random $(2^{nR}, n)$ Code

- Choose $\varepsilon \approx \text{error prob}$, joint typicality $\Rightarrow N_{\varepsilon}$, choose $n > N_{\varepsilon}$
- Choose \mathbf{p}_{x} so that I(x;y)=C, the information capacity
- Use \mathbf{p}_{x} to choose a code \mathbf{f} with random $\mathbf{x}(w) \in \mathbf{X}^{n}$, $w=1:2^{nR}$
 - the receiver knows this code and also the transition matrix Q
- Assume (for now) the message $W \in 1:2^{nR}$ is uniformly distributed
- If received value is y; decode the message by seeing how many $\mathbf{x}(w)$'s are jointly typical with \mathbf{y}
 - if $\mathbf{x}(k)$ is the only one then k is the decoded message
 - if there are 0 or \ge 2 possible k's then 1 is the decoded message
 - we calculate error probability averaged over all $m{\ell}$ and all W

$$(\mathbf{\mathcal{E}}) = \sum_{\mathbf{\ell}} p(\mathbf{\ell}) 2^{-nR} \sum_{w=1}^{2^{-nR}} \lambda_w(\mathbf{\mathcal{E}}) = 2^{-nR} \sum_{w=1}^{2^{-nR}} \sum_{\mathbf{\ell}} p(\mathbf{\mathcal{E}}) \lambda_w(\mathbf{\mathcal{E}}) \stackrel{\text{(a)}}{=} \sum_{\mathbf{\ell}} p(\mathbf{\mathcal{E}}) \lambda_1(\mathbf{\mathcal{E}}) = p(\mathbf{\mathcal{E}} \mid \mathbf{W} = 1)$$

(a) since error averaged over all possible codes is independent of w

Channel Coding Principle

- Assume we transmit x(1) and receive v
- Define the events $e_w = \{ \mathbf{x}(w), \mathbf{y} \in J_{\varepsilon}^{(n)} \}$ for $w \in 1: 2^{nR}$

Channel

- We have an error if either e_1 false or e_w true for $w \ge 2$
- The $\mathbf{x}(w)$ for $w \neq 1$ are independent of $\mathbf{x}(1)$ and hence also independent of **y**. So $p(e_w \text{ true}) < 2^{-n(I(x,y)-3\varepsilon)}$ for any $w \neq 1$

Joint AEP

Error Probability for Random Code

- · We transmit x(1), receive y and decode using joint typicality
- We have an error if either e_1 false or e_m true for $w \ge 2$

$$\begin{split} p(\pmb{\xi} \mid W = 1) &= p(\overleftarrow{e_1} \cup e_2 \cup e_3 \cup \dots \cup e_{2^{nR}}) \leq p(\overleftarrow{e_1}) + \sum_{w=2}^{2^{nR}} e_w & \text{p(A \cup B)} \leq \text{p(A)} + \text{p(B)} \\ &\leq \varepsilon + \sum_{l=2}^{2^{nR}} 2^{-n(I(x:y) - 3\varepsilon)} = \varepsilon + 2^{nR} 2^{-n(I(x:y) - 3\varepsilon)} & \text{(1) Joint typicality} \\ &\leq \varepsilon + 2^{-n(I(x:y) - R - 3\varepsilon)} \leq 2\varepsilon & \text{for } R < C - 3\varepsilon \text{ and } n > -\frac{\log \varepsilon}{C - R - 3\varepsilon} \end{split}$$

- Since average of $P_{e}^{(n)}$ over all codes is $\leq 2\varepsilon$ there must be at least one code for which this is true: this code has $2^{-nR}\sum \lambda_w \leq 2\varepsilon$
- · Now throw away the worst half of the codewords; the remaining ones must all have $\lambda_w \le 4\varepsilon$. The resultant code has rate $R-n^{-1} \cong R$.

♦ = proved on next page

Code Selection & Expurgation

Since average of $P_{o}^{(n)}$ over all codes is $\leq 2\varepsilon$ there must be at least one code for which this is true.

 $2\varepsilon \ge K^{-1} \sum_{i=1}^{K} P_{e,i}^{(n)} \ge K^{-1} \sum_{i=1}^{K} \min(P_{e,i}^{(n)}) = \min(P_{e,i}^{(n)})$

K = num of codes

Expurgation: Throw away the worst half of the codewords; the remaining ones must all have $\lambda < 4\varepsilon$

Proof: Assume λ_{m} are in descending order

$$\begin{split} &2\varepsilon \geq M^{-1} \sum_{w=1}^{M} \lambda_{w} \geq M^{-1} \sum_{w=1}^{\sqrt{s}M} \lambda_{w} \geq M^{-1} \sum_{w=1}^{\sqrt{s}M} \lambda_{i_{5}M} \geq \frac{1}{2} \lambda_{i_{5}M} \\ \Rightarrow & \lambda_{i_{5}M} \leq 4\varepsilon \quad \Rightarrow \quad \lambda_{w} \leq 4\varepsilon \quad \forall \ w > \frac{1}{2}M \end{split}$$

 $M' = \frac{1}{2} \times 2^{nR}$ messages in *n* channel uses $\Rightarrow R' = n^{-1} \log M' = R - n^{-1}$

Summary of Procedure

- Given R' < C, choose $\varepsilon < \frac{1}{4}(C R')$ and set $R = R' + \varepsilon \Rightarrow R < C 3\varepsilon$
- Set $n = \max\{N_{\varepsilon}, -(\log \varepsilon)/(C R 3\varepsilon), \varepsilon^{-1}\}$
- Find the optimum \mathbf{p}_{x} so that I(x; y) = C
- Choosing codewords randomly (using p_X) and using joint typicality (a) as the decoder, construct codes with 2^{nR} codewords
- Since average of $P_{e}^{(n)}$ over all codes is $\leq 2\varepsilon$ there must be at least (b) one code for which this is true. Find it by exhaustive search.
- Throw away the worst half of the codewords. Now the worst codeword has an error prob $\leq 4\epsilon$ with rate $R' = R - n^{-1} > R - \epsilon$
- The resultant code transmits at a rate R' with an error probability that can be made as small as desired (but n unnecessarily large).

Note: ε determines both error probability <u>and</u> closeness to capacity

Lecture 12

- Converse of Channel Coding Theorem
 - Cannot achieve R>C
 - Minimum bit-error rate
- · Capacity with feedback
 - no gain but simpler encode/decode
- Joint Source-Channel Coding
 - No point for a DMC

Converse of Coding Theorem

- Fano's Inequality: if $P_e^{(n)}$ is error prob when estimating w from y, $H(W \mid \mathbf{y}) \le 1 + P_e^{(n)} \log |\mathbf{W}| = 1 + nRP_e^{(n)}$
- Hence $nR = H(w) = H(w \mid y) + I(w; y)$ $\leq H(w \mid \mathbf{y}) + I(\mathbf{x}(w); \mathbf{y})$ $\leq 1 + nRP_{e}^{(n)} + I(\mathbf{x}; \mathbf{y})$ $\leq 1 + nRP_{a}^{(n)} + nC$ n-use DMC capacity $\Rightarrow P_e^{(n)} \ge \frac{R - C - n^{-1}}{R} \quad \underset{n \to \infty}{\longrightarrow} \quad \frac{R - C}{R}$
- Hence for large $n_i P_e^{(n)}$ has a lower bound of (R-C)/R if w equiprobable
 - If R>C was achievable for small n, it could be achieved also for large n by concatenation. Hence it cannot be achieved for any n.

Minimum Bit-error Rate

- $v_{1:nR}$ is i.i.d. bits with $H(v_i)=1$ The bit-error rate is $P_b = E_i \{ p(v_i \neq \hat{v_i}) \} = E_i \{ p(e_i) \}$

Then $nC \stackrel{\text{(a)}}{\geq} I(X_{1:n}; Y_{1:n}) \stackrel{\text{(b)}}{\geq} I(V_{1:nR}; \hat{V}_{1:nR}) = H(V_{1:nR}) - H(V_{1:nR} | \hat{V}_{1:nR})$ $= nR - \sum_{i=1}^{nR} H(V_i | \hat{V}_{1:nR}, V_{1:i-1}) \stackrel{\text{(c)}}{\geq} nR - \sum_{i=1}^{nR} H(V_i | \hat{V}_i) = nR \left(1 - E_i \left\{ H(V_i | \hat{V}_i) \right\} \right)$ $= nR\left(1 - E\left\{H(e_i \mid \hat{V}_i)\right\}\right) \stackrel{\text{(c)}}{\geq} nR\left(1 - E\left\{H(e_i)\right\}\right) \stackrel{\text{(e)}}{\geq} nR\left(1 - H(E_i \mid \hat{V}_{b,i})\right) = nR\left(1 - H(P_b)\right)$

- (b) Data processing theorem
- (c) Conditioning reduces entropy
- (d) $e_i = v_i \oplus \hat{v_i}$
- (e) Jensen: $E H(x) \le H(E x)$

Channel with Feedback

- · Assume error-free feedback: does it increase capacity?
- A (2^{nR},n) feedback code is
 - A sequence of mappings $x_i = x_i(w_i y_{1:i-1})$ for i=1:n
 - A decoding function $\hat{W} = g(y_{1:n})$
- Feedback capacity, $C_{FB} \ge C$, is the sup of achievable rates

Capacity with Feedback

$$I(W; \mathbf{y}) = H(\mathbf{y}) - H(\mathbf{y} \mid W)$$

$$= H(\mathbf{y}) - \sum_{i=1}^{n} H(y_i \mid y_{1:i-1}, W)$$

$$= H(\mathbf{y}) - \sum_{i=1}^{n} H(y_i \mid y_{1:i-1}, W, X_i)$$

$$= H(\mathbf{y}) - \sum_{i=1}^{n} H(y_i \mid y_{1:i-1}, W, X_i)$$

$$= H(\mathbf{y}) - \sum_{i=1}^{n} H(y_i \mid X_i)$$

$$\leq \sum_{i=1}^{n} H(y_i) - \sum_{i=1}^{n} H(y_i \mid X_i)$$

$$= \sum_{i=1}^{n} I(X_i; y_i) \leq nC$$
cond reduces ent

Hence

$$nR = H(W) = H(W \mid \mathbf{y}) + I(W; \mathbf{y}) \le 1 + nRP_e^{(n)} + nC$$
 Fano
$$\Rightarrow P_e^{(n)} \ge \frac{R - C - n^{-1}}{R}$$
 The DMC does not benefit from feedback: $C_{FB} = C$

Jan 200

Example: BEC with feedback

- Capacity is 1–f
- Encode algorithm
 - If $y_i=?$, retransmit bit i
 - Average number of transmissions per bit:

$$1+f+f^2+\cdots = \frac{1}{1-f}$$

- Average number of bits per transmission = 1-f
- Capacity unchanged but encode/decode algorithm much simpler.

Jan 200

Joint Source-Channel Coding

- Assume v_i satisfies AEP and |V|<∞
 - Examples: i.i.d.; markov; stationary ergodic
- Capacity of DMC channel is C
 - if time-varying: $C = \lim_{n \to \infty} n^{-1} I(\mathbf{x}; \mathbf{y})$
- Joint Source Channel Coding Theorem: \exists codes with $P_e^{(n)} = P(\hat{\mathcal{V}}_{1:n} \neq \mathcal{V}_{1:n}) \xrightarrow[n \to \infty]{} 0$ iff $H(\mathcal{V}) < C$
 - errors arise from incorrect (i) encoding of V or (ii) decoding of Y
- Important result: source coding and channel coding might as well be done separately since same capacity
 - = proved on next page

Jan 200

Source-Channel Proof (⇐)

- For $n>N_{\varepsilon}$ there are only $2^{n(H(\mathbf{V})+\varepsilon)}$ **v**'s in the typical set: encode using $n(H(\mathbf{V})+\varepsilon)$ bits
 - encoder error < ϵ
- Transmit with error prob less than ε so long as $H(V)+\varepsilon < C$
- Total error prob $< 2\varepsilon$

Jan 200

Source-Channel Proof (⇒)

Fano's Inequality: $H(\mathbf{v} \mid \hat{\mathbf{v}}) \le 1 + P_{\rho}^{(n)} n \log |\mathbf{v}|$

$$\begin{split} H(\textbf{\textit{V}}) & \leq n^{-1}H(\textbf{\textit{V}}_{1:n}) & \text{entropy rate of stationary process} \\ & = n^{-1}H(\textbf{\textit{V}}_{1:n} \mid \hat{\textbf{\textit{V}}}_{1:n}) + n^{-1}I(\textbf{\textit{V}}_{1:n}; \hat{\textbf{\textit{V}}}_{1:n}) & \text{definition of } I \\ & \leq n^{-1}\left(1 + P_e^{(n)} n \log |\textbf{\textit{V}}| + n^{-1}I(\textbf{\textit{X}}_{1:n}; \textbf{\textit{Y}}_{1:n}) & \text{Fano} + \text{Data Proc Inequ} \\ & \leq n^{-1} + P_e^{(n)} \log |\textbf{\textit{V}}| + C & \text{Memoryless channel} \end{split}$$

Let
$$n \to \infty \Rightarrow P_e^{(n)} \to 0 \Rightarrow H(V) \le C$$

Separation Theorem

- · For a (time-varying) DMC we can design the source encoder and the channel coder separately and still get optimum performance
- · Not true for
 - Correlated Channel and Source
 - Multiple access with correlated sources
 - · Multiple sources transmitting to a single receiver
 - Broadcasting channels
 - · one source transmitting possibly different information to multiple receivers

Lecture 13

- Continuous Random Variables
- Differential Entropy
 - can be negative
 - not a measure of the information in x
 - coordinate-dependent
- Maximum entropy distributions
 - Uniform over a finite range
 - Gaussian if a constant variance

Continuous Random Variables

Changing Variables

• pdf: $f_x(x)$

CDF: $F_x(x) = \int_{-\infty}^x f_x(t) dt$

• For g(x) monotonic: $y = g(x) \Leftrightarrow x = g^{-1}(y)$

$$F_{y}(y) = F_{x}(g^{-1}(y)) \quad \text{or} \quad 1 - F_{x}(g^{-1}(y)) \quad \text{according to slope of } g(x)$$

$$f_{y}(y) = \frac{dF_{y}(y)}{dy} = f_{x}(g^{-1}(y)) \left| \frac{dg^{-1}(y)}{dy} \right| = f_{x}(x) \left| \frac{dx}{dy} \right| \quad \text{where} \quad x = g^{-1}(y)$$

· Examples:

Suppose
$$f_x(x) = 0.5$$
 for $x \in (0,2)$ \Rightarrow $F_x(x) = 0.5x$

(a)
$$y = 4x \implies x = 0.25y \implies f_y(y) = 0.5 \times 0.25 = 0.125$$
 for $y \in (0,8)$

(b)
$$Z = X^4 \implies X = Z^{1/4} \implies f_Z(z) = 0.5 \times 1/4 z^{-1/4} = 0.125 z^{-1/4}$$
 for $z \in (0,16)$

Joint Distributions Distributions

Joint pdf:

 $f_{x,y}(x,y)$

Marginal pdf:

 $f_x(x) = \int_{-\infty}^{\infty} f_{x,y}(x,y) dy$

Independence:

 $\Leftrightarrow f_{x,y}(x,y) = f_x(x)f_y(y)$

Conditional pdf:

 $f_{x|y}(x) = \frac{f_{x,y}(x,y)}{1 - \frac{1}{2}}$

Example:

$$f_{x,y} = 1 \text{ for } y \in (0,1), x \in (y, y+1)$$

$$f_{x,y} = 1 \text{ for } y \in (0,1), x \in (y, y)$$

$$f_{x|y} = 1 \text{ for } x \in (y, y+1)$$

 $f_{y|x} = \frac{1}{\min(x, 1-x)}$ for $y \in (\max(0, x-1), \min(x, 1))$

Ouantised Random Variables

- Given a continuous pdf f(x), we divide the range of x into bins of width $\boldsymbol{\Delta}$
- For each i, $\exists x_i$ with $f(x_i)\Delta = \int_{i\Delta}^{(i+1)\Delta} f(x)dx$

mean value theorem

- · Define a discrete random variable Y
 - $\mathbf{y} = \{x_i\}$ and $p_y = \{f(x_i)\Delta\}$
 - Scaled, quantised version of f(x) with slightly unevenly spaced x_i
- $H(y) = -\sum f(x_i) \Delta \log(f(x_i)\Delta)$

$$= -\log \Delta - \sum f(x_i) \log(f(x_i))\Delta$$

 $\underset{\Delta \to 0}{\longrightarrow} -\log \Delta - \int_{-\infty}^{\infty} f(x) \log f(x) dx = -\log \Delta + h(x)$

• Differential entropy: $h(x) = -\int_{-\infty}^{\infty} f_x(x) \log f_x(x) dx$

Differential Entropy

Differential Entropy: $h(x) = \int_{-\infty}^{\infty} f_x(x) \log f_x(x) dx = E - \log f_x(x)$

- -h(x) does not give the amount of information in x
- h(x) is not necessarily positive
- h(x) changes with a change of coordinate system

Good News:

- $h_1(x) h_2(x)$ does compare the uncertainty of two continuous random variables provided they are quantised to the same
- Relative Entropy and Mutual Information still work fine
- If the range of x is normalized to 1 and then x is quantised to nbits, the entropy of the resultant discrete random variable is approximately h(x)+n

Differential Entropy Examples

- Uniform Distribution: $X \sim U(a,b)$
 - $f(x) = (b-a)^{-1}$ for $x \in (a,b)$ and f(x) = 0 elsewhere
 - $h(x) = -\int_{a}^{b} (b-a)^{-1} \log(b-a)^{-1} dx = \log(b-a)$
 - Note that $h(x) \le 0$ if $(b-a) \le 1$
- Gaussian Distribution: $x \sim N(\mu, \sigma^2)$
 - $f(x) = (2\pi\sigma^2)^{-1/2} \exp(-1/2(x-\mu)^2\sigma^{-2})$
 - $h(x) = -(\log e) \int_{-\infty}^{\infty} f(x) \ln f(x) dx$

$$= -(\log e) \int_{-\infty}^{\infty} f(x) \left(-\frac{1}{2} \ln(2\pi\sigma^2) - \frac{1}{2} (x - \mu)^2 \sigma^{-2} \right)$$

- $= \frac{1}{2} (\log e) \left(\ln(2\pi\sigma^2) + \sigma^{-2} E((x-\mu)^2) \right)$
- $= \frac{1}{2} (\log e) (\ln(2\pi\sigma^2) + 1) = \frac{1}{2} \log(2\pi e \sigma^2) \cong \log(4.1\sigma)$ bits

Multivariate Gaussian

Given mean, m, and symmetric +ve definite covariance matrix K,

$$\mathbf{X}_{1:n} \sim \mathbf{N}(\mathbf{m}, \mathbf{K}) \iff f(\mathbf{x}) = \left| 2\pi \mathbf{K} \right|^{-\frac{1}{2}} \exp \left(-\frac{1}{2} (\mathbf{x} - \mathbf{m})^T \mathbf{K}^{-1} (\mathbf{x} - \mathbf{m}) \right)$$

$$h(f) = -(\log e) \int f(\mathbf{x}) \times (-\frac{1}{2}(\mathbf{x} - \mathbf{m})^T \mathbf{K}^{-1}(\mathbf{x} - \mathbf{m}) - \frac{1}{2} \ln|2\pi \mathbf{K}|) d\mathbf{x}$$

$$= \frac{1}{2} \log(e) \times \left(\ln \left| 2\pi \mathbf{K} \right| + E\left((\mathbf{x} - \mathbf{m})^T \mathbf{K}^{-1} (\mathbf{x} - \mathbf{m}) \right) \right)$$

$$= \frac{1}{2} \log(e) \times \left(\ln \left| 2\pi \mathbf{K} \right| + E \operatorname{tr} \left((\mathbf{x} - \mathbf{m}) (\mathbf{x} - \mathbf{m})^T \mathbf{K}^{-1} \right) \right)$$

$$= \frac{1}{2} \log(e) \times \left(\ln \left| 2\pi \mathbf{K} \right| + \operatorname{tr} \left(E(\mathbf{x} - \mathbf{m}) (\mathbf{x} - \mathbf{m})^T \mathbf{K}^{-1} \right) \right)$$

$$= \frac{1}{2}\log(e) \times \left(\ln\left|2\pi\mathbf{K}\right| + \operatorname{tr}\left(\mathbf{K}\mathbf{K}^{-1}\right)\right) = \frac{1}{2}\log(e) \times \left(\ln\left|2\pi\mathbf{K}\right| + n\right)$$

- $= \frac{1}{2} \log(e^n) + \frac{1}{2} \log(|2\pi \mathbf{K}|)$
- $= \frac{1}{2} \log(|2\pi e\mathbf{K}|)$ bits

Other Differential Quantities

Joint Differential Entropy

$$h(X, Y) = -\iint_{x, y} f_{X, y}(x, y) \log f_{X, y}(x, y) dx dy = E - \log f_{X, y}(x, y)$$

Conditional Differential Entropy

$$h(X \mid y) = -\iint_{X, y} f_{X, y}(x, y) \log f_{X, y}(x \mid y) dx dy = h(X, y) - h(y)$$

Mutual Information

$$I(X;Y) = \iint_{x,y} f_{x,y}(x,y) \log \frac{f_{x,y}(x,y)}{f_x(x)f_y(y)} dxdy = h(X) + h(Y) - h(X,Y)$$

Relative Differential Entropy of two pdf's:

$$D(f \parallel g) = \int f(x) \log \frac{f(x)}{g(x)} dx$$

(a) must have $f(x)=0 \Rightarrow g(x)=0$

$$g(x) = -h_f(x) - E_f \log g(x)$$

(b) continuity $\Rightarrow 0 \log(0/0) = 0$

Differential Entropy Properties

Chain Rules

$$h(X, y) = h(X) + h(y \mid X) = h(y) + h(X \mid y)$$

 $I(X, y; Z) = I(X; Z) + I(y; Z \mid X)$

Information Inequality: $D(f \parallel g) \ge 0$

Proof: Define $S = \{\mathbf{x} : f(\mathbf{x}) > 0\}$

$$-D(f \parallel g) = \int_{\mathbf{x} \in S} f(\mathbf{x}) \log \frac{g(\mathbf{x})}{f(\mathbf{x})} d\mathbf{x} = E\left(\log \frac{g(\mathbf{x})}{f(\mathbf{x})}\right)$$

$$\leq \log \left(E \frac{g(\mathbf{x})}{f(\mathbf{x})} \right) = \log \left(\int_{s} f(\mathbf{x}) \frac{g(\mathbf{x})}{f(\mathbf{x})} d\mathbf{x} \right) \quad \text{Jensen + log() is con}$$

$$= \log \left(\int_{S} g(\mathbf{x}) d\mathbf{x} \right) \le \log 1 = 0$$

all the same as for HO

Information Inequality Corollaries

 $Mutual\ Information \geq 0$

$$I(x;y) = D(f_{x,y} \parallel f_x f_y) \ge 0$$

Conditioning reduces Entropy

$$h(x) - h(x \mid y) = I(x; y) \ge 0$$

Independence Bound

$$h(X_{1:n}) = \sum_{i=1}^{n} h(X_i \mid X_{1:i-1}) \le \sum_{i=1}^{n} h(X_i)$$

all the same as for H()

Change of Variable

Change Variable: y = g(x)

from earlier
$$f_{y}(y) = f_{x}\left(g^{-1}(y)\right) \frac{\left|dg^{-1}(y)\right|}{dy}$$
$$h(y) = -E\log(f_{y}(y)) = -E\log(f_{x}(g^{-1}(y))) - E\log\left|\frac{dx}{dy}\right|$$

$$= -E \log(f_x(x)) - E \log \left| \frac{dx}{dy} \right| = h(x) - E \log \left| \frac{dx}{dy} \right|$$

Examples:

- Translation:
$$y = x + a \implies dy/dx = 1 \implies h(y) = h(x)$$

- Scaling:
$$y = cx \Rightarrow dy/dx = c \Rightarrow h(y) = h(x) - \log |c^{-1}|$$

- Vector version:
$$y_{1:n} = \mathbf{A}x_{1:n} \implies h(\mathbf{y}) = h(\mathbf{x}) + \log|\det(\mathbf{A})|$$

not the same as for H()

Concavity & Convexity

- · Differential Entropy:
 - h(x) is a concave function of $f_{x}(x) \Rightarrow \exists$ a maximum
- Mutual Information:
 - I(x; y) is a concave function of $f_{\nu}(x)$ for fixed $f_{\mu\nu}(y)$
 - I(x; y) is a convex function of $f_{y|x}(y)$ for fixed $f_x(x)$

Proofs:

Exactly the same as for the <u>discrete case</u>: $\mathbf{p}_z = [1 - \lambda, \lambda]^T$

Uniform Distribution Entropy

What distribution over the finite range (a,b) maximizes the entropy?

Answer: A uniform distribution $u(x)=(b-a)^{-1}$

Suppose f(x) is a distribution for $x \in (a,b)$

$$0 \le D(f || u) = -h_f(x) - E_f \log u(x)$$

= -h_f(x) + \log(b - a)

$$\Rightarrow h_f(x) \leq \log(b-a)$$

Maximum Entropy Distribution

What zero-mean distribution maximizes the entropy on $(-\infty, \infty)^n$ for a given covariance matrix **K** ?

Answer: A multivariate Gaussian $\phi(\mathbf{x}) = |2\pi \mathbf{K}|^{-\frac{1}{2}} \exp(-\frac{1}{2}\mathbf{x}^T \mathbf{K}^{-1}\mathbf{x})$

Proof:
$$0 \le D(f \parallel \phi) = -h_f(\mathbf{x}) - E_f \log \phi(\mathbf{x})$$

 $\Rightarrow h_f(\mathbf{x}) \le -(\log e)E_f(-\frac{1}{2}\ln(2\pi \mathbf{K}) - \frac{1}{2}\mathbf{x}^T\mathbf{K}^{-1}\mathbf{x})$
 $= \frac{1}{2}(\log e)(\ln(2\pi \mathbf{K}) + \operatorname{tr}(E_f\mathbf{x}\mathbf{x}^T\mathbf{K}^{-1}))$
 $= \frac{1}{2}(\log e)(\ln(2\pi \mathbf{K}) + \operatorname{tr}(\mathbf{I}))$
 $= \frac{1}{2}\log(2\pi \mathbf{K}) = h_\phi(\mathbf{x})$
 $= \frac{1}{2}\log(2\pi \mathbf{K}) = h_\phi(\mathbf{x})$

Since translation doesn't affect h(X), we can assume zero-mean w.l.o.g

Lecture 14

- · Discrete-time Gaussian Channel Capacity
 - Sphere packing
- · Continuous Typical Set and AEP
- Gaussian Channel Coding Theorem
- Bandlimited Gaussian Channel
 - Shannon Capacity
 - Channel Codes

Capacity of Gaussian Channel

Discrete-time channel: $y_i = x_i + z_i$

- Zero-mean Gaussian i.i.d. $z_i \sim N(0,N)$
- Average power constraint $n^{-1}\sum_{i=1}^{n}x_{i}^{2} \leq P$

 $Ey^2 = E(x+z)^2 = Ex^2 + 2E(x)E(z) + Ez^2 \le P + N$

X.Z indep and EZ=0

Information Capacity

- Define information capacity: $C = \max_{x,y} I(x;y)$

$$I(X; y) = h(y) - h(y \mid X) = h(y) - h(X + Z \mid X)$$

$$= h(y) - h(z \mid X) = h(y) - h(z)$$
(a) Translation independence
$$\leq \frac{1}{2} \log 2\pi e(P + N) - \frac{1}{2} \log 2\pi eN$$
Gaussian Limit with
$$= \frac{1}{2} \log (1 + PN^{-1}) = \frac{1}{2} \left(\frac{P + N}{N}\right)_{\text{IB}}$$
Gaussian Limit with equality when $X - N(0, P)$

The optimal input is Gaussian & the worst noise is Gaussian

Gaussian Channel Code Rate

- An (M,n) code for a Gaussian Channel with power constraint is
 - A set of M codewords $\mathbf{x}(w) \in \mathbf{X}^n$ for w=1:M with $\mathbf{x}(w)^T \mathbf{x}(w) \leq nP \ \forall w$
 - A deterministic decoder $g(y) \in 0:M$ where 0 denotes failure
 - $\max: \lambda^{(n)}$ average: $P_e^{(n)}$ - Errors: codeword: λ_i
- Rate R is achievable if \exists seq of $(2^{nR},n)$ codes with $\lambda^{(n)} \to 0$
- Theorem: R achievable iff $R < C = \frac{1}{2} \log(1 + PN^{-1})$

♦ = proved on next pages

Sphere Packing

- · Each transmitted x, is received as a probabilistic cloud y_i
 - cloud 'radius' = $\sqrt{\operatorname{Var}(\mathbf{y} \mid \mathbf{x})} = \sqrt{nN}$
- Energy of \mathbf{y}_i constrained to n(P+N) so clouds must fit into a hypersphere of radius $\sqrt{n(P+N)}$

- Volume of hypersphere $\propto r^n$
- Max number of non-overlapping clouds:

$$\frac{(nP + nN)^{\frac{1}{2}n}}{(nN)^{\frac{1}{2}n}} = 2^{\frac{1}{2}n\log(1 + PN^{-1})}$$

• Max rate is $\frac{1}{2}\log(1+PN^{-1})$

Continuous AEP

Typical Set: Continuous distribution, discrete time i.i.d.

For any
$$\varepsilon$$
>0 and any n , the typical set with respect to $f(\mathbf{x})$ is

$$T_{\varepsilon}^{(n)} = \left\{ \mathbf{x} \in S^n : \left| -n^{-1} \log f(\mathbf{x}) - h(\mathbf{x}) \right| \le \varepsilon \right\}$$

where
$$S$$
 is the support of $f \Leftrightarrow \{\mathbf{x} : f(\mathbf{x}) > 0\}$

$$f(\mathbf{x}) = \prod_{i=1}^{n} f(x_i)$$
 since x_i are independent

$$h(\mathbf{X}) = E - \log f(\mathbf{X}) = -n^{-1}E \log f(\mathbf{X})$$

Typical Set Properties

1.
$$p(\mathbf{x} \in T_{\varepsilon}^{(n)}) > 1 - \varepsilon$$
 for $n > N_{\varepsilon}$

2. $(1-\varepsilon)2^{n(h(x)-\varepsilon)} \stackrel{n>N_{\varepsilon}}{\leq} \operatorname{Vol}(T_{\varepsilon}^{(n)}) \leq 2^{n(h(x)+\varepsilon)}$ where $Vol(A) = \int d\mathbf{x}$

Proof: Integrate max/min prob

Proof: WLLN

Continuous AEP Proof

Proof 1: By weak law of large numbers

$$-n^{-1}\log f(X_{1:n}) = -n^{-1}\sum_{n=0}^{\infty}\log f(X_{n}) \xrightarrow{prob} E - \log f(X) = h(X)$$

Reminder: $x_n \xrightarrow{\text{prob}} y \implies \forall \varepsilon > 0, \exists N_\varepsilon \text{ such that } \forall n > N_\varepsilon, P(|x_n - y| > \varepsilon) < \varepsilon$

Proof 2a:
$$1-\varepsilon \le \int f(\mathbf{x})d\mathbf{x}$$
 for $n > N_{\varepsilon}$

 $\leq 2^{-n\left(h(X)-\varepsilon\right)}\int d\mathbf{x} = 2^{-n\left(h(X)-\varepsilon\right)}\operatorname{Vol}\left(T_\varepsilon^{(n)}\right)$

Proof 2b:

 $\geq 2^{-n\left(h(X)+\varepsilon\right)}\int d\mathbf{x} = 2^{-n\left(h(X)+\varepsilon\right)}\operatorname{Vol}\left(T_{\varepsilon}^{(n)}\right)$ $\min f(x)$ within T

Jointly Typical Set

Jointly Typical: x_i, y_i i.i.d from \Re^2 with $f_{x,y}(x_i, y_i)$

$$J_{\varepsilon}^{(n)} = \left\{ \mathbf{x}, \mathbf{y} \in \Re^{2n} : \left| -n^{-1} \log f_X(\mathbf{x}) - h(X) \right| < \varepsilon, \right.$$
$$\left| -n^{-1} \log f_Y(\mathbf{y}) - h(Y) \right| < \varepsilon,$$

 $\left|-n^{-1}\log f_{X,Y}(\mathbf{x},\mathbf{y})-h(X,Y)\right|<\varepsilon$

Properties:

 $\mathbf{x}, \mathbf{y} \in J_{\varepsilon}^{(n)} \Rightarrow \log f_{x,y}(\mathbf{x}, \mathbf{y}) = -nh(x, y) \pm n\varepsilon$ 1. Indiv p.d.:

2. Total Prob: $p(\mathbf{x}, \mathbf{y} \in J_{\varepsilon}^{(n)}) > 1 - \varepsilon$ for $n > N_{\varepsilon}$

 $(1-\varepsilon)2^{n(h(x,y)-\varepsilon)} \stackrel{n>N_{\varepsilon}}{\leq} \operatorname{Vol}(J_{\varepsilon}^{(n)}) \leq 2^{n(h(x,y)+\varepsilon)}$ 3. Size:

4. Indep $\mathbf{x}'_{\iota}\mathbf{y}'$: $(1-\varepsilon)2^{-n(I(x;y)+3\varepsilon)} \stackrel{n>N_{\varepsilon}}{\leq} p(\mathbf{x}',\mathbf{y}'\in J_{\varepsilon}^{(n)}) \leq 2^{-n(I(x;y)-3\varepsilon)}$

Proof of 4.: Integrate max/min $f(\mathbf{x'}, \mathbf{y'}) = f(\mathbf{x'})f(\mathbf{y'})$, then use known bounds on Vol(J)

Gaussian Channel Coding Theorem

R is achievable iff $R < C = \frac{1}{2} \log(1 + PN^{-1})$

Proof (⇐): Choose $\varepsilon > 0$

> Random codebook: $\mathbf{x}_w \in \mathfrak{R}^n$ for $w = 1: 2^{nR}$ where x_w are i.i.d. $\sim N(0, P - \varepsilon)$ Use Joint typicality decoding

Errors: 1. Power too big $p(\mathbf{x}^T\mathbf{x} > nP) \rightarrow 0 \implies \le \varepsilon \text{ for } n > M_{\varepsilon}$ 2. **y** not J.T. with **x** $p(\mathbf{x}, \mathbf{y} \notin J_{\varepsilon}^{(n)}) < \varepsilon$ for $n > N_{\varepsilon}$

3. another \mathbf{x} J.T. with \mathbf{y} $\sum_{i=1}^{\infty} p(\mathbf{x}_{j}, \mathbf{y}_{i} \in J_{\varepsilon}^{(n)}) \leq (2^{nR} - 1) \times 2^{-n(I(\mathcal{X}; \mathcal{Y}) - 3\varepsilon)}$

Total Err $P_c^{(n)} \le \varepsilon + \varepsilon + 2^{-n(I(X;Y) - R - 3\varepsilon)} \le 3\varepsilon$ for large n if $R < I(X;Y) - 3\varepsilon$

Expurgation: Remove half of codebook*: $\lambda^{(n)} < 6\varepsilon$ We have constructed a code achieving rate $R-n^{-1}$

*:Worst codebook half includes \mathbf{x}_i : $\mathbf{x}_i^T \mathbf{x}_i > nP \Rightarrow \lambda_i = 1$

Gaussian Channel Coding Theorem

Proof (\Rightarrow): Assume $P_{\varepsilon}^{(n)} \to 0$ and $n^{-1}\mathbf{x}^T\mathbf{x} < P$ for each $\mathbf{x}(w)$

 $= h(y_{1:n}) - h(y_{1:n} | X_{1:n}) + H(w | y_{1:n})$

Data Proc Inequal

$$\leq \sum_{i=1}^{n} h(y_i) - h(Z_{1:n}) + H(W \mid Y_{1:n})$$

Indep Bound + Translation

$$\leq \sum_{i=1}^{n} I(\mathbf{X}_{i}; \mathbf{y}_{i}) + 1 + nRP_{\varepsilon}^{(n)}$$

Z i.i.d + Fano. $|\mathbf{W}| = 2^{nR}$

$$\leq \sum_{1}^{n} \frac{1}{2} \log \left(1 + PN^{-1}\right) + 1 + nRP_{\varepsilon}^{(n)}$$

max Information Capacity

$$R \le \frac{1}{2} \log(1 + PN^{-1}) + n^{-1} + RP_{\varepsilon}^{(n)} \to \frac{1}{2} \log(1 + PN^{-1})$$

Bandlimited Channel

- Channel bandlimited to $f \in (-W, W)$ and signal duration T
- Nyquist: Signal is completely defined by 2WT samples
- Can represent as a *n*=2*WT*-dimensional vector space with prolate spheroidal functions as an orthonormal basis
 - white noise with double-sided p.s.d. $\frac{1}{2}N_0$ becomes i.i.d gaussian $N(0,\frac{1}{2}N_0)$ added to each coefficient
 - Signal power constraint = P ⇒ Signal energy ≤ PT
 - Energy constraint per coefficient: $n^{-1}\mathbf{x}^T\mathbf{x} < PT/2WT = \frac{1}{2}W^{-1}P$
- · Capacity: $C = \frac{1}{2} \log \left(1 + \frac{1}{2} W^{-1} P(\frac{1}{2} N_0)^{-1} \right) \times 2W$ $=W\log(1+N_0^{-1}W^{-1}P)$ bits/second

Compare discrete time version: $\frac{1}{2}\log(1+PN^{-1})$ bits per channel use

Shannon Capacity

Bandwidth = W Hz, Signal variance = $\frac{1}{2}W^{-1}P$, Noise variance = $\frac{1}{2}N_0$ Signal Power = P_{i} Noise power = $N_{0}W_{i}$ Min bit energy = $E_{b} = PC^{-1}$ Capacity = $C = W \log(1 + PN_0^{-1}W^{-1})$ bits per second

$$\begin{split} \text{Define:} & \quad W_0 = PN_0^{-1} \Rightarrow C/W_0 = \left(W/W_0\right) \log \left(1 + \left(W/W_0\right)^{-1}\right) \underset{W \to \infty}{\longrightarrow} \log \varrho \\ & \quad \Rightarrow C^{-1}W_0 = E_bN_0^{-1} \underset{W \to \infty}{\longrightarrow} \ln 2 = -1.6 \text{ dB} \\ & \quad \bullet \text{ For fixed power, high bandwidth is better - Ultra wideband} \end{split}$$

Practical Channel Codes

Code Classification:

- Very good: arbitrarily small error up to the capacity
- Good: arbitrarily small error up to less than capacity
- Bad: arbitrarily small error only at zero rate (or never)

Coding Theorem: Nearly all codes are very good

but nearly all codes need encode/decode computation

∞ 2ⁿ

Practical Good Codes:

- Practical: Computation & memory ∞ n^k for some k
- Convolution Codes: convolve bit stream with a filter
- Concatenation, Interleaving, turbo codes (1993)
- Block codes: encode a block at a time
 - Hamming, BCH, Reed-Solomon, LD parity check (1995)

Channel Code Performance

- **Power Limited**
- High bandwidth
- Spacecraft, Pagers
- Use OPSK/4-OAM
- Block/Convolution Codes
- **Bandwidth Limited** - Modems, DVB, Mobile
 - 16-QAM to 256-QAM
 - Convolution Codes
- Value of 1 dB for space
- Better range, lifetime, weight, bit rate
- \$80 M (1999)

Lecture 15

- · Parallel Gaussian Channels
 - Waterfilling
- · Gaussian Channel with Feedback

Parallel Gaussian Channels

- n gaussian channels (or one channel n times) e.g. digital audio, digital TV, Broadband ADSL
- Noise is independent $z_i \sim N(0, N_i)$
- Average Power constraint $E\mathbf{x}^T\mathbf{x} \leq P$
- Information Capacity: $C = \max_{f(\mathbf{x}): E_f \mathbf{x}^T \mathbf{x} \le P} I(\mathbf{x}; \mathbf{y})$
- $R < C \Leftrightarrow R$ achievable
 - proof as before
- What is the optimal $f(\mathbf{x})$?

Parallel Gaussian: Max Capacity

Need to find $f(\mathbf{x})$: $C = \max_{f(\mathbf{x}): E, \mathbf{x}^T \mathbf{x} \leq P} I(\mathbf{x}; \mathbf{y})$

$$I(\mathbf{x}; \mathbf{y}) = h(\mathbf{y}) - h(\mathbf{y} \mid \mathbf{x}) = h(\mathbf{y}) - h(\mathbf{z} \mid \mathbf{x})$$

$$= h(\mathbf{y}) - h(\mathbf{z}) = h(\mathbf{y}) - \sum_{i=1}^{n} h(Z_i)$$
Translation invariance
$$\mathbf{x}_i \mathbf{z}_i \text{ indep}; Z_i \text{ indep};$$

$$\stackrel{\text{(a)}}{\leq} \sum_{i=1}^{n} \left(h(y_i) - h(Z_i) \right) \stackrel{\text{(b)}}{\leq} \sum_{i=1}^{n} \frac{1}{2} \log \left(1 + P_i N_i^{-1} \right)$$
(a) indep bound:
(b) capacity limit

Equality when: (a) y_i indep $\Rightarrow x_i$ indep; (b) $x_i \sim N(0, P_i)$

We need to find the P_i that maximise $\sum_{i=1}^{n} \frac{1}{2} \log(1 + P_i N_i^{-1})$

Parallel Gaussian: Optimal Powers

We need to find the P_i that maximise $\log(e)\sum_{i=1}^{n} \ln(1+P_iN_i^{-1})$

- subject to power constraint $\sum_{i=1}^{\infty} P_i = P$
- use Lagrange multiplier

$$\begin{split} J &= \sum_{i=1}^{n} \frac{1}{2} \ln \left(1 + P_i N_i^{-1} \right) - \lambda \sum_{i=1}^{n} P_i \\ \frac{\partial J}{\partial P_i} &= \frac{1}{2} \left(P_i + N_i \right)^{-1} - \lambda = 0 \quad \Rightarrow \quad P_i + N_i = \frac{1}{2} \lambda^{-1} \\ \operatorname{Also} \sum_{i=1}^{n} P_i &= P_i \quad \Rightarrow \quad \lambda = \frac{1}{2} \ln \left(P + \sum_{i=1}^{n} N_i \right)^{-1} \end{split}$$

Water Filling: put most power into least noisy channels to make equal power + noise in each channel

Very Noisy Channels

1/22-

 P_2 N_3

- Must have $P_i \ge 0 \ \forall i$
- If $\frac{1}{2}\lambda^{-1} < N_i$ then set $P_i = 0$ and recalculate λ

Kuhn Tucker Conditions:

(not examinable)

- Max f(x) subject to Ax+b=0 and $g_i(\mathbf{x}) \ge 0$ for $i \in 1:M$ with f, g_i concave
- set $J(\mathbf{x}) = f(\mathbf{x}) \sum_{i=1}^{M} \mu_i g_i(\mathbf{x}) \boldsymbol{\lambda}^T \mathbf{A} \mathbf{x}$
- Solution \mathbf{x}_0 , λ , μ_i iff

$$\nabla J(\mathbf{x}_0) = 0$$
, $\mathbf{A}\mathbf{x} + \mathbf{b} = \mathbf{0}$, $g_i(\mathbf{x}_0) \ge 0$, $\mu_i \ge 0$, $\mu_i g_i(\mathbf{x}_0) = 0$

Correlated Noise

- Suppose y = x + z where $E zz^T = K_7$ and $E xx^T = K_x$
- We want to find $\mathbf{K}_{\mathbf{x}}$ to maximize capacity subject to power constraint: $E\sum_{i=1}^{n} X_{i}^{2} \le nP \iff \operatorname{tr}(\mathbf{K}_{\mathbf{X}}) \le nP$
 - Find noise eigenvectors: $\mathbf{K}_{Z} = \mathbf{Q}\mathbf{D}\mathbf{Q}^{T}$ with $\mathbf{Q}\mathbf{Q}^{T} = \mathbf{I}$
 - Now $\mathbf{Q}^T \mathbf{y} = \mathbf{Q}^T \mathbf{x} + \mathbf{Q}^T \mathbf{z} = \mathbf{Q}^T \mathbf{x} + \mathbf{w}$ where $\mathbf{E} \mathbf{w} \mathbf{w}^T = \mathbf{E} \mathbf{Q}^T \mathbf{z} \mathbf{z}^T \mathbf{Q} = \mathbf{E} \mathbf{Q}^T \mathbf{K}_Z \mathbf{Q} = \mathbf{D}$ is diagonal • $\Rightarrow W_i$ are now independent
 - Power constraint is unchanged $tr(\mathbf{Q}^T\mathbf{K}_X\mathbf{Q}) = tr(\mathbf{K}_X\mathbf{Q}\mathbf{Q}^T) = tr(\mathbf{K}_X)$
 - Choose $\mathbf{Q}^T \mathbf{K}_{Y} \mathbf{Q} = L \mathbf{I} \mathbf{D}$ where $L = P + n^{-1} \operatorname{tr}(\mathbf{D})$

 \Rightarrow $\mathbf{K}_{X} = \mathbf{Q}(L\mathbf{I} - \mathbf{D})\mathbf{Q}^{T}$

Power Spectrum Water Filling

- · If z is from a stationary process then $diag(\mathbf{D}) \xrightarrow{n} power spectrum$
 - To achieve capacity use waterfilling on noise power spectrum

$$P = \int_{-W}^{W} \max(L - N(f), 0) df$$

$$C = \int_{-W}^{W} \frac{1}{2} \log \left(1 + \frac{\max(L - N(f), 0)}{N(f)} \right) df$$

Gaussian Channel + Feedback

Does Feedback add capacity?

- White noise - No

- Coloured noise - Not much

$$=h(\mathbf{y})-\sum_{i=1}^{n}h(y_{i}\mid w,y_{1:i-1},X_{1:i},Z_{1:i-1})$$

$$x_i = x_i(w, y_{1:i-1}), \mathbf{z} = \mathbf{y} - \mathbf{x}$$

$$= h(\mathbf{y}) - \sum_{i=1}^{i=1} h(Z_i \mid W, Y_{1:i-1}, X_{1:i}, Z_{1:i-1})$$

$$z = y - x$$
 and translation invariance

$$= h(\mathbf{y}) - \sum_{i=1}^{n} h(Z_i \mid Z_{1:i-1})$$

$$z_i$$
 depends only on $Z_{1:i-1}$

$$= h(\mathbf{y}) - h(\mathbf{z})$$

Chain rule,
$$h(\mathbf{z}) = \frac{1}{2} \log(|2\pi e \mathbf{K}_{\mathbf{z}}|)$$
 bits

$$= \frac{1}{2} \log \frac{|\mathbf{K}_{y}|}{|\mathbf{K}_{z}|}$$

 \Rightarrow maximize $I(w : \mathbf{v})$ by maximizing $h(\mathbf{v}) \Rightarrow \mathbf{v}$ gaussian \Rightarrow we can take **z** and **x** = **y** – **z** jointly gaussian

Gaussian Feedback Coder

x and z jointly gaussian ⇒ $\mathbf{x} = \mathbf{Bz} + \mathbf{v}(\mathbf{w})$

where \mathbf{v} is indep of \mathbf{z} and

B is strictly lower triangular since x_i indep of z_i for j > i.

$$y = x + z = (B+I)z + v$$

$$\mathbf{K}_{\mathbf{y}} = E\mathbf{y}\mathbf{y}^{T} = E((\mathbf{B} + \mathbf{I})\mathbf{z}\mathbf{z}^{T}(\mathbf{B} + \mathbf{I})^{T} + \mathbf{v}\mathbf{v}^{T}) = (\mathbf{B} + \mathbf{I})\mathbf{K}_{\mathbf{z}}(\mathbf{B} + \mathbf{I})^{T} + \mathbf{K}_{\mathbf{v}}$$

$$\mathbf{K}_{\mathbf{y}} = E\mathbf{x}\mathbf{x}^{T} = E(\mathbf{B}\mathbf{z}\mathbf{z}^{T}\mathbf{B}^{T} + \mathbf{v}\mathbf{v}^{T}) = \mathbf{B}\mathbf{K}_{\mathbf{z}}\mathbf{B}^{T} + \mathbf{K}_{\mathbf{v}}$$

Capacity:
$$C_{n,FB} = \max_{\mathbf{K}_{\mathbf{v}},\mathbf{B}} \frac{1}{2} \sum_{\mathbf{K}_{\mathbf{v}},\mathbf{B}} \frac{1}{2} \left| \mathbf{K}_{\mathbf{y}} \right| = \max_{\mathbf{K}_{\mathbf{v}},\mathbf{B}} \frac{1}{2} \sum_{\mathbf{K}_{\mathbf{v}},\mathbf{B}} \frac{1}{2} \left| \mathbf{K}_{\mathbf{z}} \right| + \mathbf{K}_{\mathbf{v}}$$

subject to $\mathbf{K}_{x} = \operatorname{tr}(\mathbf{B}\mathbf{K}_{z}\mathbf{B}^{T} + \mathbf{K}_{v}) \leq nP$

hard to solve 8

Gaussian Feedback: Toy Example

$$n = 2$$
, $P = 2$, $\mathbf{K_z} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 0 & 0 \\ b & 0 \end{pmatrix}$

$$\mathbf{x} = \mathbf{Bz} + \mathbf{v}$$
Goal: Maximize (w.r.t. $\mathbf{K_v}$ and b)
$$\det(\mathbf{K_v}) = \det(\begin{pmatrix} \mathbf{B} + \mathbf{I} \end{pmatrix} \mathbf{K_z} \begin{pmatrix} \mathbf{B} + \mathbf{I} \end{pmatrix}^T + \mathbf{K_v}$$
)
Subject to:
$$\mathbf{K_v} \text{ must be positive definite}$$

Power constraint : $tr(\mathbf{B}\mathbf{K}_{z}\mathbf{B}^{T} + \mathbf{K}_{v}) \leq 4$ Solution (via numerically search):

b=0: $det(\mathbf{K_v})=16$ C=0.604 bits b=0.69: $det(\mathbf{K_v})=20.7$ C=0.697 bits

Feedback increases C by 16%

Max Benefit of Feedback: Lemmas

Lemma 1:
$$\mathbf{K}_{\mathbf{x}+\mathbf{z}} + \mathbf{K}_{\mathbf{x}-\mathbf{z}} = 2(\mathbf{K}_{\mathbf{x}} + \mathbf{K}_{\mathbf{z}})$$

$$\mathbf{K}_{\mathbf{x}+\mathbf{z}} + \mathbf{K}_{\mathbf{x}-\mathbf{z}} = E(\mathbf{x} + \mathbf{z})(\mathbf{x} + \mathbf{z})^T + E(\mathbf{x} - \mathbf{z})(\mathbf{x} - \mathbf{z})^T$$

$$= E(\mathbf{x}\mathbf{x}^T + \mathbf{x}\mathbf{z}^T + \mathbf{z}\mathbf{x}^T + \mathbf{z}\mathbf{z}^T + \mathbf{x}\mathbf{x}^T - \mathbf{x}\mathbf{z}^T - \mathbf{z}\mathbf{x}^T + \mathbf{z}\mathbf{z}^T)$$

$$= E(2\mathbf{x}\mathbf{x}^T + 2\mathbf{z}\mathbf{z}^T) = 2(\mathbf{K}_{\mathbf{x}} + \mathbf{K}_{\mathbf{z}})$$

Lemma 2: If F,G are +ve definite then $det(F+G) \ge det(F)$

Consider two indep random vectors $\mathbf{f} \sim N(0, \mathbf{F})$, $\mathbf{g} \sim N(0, \mathbf{G})$

$$\frac{1}{2} \log ((2\pi e)^n \det(\mathbf{F} + \mathbf{G})) = h(\mathbf{f} + \mathbf{g})$$

$$\geq h(\mathbf{f} + \mathbf{g} | \mathbf{g}) = h(\mathbf{f} | \mathbf{g})$$

$$= h(\mathbf{f}) = \frac{1}{2} \log ((2\pi e)^n \det(\mathbf{F}))$$
Conditioning reduces $h(\mathbf{f})$
Translation invariance
$$= h(\mathbf{f}) = \frac{1}{2} \log ((2\pi e)^n \det(\mathbf{F}))$$
f,g independent

Hence: $\det(2(\mathbf{K_x + K_z})) = \det(\mathbf{K_{x+z} + K_{x-z}}) \ge \det(\mathbf{K_{x+z}}) = \det(\mathbf{K_y})$

Maximum Benefit of Feedback

Having feedback adds at most ½ bit per transmission

Lecture 16

- · Lossy Coding
- Rate Distortion
 - Bernoulli Scurce
 - Gaussian Source
- Channel/Source Coding Duality

Lossy Coding

Distortion function: $d(x, \hat{x}) \ge 0$ – examples: (i) $d_{\scriptscriptstyle S}(x,\hat{x})=(x-\hat{x})^2$ (ii) $d_{\scriptscriptstyle H}(x,\hat{x})=$ - sequences: $d(\mathbf{x}, \hat{\mathbf{x}}) = n^{-1} \sum_{i=1}^{n} d(x_i, \hat{x}_i)$

Distortion of Code $f_n(),g_n()$: $D = E_{\mathbf{x} \in \mathbf{Y}^n} d(\mathbf{x}, \hat{\mathbf{x}}) = E d(\mathbf{x}, g(f(\mathbf{x})))$

Rate distortion pair (R,D) is achievable for source X if

 \exists a sequence $f_n()$ and $g_n()$ such that $\lim_{\mathbf{x} \in \mathbf{X}^n} E_{\mathbf{x} \in \mathbf{X}^n} d(\mathbf{x}, g_n(f_n(\mathbf{x}))) \leq D$

Rate Distortion Function

Rate Distortion function for $\{x_i\}$ where $p(\mathbf{x})$ is known is $R(D) = \inf R$ such that (R,D) is achievable

Theorem: $R(D) = \min I(x; \hat{x})$ over all $p(x, \hat{x})$ such that:

- (a) p(x) is correct
- (b) $E_{x,\hat{x}}d(x,\hat{x}) \leq D$
- this expression is the Information Rate Distortion function for X

We will prove this next lecture

If D=0 then we have R(D)=I(x; x)=H(x)

R(D) bound for Bernoulli Source

Bernoulli: X = [0,1], $\mathbf{p}_X = [1-p, p]$ assume $p \le \frac{1}{2}$

- Hamming Distance: $d(x, \hat{x}) = x \oplus \hat{x}$
- If $D \ge p$, R(D) = 0 since we can set g() = 0
- For $D , if <math>E d(x, \hat{x}) \le D$ then

$$I(X; \hat{X}) = H(X) - H(X | \hat{X})$$

$$= H(p) - H(X \oplus \hat{X} | \hat{X})$$

$$\geq H(p) - H(X \oplus \hat{X})$$

⊕ is one-to-one Conditioning reduces entropy

 $\geq H(p) - H(D)$ $p(x \oplus \hat{x}) \le D$ and so for $D \le \frac{1}{2}$ $H(X \oplus \hat{X}) \leq H(D)$ as H(p) monotonic

Hence $R(D) \ge H(p) - H(D)$

R(D) for Bernoulli source

We know optimum satisfies $R(D) \ge H(p) - H(D)$

- We show we can find a $p(\hat{x}, x)$ that attains this.
- Peculiarly, we consider a channel with \hat{x} as the input and error probability D

Now choose r to give x the correct probabilities:

$$r(1-D) + (1-r)D = p$$

$$\Rightarrow r = (p-D)(1-2D)^{-1}$$

Now $I(X; \hat{X}) = H(X) - H(X | \hat{X}) = H(p) - H(D)$ and $p(x \neq \hat{x}) = D$

Hence R(D) = H(p) - H(D)

R(D) bound for Gaussian Source

- Assume $X \sim N(0, \sigma^2)$ and $d(x, \hat{x}) = (x \hat{x})^2$
- Want to minimize $I(x; \hat{x})$ subject to $E(x \hat{x})^2 \le D$

 $I(X; \hat{X}) = h(X) - h(X \mid \hat{X})$

 $= \frac{1}{2} \log 2\pi e \sigma^2 - h(X - \hat{X} \mid \hat{X})$

Translation Invariance

 $\geq \frac{1}{2} \log 2\pi e \sigma^2 - h(x - \hat{x})$

Conditioning reduces entropy

 $\geq \frac{1}{2} \log 2\pi e \sigma^2 - \frac{1}{2} \log \left(2\pi e \operatorname{Var} \left(x - \hat{x} \right) \right)$ Gauss maximizes entropy

 $\geq \frac{1}{2} \log 2\pi e \sigma^2 - \frac{1}{2} \log 2\pi e D$ require $\operatorname{Var}(x - \hat{x}) \leq E(x - \hat{x})^2 \leq D$

 $I(X; \hat{X}) \ge \max \left| \frac{1}{2} \log \frac{\sigma^2}{D}, 0 \right|$

I(x:v) always positive

R(D) for Gaussian Source

To show that we can find a $p(\hat{x}, x)$ that achieves the bound, we construct a test channel that introduces distortion $D < \sigma^2$

Lloyd Algorithm

Problem: Find optimum quantization levels for Gaussian pdf

- a. Bin boundaries are midway between quantization levels
- Each quantization level equals the mean value of its own bin

Lloyd algorithm: Pick random quantization levels then apply conditions (a) and (b) in turn until convergence.

Solid lines are bin boundaries. Initial levels uniform in [-1,+1]

Best mean sq error for 8 levels = $0.0345\sigma^2$. Predicted $D(R) = (\sigma/8)^2 = 0.0156\sigma^2$

To get D(R), you have to quantize many values together

- True even if the values are independent

Two gaussian variables: one quadrant only shown

- Independent quantization puts dense levels in low prob areas
- Vector quantization is better (even more so if correlated)

Multiple Gaussian Variables

- Assume $X_{1:n}$ are independent gaussian sources with different variances. How should we apportion the available total distortion between the sources?
- Assume $X_i \sim N(0, \sigma_i^2)$ and $d(\mathbf{x}, \hat{\mathbf{x}}) = n^{-1}(\mathbf{x} \hat{\mathbf{x}})^T(\mathbf{x} \hat{\mathbf{x}}) \leq D$

$$I(X_{1:n}; \hat{X}_{1:n}) \ge \sum_{i=1}^{n} I(X_i; \hat{X}_i)$$

Mut Info Independence Bound

$$\geq \sum_{i=1}^{n} R(D_i) = \sum_{i=1}^{n} \max \left(\frac{1}{2} \log \frac{\sigma_i^2}{D_i}, 0 \right)$$

We must find the D_i that minimize $\sum_{i=1}^{n} \max \left(\frac{1}{2} \log \frac{\sigma_i^2}{D}, 0 \right)$

Reverse Waterfilling

Minimize $\sum_{i=1}^{n} \max \left(\frac{1}{2} \log \frac{\sigma_i^2}{D_i}, 0 \right)$ subject to $\sum_{i=1}^{n} D_i \le nD$

$$J = \sum_{i=1}^{n} \frac{1}{2} \log \frac{\sigma_i^2}{D_i} + \lambda \sum_{i=1}^{n} D_i$$

$$\frac{\partial J}{\partial D_i} = -\frac{1}{2}D_i^{-1} + \lambda = 0 \quad \Rightarrow \quad D_i = \frac{1}{2}\lambda^{-1} = D_0$$

$$\sum_{i=1}^{n} D_i = nD_0 = nD \qquad \Rightarrow \quad D_0 = D$$
 Choose R_i for equal distortion

- If $\sigma_i^2 < D$ then set $R_i = 0$ and increase D_0 to maintain the average distortion equal to D
- If x_i are correlated then reverse waterfill the eigenvectors of the correlation matrix

 X_2 X_3

Channel/Source Coding Duality

- Channel Coding
 - Find codes separated enough to give non-overlapping output images.
 - Image size = channel noise
 - The maximum number (highest rate) is when the images just fill the sphere.
- · Source Coding
 - Find regions that cover the sphere
 - Region size = allowed distortion
 - The minimum number (lowest rate) is when they just don't overlap

Sphere Packing

Channel Decoder as Source Coder

- For $R \cong C = \frac{1}{2} \log(1 + (\sigma^2 D)D^{-1})$, we can find a channel encoder/decoder so that $p(\hat{w} \neq w) < \varepsilon$ and $E(x_i - y_i)^2 = D$
- Reverse the roles of encoder and decoder. Since $p(w \neq \hat{w}) < \varepsilon$, also $p(\hat{x} \neq y) < \varepsilon$ and $E(x_i - \hat{x}_i)^2 \cong E(x_i - y_i)^2 = D$

We have encoded x at rate $R=\frac{1}{2}\log(\sigma^2D^{-1})$ with distortion D

High Dimensional Space

In n dimensions

- "Vol" of unit hypercube: 1
- "Vol" of unit-diameter hypersphere:

$$V_n = \begin{cases} \pi^{\frac{1}{2}n - \frac{1}{2}} (\frac{1}{2}n - \frac{1}{2})! / n! & n \text{ odd} \\ \pi^{\frac{1}{2}n} 2^{-n} / (\frac{1}{2}n)! & n \text{ even} \end{cases}$$

- "Area" of unit-diameter hypersphere:

$$A_n = \frac{d}{dr} (2r)^n V^n \bigg|_{r=\frac{3}{2}} = 2nV_n$$

- >63% of V_n is in shell $(1-n^{-1})R \le r \le R$

Proof:
$$(1 - n^{-1})^n \stackrel{<}{\to} e^{-1} = 0.3679$$

n	V_n	A_n
1	1	2
2	0.79	3.14
3	0.52	3.14
4	0.31	2.47
10	2.5e-3	5e-2
100	1.9e-70	3.7e-68

Most of *n*-dimensional space is in the corners

· Rate Distortion Theorem

Jan 2008 21

Review

Rate Distortion function for x whose $p_{\mathbf{x}}(\mathbf{x})$ is known is $R(D) = \inf R$ such that $\exists f_n, g_n \text{ with } \lim_{n \to \infty} E_{\mathbf{x} \in \mathcal{X}^n} d(\mathbf{x}, \hat{\mathbf{x}}) \leq D$ Rate Distortion Theorem:

 $R(D) = \min I(x; \hat{x})$ over all $p(\hat{x} | x)$ such that $E_{x,\hat{x}} d(x,\hat{x}) \le D$

We will prove this theorem for discrete X and bounded $d(x,y) {\leq} d_{\max}$

R(D) curve depends on your choice of d(,)

Jan 2008

Rate Distortion Bound

Suppose we have found an encoder and decoder at rate R_0 with expected distortion D for independent x_i (worst case)

We want to prove that $R_0 \ge R(D) = R(E d(\mathbf{x}; \hat{\mathbf{x}}))$

- We show first that $R_0 \ge n^{-1} \sum I(\mathbf{X}_i; \hat{\mathbf{X}}_i)$
- We know that $I(X_i; \hat{X}_i) \ge R(E d(X_i; \hat{X}_i))$ Def of R(D)
- and use convexity to show

$$n^{-1} \sum_{i} R(E d(\mathbf{X}_{i}; \hat{\mathbf{X}}_{i})) \ge R(E d(\mathbf{X}; \hat{\mathbf{X}})) = R(D)$$

We prove convexity first and then the rest

Convexity of R(D)

If $p_1(\hat{x} \mid x)$ and $p_2(\hat{x} \mid x)$ are associated with (D_1, R_1) and (D_2, R_2) on the R(D) curve we define $p_{\lambda}(\hat{x} \mid x) = \lambda p_1(\hat{x} \mid x) + (1 - \lambda) p_2(\hat{x} \mid x)$

$$E_{p_{\lambda}}d(x,\hat{x}) = \lambda D_1 + (1-\lambda)D_2 = D_{\lambda}$$

$$\begin{split} R(D_{\lambda}) &\leq I_{p_{\lambda}}(X; \hat{X}) \\ &\leq \lambda I_{p_{\lambda}}(X; \hat{X}) + (1 - \lambda)I_{p_{\lambda}}(X; \hat{X}) \\ &= \lambda R(D_{\lambda}) + (1 - \lambda)R(D_{\lambda}) \end{split}$$

 $R(D) = \min_{p(\hat{x}|x)} I(X; \hat{X})$ $I(X; \hat{X}) \text{ convex w.r.t. } p(\hat{x} \mid x)$ $p_1 \text{ and } p_2 \text{ lie on the } R(D) \text{ curve}$

Jan 200

Proof that $R \ge R(D)$

$$\begin{split} nR_0 &\geq H(\hat{X}_{1:n}) = H(\hat{X}_{1:n}) - H(\hat{X}_{1:n} \mid X_{1:n}) & \text{Uniform bound; } H(\hat{X} \mid X) = 0 \\ &= I(\hat{X}_{1:n}; X_{1:n}) & \text{Definition of } I(;) \\ &\geq \sum_{i=1}^n I(X_i; \hat{X}_i) & x_i \text{ indep: Mut Inf Independence Bound} \\ &\geq \sum_{i=1}^n R\Big(E \; d(X_i; \hat{X}_i)\Big) = n\sum_{i=1}^n n^{-1} R\Big(E \; d(X_i; \hat{X}_i)\Big) & \text{definition of } R \\ &\geq nR\bigg(n^{-1}\sum_{i=1}^n E \; d(X_i; \hat{X}_i)\bigg) = nR\Big(E \; d(X_{1:n}; \hat{X}_{1:n})\bigg) & \text{convexity defn of vector } d() \\ &\geq nR(D) & \text{original assumption that } E(d) \leq D \end{split}$$

and R(D) monotonically decreasing

Rate Distortion Achievability

We want to show that for any D, we can find an encoder and decoder that compresses $x_{1:n}$ to nR(D) bits.

- p_x is given
- Assume we know the $p(\hat{x}|x)$ that gives $I(x;\hat{x}) = R(D)$
- Random Decoder: Choose 2^{nR} random $\hat{X}_i \sim \mathbf{p}_{\hat{X}}$
 - There must be at least one code that is as good as the average
- · Encoder: Use joint typicality to design
 - We show that there is almost always a suitable codeword

First define the typical set we will use, then prove two preliminary results.

Distortion Typical Set

Distortion Typical: $(x_i, \hat{x}_i) \in X \times \hat{X}$ drawn i.i.d. $\sim p(x, \hat{x})$

$$\begin{split} J_{d,\varepsilon}^{(n)} &= \left\{ \mathbf{x}, \hat{\mathbf{x}} \in \boldsymbol{X}^n \times \hat{\boldsymbol{X}}^n : \left| -n^{-1} \log p(\mathbf{x}) - H(\boldsymbol{X}) \right| < \varepsilon, \\ &\left| -n^{-1} \log p(\hat{\mathbf{x}}) - H(\hat{\boldsymbol{X}}) \right| < \varepsilon, \\ &\left| -n^{-1} \log p(\mathbf{x}, \hat{\mathbf{x}}) - H(\boldsymbol{X}, \hat{\boldsymbol{X}}) \right| < \varepsilon \\ &\left| d(\mathbf{x}, \hat{\mathbf{x}}) - E d(\boldsymbol{X}, \hat{\boldsymbol{X}}) \right| < \varepsilon \end{split}$$

Properties:

 $\mathbf{x}, \hat{\mathbf{x}} \in J_{d,\varepsilon}^{(n)} \Rightarrow \log p(\mathbf{x}, \hat{\mathbf{x}}) = -nH(\mathbf{X}, \hat{\mathbf{X}}) \pm n\varepsilon$ 1. Indiv p.d.:

2. Total Prob: $p(\mathbf{x}, \hat{\mathbf{x}} \in J_{d,\varepsilon}^{(n)}) > 1 - \varepsilon$ for $n > N_{\varepsilon}$

weak law of large numbers; $d(X_i, \hat{X}_i)$ are i.i.d.

Conditional Probability Bound

Lemma: $\mathbf{x}, \hat{\mathbf{x}} \in J_{d,\varepsilon}^{(n)} \Rightarrow p(\hat{\mathbf{x}}) \ge p(\hat{\mathbf{x}} \mid \mathbf{x}) 2^{-n(I(\mathcal{X}; \hat{\mathcal{X}}) + 3\varepsilon)}$

Proof:
$$p(\hat{\mathbf{x}} \mid \mathbf{x}) = \frac{p(\hat{\mathbf{x}}, \mathbf{x})}{p(\mathbf{x})}$$

$$= p(\hat{\mathbf{x}}) \frac{p(\hat{\mathbf{x}}, \mathbf{x})}{p(\hat{\mathbf{x}})p(\mathbf{x})} \qquad \text{take max of top and min of bottom}$$

$$\leq p(\hat{\mathbf{x}}) \frac{2^{-n(H(x, \hat{\mathbf{x}}) - \varepsilon)}}{2^{-n(H(x) + \varepsilon)} 2^{-n(H(\hat{\mathbf{x}}) + \varepsilon)}} \qquad \text{bounds from def^n of } J$$

$$= p(\hat{\mathbf{x}}) 2^{n(I(x, \hat{\mathbf{x}}) + 3\varepsilon)} \qquad \text{def^n of } I$$

new condition

Curious but necessary Inequality

Lemma: $u, v \in [0,1], m > 0 \implies (1-uv)^m \le 1-u+e^{-vm}$

Proof: u=0: $e^{-vm} \ge 0 \implies (1-0)^m \le 1-0+e^{-vm}$

u=1: Define $f(v) = e^{-v} - 1 + v \implies f'(v) = 1 - e^{-v}$ f(0) = 0 and f'(v) > 0 for $v > 0 \implies f(v) \ge 0$ for $v \in [0,1]$

Hence for $v \in [0,1]$, $0 \le 1 - v \le e^{-v} \implies (1-v)^m \le e^{-vm}$

0 < u < 1: Define $g_v(u) = (1 - uv)^m$

 $\Rightarrow g_{\nu}''(x) = m(m-1)\nu^2(1-u\nu)^{n-2} \ge 0 \Rightarrow g_{\nu}(u) \text{ convex}$

 $(1-uv)^m = g_v(u) \le (1-u)g_v(0) + ug_v(1)$ convexity for $u,v \in [0,1]$ $= (1-u)1 + u(1-v)^{m} \le 1 - u + ue^{-vm} \le 1 - u + e^{-vm}$

Achievability of R(D): preliminaries

Encoder
$$f(X_{1:n}) \in 1:2^{nR}$$
 Decoder $X_{1:n}$

- Choose D and find a $p(\hat{x} | x)$ such that $I(x; \hat{x}) = R(D)$; $Ed(x, \hat{x}) \le D$ Choose $\delta > 0$ and define $\mathbf{p}_{\hat{x}} = \{ p(\hat{x}) = \sum p(x)p(\hat{x} \mid x) \}$
- Decoder: For each $w \in 1: 2^{nR}$ choose $g_n(w) = \hat{\mathbf{x}}_w$ drawn i.i.d. $\sim \mathbf{p}_{\hat{x}}^n$
- Encoder: $f_n(\mathbf{x}) = \min w$ such that $(\mathbf{x}, \hat{\mathbf{x}}_w) \in J_{d,\varepsilon}^{(n)}$ else 1 if no such w
- Expected Distortion: $\overline{D} = E_{\mathbf{x},g} d(\mathbf{x}, \hat{\mathbf{x}})$
 - over all input vectors x and all random decode functions, g
 - for large n we show $\overline{D} = D + \delta$ so there must be one good

Expected Distortion

We can divide the input vectors \boldsymbol{x} into two categories:

- a) if $\exists w$ such that $(\mathbf{x}, \hat{\mathbf{x}}_w) \in J_{d,\varepsilon}^{(n)}$ then $d(\mathbf{x}, \hat{\mathbf{x}}_w) < D + \varepsilon$ since $E d(\mathbf{x}, \hat{\mathbf{x}}) \leq D$
- b) if no such w exists we must have $d(\mathbf{x}, \hat{\mathbf{x}}_w) < d_{\text{max}}$ since we are assuming that $d(\cdot)$ is bounded. Supose the probability of this situation is P_e .

Hence $\overline{D} = E_{\mathbf{x},\sigma} d(\mathbf{x}, \hat{\mathbf{x}})$

$$\leq (1 - P_e)(D + \varepsilon) + P_e d_{\text{max}}$$

 $\leq D + \varepsilon + P_e d_{\text{max}}$

We need to show that the expected value of P_{σ} is small

Error Probability

Define the set of valid inputs for code g

$$V(g) = \left\{ \mathbf{x} : \exists w \text{ with } (\mathbf{x}, g(w)) \in J_{d, \varepsilon}^{(n)} \right\}$$

We have
$$P_e = \sum_g p(g) \sum_{\mathbf{x} \in V(g)} p(\mathbf{x}) = \sum_{\mathbf{x}} p(\mathbf{x}) \sum_{g, \mathbf{x} \in V(g)} p(g)$$

Define $K(\mathbf{x}, \hat{\mathbf{x}}) = 1$ if $(\mathbf{x}, \hat{\mathbf{x}}) \in J_{d,\varepsilon}^{(n)}$ else 0

Prob that a random $\hat{\mathbf{x}}$ does not match \mathbf{x} is $1 - \sum p(\hat{\mathbf{x}})K(\mathbf{x},\hat{\mathbf{x}})$

Prob that an entire code does not match is $\left(1 - \sum_{\hat{x}} p(\hat{x})K(x,\hat{x})\right)$

Hence
$$P_e = \sum_{\mathbf{x}} p(\mathbf{x}) \left(1 - \sum_{\hat{\mathbf{x}}} p(\hat{\mathbf{x}}) K(\mathbf{x}, \hat{\mathbf{x}}) \right)^{2^{eff}}$$

Achievability for average code

Since
$$\mathbf{x}, \hat{\mathbf{x}} \in J_{d,\varepsilon}^{(n)} \Rightarrow p(\hat{\mathbf{x}}) \ge p(\hat{\mathbf{x}} \mid \mathbf{x}) 2^{-n(I(\mathbf{x};\hat{\mathbf{x}})+3\varepsilon)}$$

$$P_e = \sum_{\mathbf{x}} p(\mathbf{x}) \left(1 - \sum_{\hat{\mathbf{x}}} p(\hat{\mathbf{x}}) K(\mathbf{x}, \hat{\mathbf{x}})\right)^{2^{n\delta}}$$

$$\le \sum_{\mathbf{x}} p(\mathbf{x}) \left(1 - \sum_{\hat{\mathbf{x}}} p(\hat{\mathbf{x}} \mid \mathbf{x}) K(\mathbf{x}, \hat{\mathbf{x}}) \quad 2^{-n(I(\mathbf{x};\hat{\mathbf{x}})+3\varepsilon)}\right)^{2^{n\delta}}$$
Using $(1 - uv)^m \le 1 - u + e^{-vm}$
with $u = \sum_{\hat{\mathbf{x}}} p(\hat{\mathbf{x}} \mid \mathbf{x}) K(\mathbf{x}, \hat{\mathbf{x}}); \quad v = 2^{-nI(\mathbf{x};\hat{\mathbf{x}})-3n\varepsilon}; \quad m = 2^{n\delta}$

$$\le \sum_{\mathbf{x}} p(\mathbf{x}) \left(1 - \sum_{\hat{\mathbf{x}}} p(\hat{\mathbf{x}} \mid \mathbf{x}) K(\mathbf{x}, \hat{\mathbf{x}}) + \exp\left(-2^{-n(I(\mathbf{x};\hat{\mathbf{x}})+3\varepsilon)} 2^{n\delta}\right)\right)$$

Note: $0 \le u, v \le 1$ as required

Achievability for average code

Achievability

Since $\forall \delta > 0$, $\overline{D} = E_{\mathbf{x},g} d(\mathbf{x}, \hat{\mathbf{x}})$ can be made $\leq D + \delta$ there must be at least one g with $E_{\mathbf{x}} d(\mathbf{x}, \hat{\mathbf{x}}) \leq D + \delta$ Hence (R,D) is achievable for any R > R(D)

$$\underbrace{\begin{array}{c} \textbf{X}_{1:n} & \bullet & \text{Encoder} \\ f_n(\cdot) & \bullet & \bullet \end{array}}_{\textbf{Encoder}} \underbrace{\begin{array}{c} f(\textbf{X}_{1:n}) \in 1:2^{nR} \\ g_n(\cdot) & \bullet \end{array}}_{\textbf{Decoder}} \underbrace{\begin{array}{c} \hat{\textbf{X}}_{1:n} \\ g_n(\cdot) & \bullet \end{array}}_{\textbf{Encoder}}$$
 that is
$$\lim_{n \to \infty} E_{X_{1:n}}(\mathbf{X}, \hat{\mathbf{X}}) \leq D$$

In fact a stronger result is true:

 $\forall \delta > 0, D \text{ and } R > R(D), \exists f_n, g_n \text{ with } p(d(\mathbf{x}, \hat{\mathbf{x}}) \leq D + \delta) \rightarrow 1$

Lecture 18

· Revision Lecture

Summary (1)

- $H(x) = \sum_{x} p(x) \times -\log_2 p(x) = E \log_2(p_X(x))$ • Entropy:
 - Bounds: $0 \le H(x) \le \log |X|$
 - Conditioning reduces entropy: $H(y | x) \le H(y)$
 - $H(X_{1:n}) = \sum_{i=1}^{n} H(X_i | X_{1:i-1}) \le \sum_{i=1}^{n} H(X_i)$ - Chain Rule:

 $H(X_{1:n} | y_{1:n}) \le \sum_{i=1}^{n} H(X_i | y_i)$

Relative Entropy:

 $D(\mathbf{p} \parallel \mathbf{q}) = E_{\mathbf{p}} \log(p(\mathbf{x})/q(\mathbf{x})) \ge 0$

Summary (2)

Mutual Information:

utual Information:

$$I(y;x) = H(y) - H(y|x)$$

$$= H(x) + H(y) - H(x,y) = D(\mathbf{p}_{x|y} || \mathbf{p}_{x} \mathbf{p}_{y})$$

- Positive and Symmetrical: $I(x;y) = I(y;x) \ge 0$

 $- X_i y \text{ indep} \Leftrightarrow H(x,y) = H(y) + H(x) \Leftrightarrow I(x,y) = 0$

- Chain Rule: $I(x_{1:n}; y) = \sum_{i=1}^{n} I(x_i; y \mid x_{1:i-1})$

$$X_i$$
 independent $\Rightarrow I(X_{1:n}; Y_{1:n}) \ge \sum_{i=1}^n I(X_i; Y_i)$

$$p(y_i | X_{1:n}; y_{1:i-1}) = p(y_i | X_i) \implies I(X_{1:n}; y_{1:n}) \le \sum_{i=1}^n I(X_i; y_i)$$

Summary (3)

• Convexity: $f''(x) \ge 0 \Rightarrow f(x)$ convex $\Rightarrow Ef(x) \ge f(Ex)$

- H(p) concave in p

- I(x; y) concave in \mathbf{p}_x for fixed \mathbf{p}_{yx}

- I(x; y) convex in $\mathbf{p}_{y|x}$ for fixed \mathbf{p}_x

• Markov: $X \to Y \to Z \Leftrightarrow p(z \mid x, y) = p(z \mid y) \Leftrightarrow I(X; Z \mid Y) = 0$ $\Rightarrow I(x; y) \ge I(x; z)$ and $I(x; y) \ge I(x, y \mid z)$

 $x \to y \to \hat{x} \Rightarrow p(\hat{x} \neq x) \ge \frac{H(x \mid y) - 1}{\log(|X| - 1)}$ · Fano: $H(\mathbf{X}) = \lim n^{-1} H(\mathbf{X}_{1:n})$

• Entropy Rate:

- Stationary process $H(\boldsymbol{X}) \leq H(\boldsymbol{X}_n \mid \boldsymbol{X}_{1:n-1})$ - Markov Process:

 $H(\boldsymbol{X}) = \lim H(\boldsymbol{X}_n \mid \boldsymbol{X}_{n-1})$

- Hidden Markov: $H(y_n \mid y_{1:n-1}, X_1) \le H(y_n \mid y_{1:n-1}) = \operatorname{as} n \to \infty$

Summary (4)

• Kraft: Uniquely Decodable $\Rightarrow \sum_{i=1}^{|X|} D^{-l_i} \le 1 \Rightarrow \exists \text{ prefix code}$

• Average Length: Uniquely Decodable $\Rightarrow L_C = E l(x) \ge H_D(x)$

Shannon-Fano: Top-down 50% splits. L_{SE} ≤ H_D(x)+1

• Shannon: $l_x = \left[-\log_D p(x) \right]$ $L_S \le H_D(x) + 1$

• Huffman: Bottom-up design. Optimal. $L_{\mu} \leq H_{D}(x) + 1$

– Designing with wrong probabilities, $\mathbf{q} \Rightarrow$ penalty of $D(\mathbf{p}||\mathbf{q})$

- Long blocks disperse the 1-bit overhead

• Arithmetic Coding: $C(x^N) = \sum_{x^N < x^N} p(x_i^N)$

- Long blocks reduce 2-bit overhead

- Efficient algorithm without calculating all possible probabilities

- Can have adaptive probabilities

Summary (5)

Typical Set

- Size

 $\mathbf{x} \in T_{\varepsilon}^{(n)} \Rightarrow \log p(\mathbf{x}) = -nH(\mathbf{x}) \pm n\varepsilon$ Individual Prob

- Total Prob

 $p(\mathbf{x} \in T_{\varepsilon}^{(n)}) > 1 - \varepsilon \text{ for } n > N_{\varepsilon}$ $(1-\varepsilon)2^{n(H(x)-\varepsilon)} \overset{n>N_{\varepsilon}}{<} \quad \left|T_{\varepsilon}^{(n)}\right| \quad \leq \quad 2^{n(H(x)+\varepsilon)}$

- No other high probability set can be much smaller

· Asymptotic Equipartition Principle

- Almost all event sequences are equally surprising

Summary (6)

• DMC Channel Capacity: $C = \max I(x; y)$

Coding Theorem

- Can achieve capacity: random codewords, joint typical decoding

- Cannot beat capacity: Fano

· Feedback doesn't increase capacity but simplifies coder

· Joint Source-Channel Coding doesn't increase capacity

Summary (7)

• Differential Entropy: $h(x) = E - \log f_x(x)$

- Not necessarily positive

 $-h(x+a) = h(x), \quad h(ax) = h(x) + \log|a|, \quad h(x|y) \le h(x)$

 $-I(x, y) = h(x) + h(y) - h(x, y) \ge 0, \quad D(f|g) = E \log(f/g) \ge 0$

· Bounds:

- Finite range: Uniform distribution has max: $h(x) = \log(b-a)$

- Fixed Covariance: Gaussian has max: $h(x) = \frac{1}{2} \log((2\pi e)^n |K|)$

· Gaussian Channel

- Discrete Time: C=1/2log(1+PN-1)

- Bandlimited: $C=W \log(1+PN_0^{-1}W^{-1})$

• For constant C: $E_b N_0^{-1} = PC^{-1} N_0^{-1} = (W/C) (2^{(W/C)^{-1}} - 1)_{w} \rightarrow \ln 2 = -1.6 \text{ dB}$

- Feedback: Adds at most 1/2 bit for coloured noise

Summary (8)

• Parallel Gaussian Channels: Total power constraint $\sum P_i = P$

- White noise: Waterfilling: $P_i = \max(P_0 - N_i, 0)$

- Correlated noise: Waterfill on noise eigenvectors

• Rate Distortion: $R(D) = \min_{\mathbf{p}_{\hat{x},x}s.t.Ed(\mathbf{x},\hat{\mathbf{x}}) \leq D} I(\mathbf{x};\hat{\mathbf{x}})$

- Bernoulli Source with Hamming d: $R(D) = \max(H(\mathbf{p}_x) - H(D), 0)$

- Gaussian Source with mean square d: $R(D) = \max(\frac{1}{2}\log(\sigma^2 D^{-1}), 0)$

- Can encode at rate R: random decoder, joint typical encoder

- Can't encode below rate R: independence bound

· Lloyd Algorithm: iterative optimal vector quantization