Matrix Identities
Go to: Introduction, Notation, Index
conv(a[m],b[n])[m+n-1]
is the convolution of a and b,. The r'th element is
conv(a[m],b[n])r
=
ap:qT(Jb)r-q+1:r-p+1where
p=max(1,r-n+1) and
q=min(r,m).
- conv(a,b) = conv(b,a)
-
conv(a+b,c)=conv(a,c)+conv(b,c)
- conv([a[p] ;
b[q]],[c[r] ;
d[s]]) = [conv(a,c);
0[q+s]] + [0[p];
conv(b,c); 0[s]] +
[0[r]; conv(a,d);
0[q]] + [0[p+r];
conv(b,d)]
- conv([a[p] ;
b],[c[r] ; d]) =
[conv(a,c); 0; 0] + [0[p];
bc; 0] + [0[r]; da; 0] +
[0[p+r]; bd]
- conv([a[m] ;
b[n]],c) =
[conv(a,c);
0[n]] +
[0[m];
conv(b,c)]
- conv([a[m] ; b],c) =
[conv(a,c); 0] +
[0[m]; bc]
- conv([a ;
0[n]],c) =
[conv(a,c);
0[n]]
- conv([0[m] ; b],c) =
[0[m];
conv(b,c)]
- conv(Ja,Jb)=J conv(a,b)
- TOE(a[m])
b[n] =
conv(a,b)n:m
See also: Toeplitz for more identities
relating conv() and TOE()
If x satisfies R[n#n] x = [1;
0] and R is a symmetric toeplitz matrix and hence of the form
TOE([Jr; 0]+[0;
r])[n#n] for some
r[n], where J is the exchange matrix. Then
- We can find y to solve Sy = [1; 0] where
- S is the augmented symetric toeplitz matrix given by
TOE([s; Jr; 0]+[0; r;
s])[n+1#n+1]
- k = [r; s]T J [x; 0]
- y[n+1] = ([x; 0] - k J
[x; 0])/(1-k^2)
This recursion gives an efficient way of solving equations of the form
R x = [1; 0].
- A + B = A (A-1 +
B-1) B = B (A-1 +
B-1) A = A (A-1 +
A-1BA-1) A = B
(B-1 + B-1AB-1) B
- A + I = A (A-1 + I) =
(A-1 + I) A
- A-1 + B-1 = A-1
(A + B) B-1 = B-1 (A+
B) A-1 = A-1 (A +
AB-1A) A-1 =
B-1 (B+ BA-1B)
B-1
- A-1 + I = A-1 (A +
I) = (A + I) A-1
- AB + BC = A (A-1B +
BC-1) C
- (A-1 + B-1)-1 = A
(A + B)-1B = B (A +
B)-1A = A - A (A +
B)-1A = B - B (A +
B)-1B
- (A-1 + I)-1 = A (A +
I)-1 = (A + I)-1A = A
- A (A + I)-1A = I - (A +
I)-1
These identities are useful because it says how a matrix changes if you add
a bit onto its inverse. They are variously called the Matrix Inversion Lemma,
Sherman-Morrison formula and Sherman-Morrison-Woodbury formula.
- [ (I+VHAU)
non-singular]: (A-1 +
UVH)-1 = A - AU(I +
VHAU)-1VHA
[4.2]
- [
(I+VHA-1U)
non-singular]: (A + UVH)-1 =
A-1 - A-1U(I +
VHA-1U)-1VHA-1
- [vHAu != -1]:
(A-1 + uvH)-1 = A
- AuvHA/(1 +
vHAu)
- [ (C+VHAU)
non-singular]: (A-1 +
UC-1VH)-1 = A -
AU(C +
VHAU)-1VHA
- [ (C+VHAV)
non-singular]: (A-1 +
VC-1VH)-1 = A -
AV(C +
VHAV)-1VHA
- [ (I+VHAV)
non-singular]: (A-1 +
VVH)-1 = A - AV(I +
VHAV)-1VHA
- [ (I+VHAU)
non-singular]: (A-1 +
UVH)-1U = AU(I +
VHAU)-1
- [ (I+VHAU)
non-singular]: VH(A-1 +
UVH)-1 = (I +
VHAU)-1VHA
- [ (I+VHAU)
non-singular]: VH(A-1 +
UVH)-1U = I-(I +
VHAU)-1
- det(A-1 + UVH) = det(I
+ VHAU) ×
det(A-1) [4.3] sometimes called the Matrix
Determinant Lemma
- det(A-1 + uvH) = (1 +
vHAu) × det(A-1)
These identities show how the matrix that projects onto the column-space of
X changes if extra columns are added to X. We define the
projection matrices
P(X)=X(XHX)#XH
and Q(X)=I-P(X), these respectively project
onto the column space and null space of X.
- P([X Y]) = P(X) +
P(Q(X)Y) = P(X) + Q(X)
Y (YH Q(X) Y)#
YH Q(X)
- [yHQ(X)y = 0]
P([X y]) = P(X)
- [yHQ(X)y != 0]
P([X y]) = P(X) +
P(Q(X)y) = P(X) + Q(X)
y yH Q(X) /
(yH Q(X) y)
-
- [yHQ(X)y != 0]
zHP([X y])z =
zHP(X)z +
|zHQ(X) y|2 /
(yH Q(X) y)
- Q([X Y]) = Q(X) - Q(X) Y
(YH Q(X) Y)#
YH Q(X)
If a vector is multiplied by a triangular toeplitz matrix, it is possible to exchange
the components of the vector and matrix. All matrices below are
n#n.
- TOE([0[n-1];
p[n]])q =
TOE([0[n-1];
q[n]])p =
conv(p,q)1:n
- TOE([ p[n];
0[n-1]])q = TOE([
q[n]; 0[n-1]])p =
conv(p,q)n:2n-1
Similar expressions may be obtained for hankel matrices by observing that if T is
toeplitz then TJ is hankel and Tp=(TJ)(Jp)
In the identity below, the matrix on the left of the = is a symmetric
toeplitz matrix with 2a1 on the main diagonal. The matrix
on the right is the sum of a lower triangular toeplitz and an upper triangular
hankel matrix and has 2b as its first column.
- TOE([Ja[n];
0[n-1]]+[0[n-1];
a[n]])[n#n]b =
(TOE([b[n];
0[n-1]])[n#n]J+TOE([0[n-1];
b[n]])[n#n])a .
This page is part of The Matrix Reference
Manual. Copyright © 1998-2022 Mike Brookes, Imperial
College, London, UK. See the file gfl.html for copying
instructions. Please send any comments or suggestions to "mike.brookes" at
"imperial.ac.uk".
Updated: $Id: identity.html 11291 2021-01-05 18:26:10Z dmb $