2.1 |
d(X-1) =
-X-1dX X-1
- 0 = dI = d (XX-1) =
dX X-1 + X d
(X-1)
- d(X-1) = -X-1dX
X-1
|
2.2 |
dX/dxij =
eiejT
where ei is the ith column of
I.
Note that
eiejT
is a matrix containing a 1 in position i, j and zeros
elsewhere.
|
2.3 |
d/dxij
(X-1) =
-X-1eiejT
X-1 =
-X-1ei(X-Tej)T
This follows straightforwardly from 2.1 and
2.2.
|
2.4 |
d/dX (tr(AXB)) =
ATBT
- d/dxij (tr(AXB)) =
tr(AeiejT
B) = tr(ejT
BAei) =
ejT
BAei = (BA)ji =
(ATBT)ij[2.3]
|
2.5 |
d/dX
(tr(AX-1B)) =
-X-TATBTX-T
- d/dxij (tr(AX-1B)) =
-tr(AX-1eiejT
X-1B) =
-tr(ejT
X-1BAX-1ei) =
-ejT
X-1BAX-1ei =
-(X-1BAX-1)ji =
-(X-TATBTX-T)ij
[2.3]
|
2.6 |
[D=DH] d{tr((AXB+C)D(AXB+C)H)}
=
{(2AH(AXB+C)DBH):H
dX:}R
-
d{tr((AXB+C)D(AXB+C)H)}
=
tr{(A(dX)B)D(AXB+C)H}
+
tr{(AXB+C)D(A(dX)B)H}
- =
tr{A(dX)BD(AXB+C)H}
+
tr{((AXB+C)DBH(dX)HAH}
- =
tr{BD(AXB+C)HA(dX)}
+
tr{AH(AXB+C)DBH(dX)H}
[1.17]
- =
(BD(AXB+C)HA)H:HdX:
+
((AH(AXB+C)DBH):HdX:)C
[1.18]
- =
((AH(AXB+C)DBH):HdX:)
+
((AH(AXB+C)DBH):HdX:)C
- =
{(2AH(AXB+C)DBH):H
dX:}R
|
2.7 |
[D=DH] argminX{tr((AXB+C)D(AXB+C)H}
=
-(AHA)-1AHCDBH(BDBH)-1
-
d{tr((AXB+C)D(AXB+C)H)}
= 0
- ⇒
{(2AH(AXB+C)DBH):H
dX:}R = 0 [2.6]
- ⇒
(2AH(AXB+C)DBH):
= 0 since it must be true for any dX
- ⇒
AH(AXB+C)DBH
= 0 removing the vectorization
- ⇒ AHAXBDBH
= -AHCDBH
- ⇒ X =
-(AHA)-1AHCDBH(BDBH)-1
|
2.8 |
[D=DH] argminX{tr((AXB+C)D(AXB+C)H
| EXF-G=0} =
(AHA)-1(EH{E(AHA)-1EH}-1{E(AHA)-1AHCDBH(BDBH)-1F+G}{FH(BDBH)-1F}-1FH
-
AHCDBH)(BDBH)-1
-
∂{tr((AXB+C)D(AXB+C)H)+tr(KH(EXF-G))+tr((EXF-G)HK)}/∂X
= 0
- ⇒
AH(AXB+C)DBH)
+EHKFH
= 0 [2.4]
- ⇒ AHAXBDBH =
-(AHCDBH
+EHKFH
)
- ⇒ X =
-(AHA)-1(AHCDBH
+EHKFH
)(BDBH)-1
- Substituting this into the constraint, EXF-G=0, gives
- ⇒
-E(AHA)-1(AHCDBH
+EHKFH
)(BDBH)-1F =
G
- ⇒
E(AHA)-1EHKFH
(BDBH)-1F = -(G
+
E(AHA)-1AHCDBH(BDBH)-1F)
- ⇒ K =
-(E(AHA)-1EH)-1(
E(AHA)-1AHCDBH(BDBH)-1F+G)(FH
(BDBH)-1F)-1
- Finally, substituting this back into the previous expression for
X gives
- X = (AHA)-1(
EH{E(AHA)-1EH}-1{
E(AHA)-1AHCDBH(BDBH)-1F+G}{FH
(BDBH)-1F}-1FH
-
AHCDBH)(BDBH)-1
|
2.9 |
d/dX
(aTX-1b) =
-X-TabTX-T
- d/dxij
(aTX-1b) =
-aTX-1eiejTX-1b
=
-aTX-1ei
*
ejTX-1b
=
-eiTX-Ta
*
bTX-Tej
=
-eiTX-TabTX-Tej
Hence d/dX
(aTX-1b) =
-X-TabTX-T
[2.3]
|
2.10 |
d(det(X)) =
ADJ(X)T:T
dX: = [X:
nonsingular] det(X)
(X-T):T
dX:
- det(X) I = X ADJ(X) so it follows that det(X)
= sumj(xij
ADJ(X)ji) for each i
- d/dxij det(X) =
ADJ(X)ji =
(ADJ(X)T)ij since
ADJ(X)ji does not depend on
xij
- d(det(X)) =
ADJ(X)T:T
dX:
|
2.11 |
d(det(ATXB)) =
d(det(BTXTA)) =
(A ADJ(ATXB)TBT):T
dX: = [A,B:
nonsingular] det(ATXB) ×
(X-T):T
dX:
- d(det(ATXB)) =
ADJ(ATXB)T:T
d(ATXB): [2.10]
=
ADJ(ATXB)T:T
(B ⊗ A)T d(X): =
((B ⊗ A)
ADJ(ATXB)T:)T
d(X): = (A
ADJ(ATXB)TBT):T
dX:
- (A
ADJ(ATXB)TBT):T
dX: = [A,B,X:
nonsingular] det(ATXB) ×
(A
(ATXB)-TBT):T
dX: = det(ATXB)
× (A
A-1X-TB-TBT):T
dX: = det(ATXB)
× (X-T):T
dX:
|
2.12 |
d(ln(det(ATXB))) =
[A,B: nonsingular] (X-T):T
dX:
- d(ln(det(ATXB))) =
det(ATXB)-1 ×
d(det(ATXB)) = [A,B,X:
nonsingular] det(ATXB)-1
× det(ATXB) ×
(X-T):T
dX: [2.11] =
(X-T):T
dX:
|
2.13 |
d(det(X)k) = k ×
det(Xk) ×
(X-T):T
dX:
- d(det(X)k) = k ×
det(X)k-1 × d(det(X))
= k × det(X)k-1
× det(X) ×
(X-T):T dX:
[2.10]
|
2.14 |
d(det(XTCX)) =
[C=CT]
2det(XTCX)×(CX(XTCX)-1):T
dX:
- d(det(XTCX)) =
det(XTCX)×(XTCX)-T:T
(d(XTCX)): [2.10] =
det(XTCX)×(XTCX)-T:T
( (I ⊗ XTC) dX:
+ (XTCT
⊗ I) dXT: ) =
det(XTCX)×(
(CTX
(XTCX)-T):T
dX: + ((XTCX)-T
XTCT):T
dXT: ) =
det(XTCX)×(
(CTX
(XTCTX)-1)
+ (CX(XTCX)-1)
):T dX: = [C=CT]
2det(XTCX) ×
(CX(XTCX)-1):T
dX:
|
2.15 |
d(det(XHCX)) =
det(XHCX)×
((CTXC
(XTCTXC)-1):TdX:
+
(CX(XHCX)-1):T
dXC:)
- d(det(XHCX)) =
det(XHCX)×(XHCX)-T:T
(d(XHCX)): [2.10] =
det(XHCX)×(XHCX)-T:T
( (I ⊗ XHC) dX:
+ (XTCT
⊗ I) dXH: ) =
det(XHCX)×(
(CTXC
(XHCX)-T):T
dX: + ((XHCX)-T
XTCT):T
dXH: ) =
det(XHCX)×
(CTXC
(XTCTXC)-1):TdX:
+
(CX(XHCX)-1):T
dXC:)
|
2.16 |
d(ln(det(XHCX))) =
(CTXC
(XTCTXC)-1):TdX:
+
(CX(XHCX)-1):T
dXC:
- d(ln(det(XHCX))) =
(det(XHCX))-1×
d(det(XHCX)) =
(CTXC
(XTCTXC)-1):TdX:
+
(CX(XHCX)-1):T
dXC: [2.15]
|
2.17 |
If C=CH,
then Hx
(Ax+b)HC(Ax+b) =
(AHCA)T
- (d/dx (d/dx
(Ax+b)HC(Ax+b))H)T
= (d/dx
((Ax+b)HCA)H)T
= (d/dx
(AHC(Ax+b)))T =
(AHCA)T
|