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Abstract—Image based rendering is a promising way to
produce arbitrary views of a scene using images instead of
object models. However, depth variations and occlusions cause
blurring in the rendered images. The solution is to use some
geometrical information in order to steer the interpolation filters
according to the depth. The level of detail of this geometry is
often predetermined. In this paper, we present a method for
extracting depth layers in the presence of occlusions for image
based rendering. Moreover, we show how the layer extractioncan
be made to estimate depth layers in an adaptive manner, based
on the spectral analysis of the plenoptic function. The rendering
system therefore automatically adapts the number of depth layers
based on the scene and the spacing of the sample cameras.

I. I NTRODUCTION

Image based rendering is a method of generating arbitrary
views of a scene that differs from the traditional computer
graphics approach. Instead of rendering views of 3D scenes by
projecting objects and their textures, new views are rendered
by interpolating available nearby images. That is, the scene is
not represented by its objects but by the light rays that are
captured by the cameras. This is the case for example in the
popular Light Field (LF) [1] and Lumigraph [2], [3] represen-
tations. New views are obtained simply by interpolating from
the sampled light rays. The advantage of such a method is that
little or no geometry of the scene is required, as opposed to
a full geometric model which can be very difficult to obtain
from natural images. Moreover, the rendering algorithms pro-
duce convincing photorealistic results since the interpolated
viewpoints are obtained through combinations of real images.
The main drawback of such a representation is the fact that
a huge amount of data (typically hundreds or thousands of
images [1]) need to be captured, stored and transmitted.

Image Based Rendering is a sampling and interpolation
problem. It is therefore interesting to study the problem in
a traditional sampling and interpolation framework. That is,
to estimate the spectrum of the signal at hand and determine
the sampling frequency necessary for a reconstruction free
from aliasing. All the visual information can be characterized
with a single seven dimensional function called the plenoptic
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function [4]. In [5] as well as [6], the authors show that the
spectrum of the plenoptic function is approximately band-
limited by the maximum and minimum depths in the scene
and has a distinctive bow-tie shape. From this spectrum, the
authors are able to deduce the number of samples (i.e. images)
necessary for an aliasing-free rendering. They also show that
the interpolation filter can be steered with an angle that
depends on the depth of the scene in order to reduce aliasing.
However, in many cases, the sampling period of the cameras is
too large (i.e. not enough images) and this simple interpolation
is not sufficient. In this case, the scene must be split into
different depth layers such that each layer has a tighter bow-tie
and can be individually rendered free of aliasing. Therefore,
there is a clear tradeoff between the number of images, the
number of layers and the depth variation.

Layers have been used for many applications in multi-view
images. Several layered representations have been proposed
such as the layered-depth-images [7]. They have been used
successfully in free-viewpoint video [8] as well. However,
these methods are designed to produce an accurate depth map
of the scene. New views of the scene are rendered through
warping of the layers. This is very sensitive to errors in the
depth reconstruction.

Other layered representations are designed for image based
rendering such as the coherent layers in Pop-up light field [9]
and plenoptic layers [10] (a.k.a plenoptic manifolds) and are
based on approximate geometry rather than exact depth. In [5],
the authors show that a certain number of layers is optimal for
a given scene and number of cameras. Therefore extracting
more layers is superfluous. Some scenes do not require ad-
vanced layer extraction methods. In fact, the layer extraction
should be tailored to the scene and the samples of the Light
Field in an adaptive manner. That is, there is a relation between
the complexity of the scene (depth variation, occlusion, non-
lambertian) and the layer extraction. A simple scene with small
depth variation only requires very few depth layers which
can be extracted very quickly, e.g. testing for two different
depths only. A scene with large depth variations requires many
different rendering depths and therefore the layer extraction
must test for more depths. Following this analysis, the authors
in [11] and [12] reconstruct an approximate depth map based
on interpolating images with different constant depth filters



and fusing in-focus regions. In [9], the user manually extracts
layers until satisfied with the rendered result.

The rendering system presented in this paper contains
novelty with respect to [5], [11], [12] and [9] in several
ways. First, we do not assume known geometry as in [5].
Second, we do not require user interaction as in [9]. Third,
the depth estimation in [11] is block-based which may cause
reconstruction artifacts in the boundaries of layers and does
not take into account occlusions. Finally, [12] does not take
into account occlusions and relies on the user for the number
of layers. In contrast, our depth estimation and interpolation
both take occlusions into account and the number of layers is
adaptively estimated.

The paper is organized as follows: In Section II, we discuss
the structure of the Light Field and look at its spectrum.
Section III derives a patch-based layer extraction using a
simple matching criterion. In Section IV, we show how the
method can be tailored to the scene observed by automatically
adapting the number of layers. Section V illustrates some
results and we conclude in Section VI.

II. L IGHT FIELD STRUCTURE AND SAMPLING

As mentioned above, the rendering of new views from a
set of sample images is a sampling and interpolation problem.
It is therefore interesting to look at the spectrum of the data
at hand (i.e. the plenoptic function). This problem has been
studied by Chai et al. in [5] for the scenario of multiple views
along a baseline as illustrated in Figure 1(a). In this context,
the plenoptic function is parameterized withI(x, y, t) where
(x, y) are the image coordinates andt is the position of the
camera along the baseline. Using the pinhole camera model, it
can be shown that a pointp = (x, y, 0) with depthzm = f/dm

in the image att = 0 will be projected onto the image intk
as:

pm,k = (xp − dmtk, yp, tk), (1)

wheredm is the disparity gradient andf is the focal length of
the camera. This relation enables one to obtain some insights
on the structure and the spectrum of the multiview data. In-
deed, points in space are mapped onto lines in the LF and lines
with a larger slope will always occlude lines with a smaller
ones as illustrated in Figure 1(b). This relation also enables
one to show that the spectrum of the plenoptic function is
approximately bound by a bow-tie delimited by the maximum
depthzmax = f/dmin and minimum depthzmin = f/dmax

as depicted in Figure 1(c). Given this spectrum, it can be
shown that the optimal interpolation filter is steered to the
mean disparity gradient. Using this interpolation, the minimum
sampling rate∆t = tk+1− tk to avoid aliasing in thet-axis is
given by [5] ∆t = 1

Bfh
, whereh = [1/zmin − 1/zmax] and

B = 1/2∆x which is related to the cut-off frequency of the
camera.1 This∆t only takes into account the knowledge of the
minimum and maximum depths in the scene. The light field
can be segmented intoM constant depth layers with uniformly

1Note thatB may also be limited by the band of the texture of the objects
observed. However, we assume here that this band is not limited.

spread disparity gradientsdm. In this way, each layer has a
tighter spectrum and the new constraint becomes:

∆t

M
=

1

Bfh
. (2)

There is therefore an interplay between the sampling rate
∆t or, equivalently the number of images, the minimum and
maximum depths in the sceneh and the number of depth layers
M .

III. L AYER EXTRACTION AND RENDERING

In this section, we present a layer extraction algorithm that
takes into account the particular structure of the LF. That is,
it uses the fact that points in space are mapped onto lines in
the LF and occlusions occur in a specific order. Moreover,
it is designed to deal with any number of images (i.e. two
or more). Note that the constraints applied to the energy
minimization are the same as in [10], [13]. However, insteadof
relying on active contours and the level-set method, we use a
patch-based algorithm to find potential layer boundaries. This
enables a drastic speed-up in computation times while being
very effective at finding layer edges. The second part of the
section describes how new views are interpolated using the
segmented layers and the knowledge of occlusions.

A. A patch-based layer extraction

Similar to the stereo methods used in [14] and [15], we
assume that layer boundaries occur at intensity and color dis-
continuities. An initial step in the layer extraction is therefore
to segment a reference image into a set of patchesSn using
the mean-shift algorithm [16]. Given a set of predetermined
possible disparity gradientsdm, each segmentSn is assigned
to a layerm using a matching criterion and an occlusion rea-
soning. Note that the method presented here differs from [14]
and [15] in that the number of layers or assigned disparities
is an input to the layer extraction. We also use more than two
images if they are available. Finally, the algorithm operates in
a two-pass manner instead of multiple iterations.

The layer extraction is performed by minimizing the energy
functional

Etot =
N

∑

n=1

En(mn),

where (S1, . . . , SN ) are the patches extracted by the mean-
shift segmentation andm are the layers with disparity gradient
valuesdm. In order to minimize the total energyEtot, we
minimize each of the partial energiesEn(mn) defined for each
patch. The partial energies are defined as:

En(m) =
∑

p∈Sn

f(p, m),

where p = (x, y, 0) is a pixel on the reference image and
f(p, m) is a matching function for the pixel in the other
images. The matching functional here is simply defined as
the sum of absolute differences (SAD)

f(p, m) =

K−1
∑

k=1

|I(pm,k) − I(pm,k+1)|,
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Fig. 1. 2D Light Field structure and spectrum. (a) Two layersobserved by two cameras intk andtk+1. Thex-axis is the image plane,z is the depth andf
is the focal length. (b) Positionx of the layers on the image plane as a function of the camera position t. Points are mapped onto lines with slope inversely
proportional to their depthz. (c) Given this structure, the spectrum of the light field is approximately bound by the maximum and minimum depths.

where K is the number of images under consideration and
pm,k is as defined in (1). TheI(pm,k) is therefore the intensity
of a point in imagek. We use linear interpolation for the
intensity since the pointspm,k are not necessarily integer
values. The segmentSn is assigned to the layerm with

mn = argmin
m

{En(m)}.

Once each segment has been assigned to a layer, we may build
the layer index for all the images under consideration as:

L(pm,k) = mn for p ∈ Sn, k ∈ [1, K],

where the layers are constructed in a back to front order (i.e.
starting with the smallestdm). Note that the matching function
f(p, m) may be extended to color images by summing the
absolute differences in each of the three color channels. As
in [15], we may also use the maximum of the absolute
difference in each of the color channels instead of the sum.

This initial depth allocation is now used in a second pass to
take into account occlusions. That is, we define the visibility
function for each pixel in the images as:

V (p, m, k) =
{

1, dL(pm,k) < dm or if L(pm,k) = mn for p ∈ Sn

0, otherwise.

Therefore points that have a disparity gradient larger thanthe
one being tested are occluded unless the point belongs to the
layer under consideration since a constant depth layer cannot
occlude itself. The matching function becomes:

f(p, m) = (3)
∑K−1

k=1 |I(pm,k) − I(pm,k+1)|V (p, m, k)V (p, m, k + 1)
∑K−1

k=1 V (p, m, k)V (p, m, k + 1)
,

where the denominator is a normalization term. Occluded
pixels will therefore be ignored in the second pass.

B. Rendering

Once the layers have been extracted, the interpolation of
a new view is obtained through linear interpolation of each
layer with a filter steered to match the layer’s depth. It is
important also to discard occluded pixels since these will cause
blurring of the layer’s boundary. In order to achieve this, we

first generate a layer image for the view to interpolate inti ∈
]tk, tk+1[:

L(pm,i) = mn for p ∈ Sn,

again in a back to front manner to take into account occlusions.
Using linear interpolation, the values in the rendered image
become

I(pm,i) =






βI(pm,k) + αI(pm,k+1), L(pm,k) = L(pm,k+1) = m
I(pm,k), L(pm,k) = m, L(pm,k+1) 6= m
I(pm,k+1), L(pm,k) 6= m, L(pm,k+1) = m,

(4)

whereα = ti − tk and β = tk+1 − ti are the weights from
the linear interpolation. Therefore, if the point is visible in
both neighboring images, the value in the rendered image is
linearly interpolated with a filter that is skewed accordingto
the disparity gradientdm of the layer. However, if the point
is only visible in one of the neighboring images, the value
is taken only from the image in which it is visible. This
distinction is not made in [5], [11], [12].

IV. A DAPTIVE LAYER EXTRACTION

In this section, we show how the depth layer extraction can
be made adaptive to the scene and the particular application.
The adaptive part of the algorithm is based on (2). Assuming
the camera parametersB andf are fixed, we are free to select
the M and the∆t. For example, given a∆t, it is possible
to determine the number of depth layers needed to render the
scene without aliasing. According to the sampling theory in[5]
the disparity space should be equally divided as

dm =
m − 0.5

M
dmax + (1 −

m − 0.5

M
)dmin, (5)

for m = 1, . . . , M and wheredmin anddmax are the minimum
and maximum disparity gradients. This range of possibledm

will then be fed to the layer extraction algorithm in SectionIII.
Each patch will be assigned the disparity gradientdm that
minimizes the matching functional in (3). Note that for a
smaller number of depth layersM , the depth estimation is
faster since each patch only needs to be tested for a small
number of hypothesized depths. This functional will also
minimize the difference in intensity of the image points that
are used for interpolation in (4) which minimizes blurring
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Fig. 2. Simulation results for theTeddy andCones data sets. The SNR of rendered images versus the number of layers used in the layer extraction are shown
for the leave-one-out, leave-two-out and leave-three-outcases. The bold points represent the minimum number of layers based on (6). From these plots, we
see that adding more layers improves the rendering until minimum sampling is achieved. Following this point, there is nosignificant advantage to using more
layers. We also notice that more layers are needed when more images are left out.

in the rendered images. The layer extraction complexity is
linearly proportional to the number of depth layers chosen.
Therefore there is a clear advantage to using the minimum
number of layers.

We consider three different scenarios for adapting the layer
extraction. First, we study the rendering results for different
M . Second, we consider non-uniform∆t = tk+1 − tk and
adaptively estimate theM in order to achieve minimum
sampling. Finally, we consider the case where the number of
layers is fixed and the∆t is adaptively chosen based on the
scene observed.

A. Image quality versus number of layers

In some cases, rendering speed is essential perhaps at the
expense of a reduction in the quality of the rendering. We may
therefore choose fewer layers than are required by plenoptic
sampling theory in order to speed up the interpolation. Note
that in general, we should get an improvement in the quality
of the rendered image by using more layers. After, a certain
number of layers though, the anti-aliasing criterion is achieved
and adding more layers gives no further improvement. An
extensive study of the rendered images versus number of
layers and number of images is presented in [5]. However,
the experimental results are obtained with a known geometry.
An important feature of the rendering system presented hereis
the ability to take advantage of the tradeoff between rendering
quality and the number of layers.

B. Non-uniform image arrays

It happens in many cases that the sample images of the LF
are not uniformly distributed. TheM required is therefore not
constant throughout the views. Indeed, the number of layers
is given by:

M = ∆tBfh =
(∆tf/zmin − ∆tf/zmax)

2∆x

=
∆t

2
(dmax − dmin)

where we have used∆x = 1 pixel. Therefore an estimate of
the maximum and minimum disparities∆tdmax and∆tdmin

enables automatic estimation of the number of depth layers
needed in order to meet the minimum sampling criterion. In
our current implementation the estimation of∆tdmax and
∆tdmin is done using a fast block matching algorithm and
a simple outlier rejection. The rendering system will therefore
extract only the minimumM based on the estimates of the
maximum and minimum disparities.

C. Variable minimum and maximum depths

The scenario might call for a fixed number of layersM to
reduce depth estimation and interpolation complexity. We may
therefore again use (2) to adaptively deduce the∆t necessary
given an estimate of theh. For instance, consider the scenario
where the camera is moving along a street and is pointed
in the direction perpendicular to the movement. The camera
may move quickly (i.e. a large∆t) if the scene observed is
constrained to a smallh and may be forced to move slowly
(i.e. a small∆t) when the scene has a largeh.

V. EXPERIMENTAL RESULTS

The adaptive layer extraction method presented in this paper
has been tested on the benchmark Middlebury stereo vision
data setsTeddy andCones2 [17]. These data sets both contain
nine uniformly sampled multi-baseline stereo images.

In this first part of the analysis, we look at the quality of
the rendered image in terms of signal-to-noise ratio (SNR)
versus the number of depth layers used. In order to provide a
comparison and obtain a ground truth, we perform a leave-one-
out test. That is, some of the original images are removed and
we use the rendering algorithm to recover an image that was
left out. The SNR is then computed with respect to the ground
truth. Figure 2 illustrates the results for both data sets. The
number of depth layers goes from one to 35 and we useK = 3

2Available at: http://vision.middlebury.edu/stereo/.



(a)
50 100 150 200 250

20

40

60

80

100

120

140

(b)
50 100 150 200 250

20

40

60

80

100

120

140

(c)
50 100 150 200 250

20

40

60

80

100

120

140

(d)
50 100 150 200 250

20

40

60

80

100

120

140

(e)
50 100 150 200 250

20

40

60

80

100

120

140

(f)
50 100 150 200 250

20

40

60

80

100

120

140

Fig. 3. Rendered images using theTeddy data set. (a-b) Layers and interpolated image usingM = 3 layers (SNR 23.49 dB). (c-d) Layers and interpolated
image usingM = 11 layers (SNR 27.02 dB). (e-f) Layers and interpolated image using M = 30 layers (SNR 27.45 dB). Note the improvement in the
quality of the rendered image between the three layer case and the 11 layer case. The 30 layer case, however, does not show asignificant improvement over
the 11 layer case.

images. According to the theory in [5], we should notice
two points. First, the SNR of the rendered image increases
with the number of layers. After a certain number of layers,
the minimum sampling criterion is achieved and adding more
layers does not significantly improve the result. Second, the
increase in∆t (i.e. using only one out of two or three images)
should require more layers in order to achieve the minimum
sampling. Both these aspects are visible in Figure 2. The figure
also shows in bold the minimum number of layers defined
by (6). In practice, theM seems to be a bit conservative.
This is due to the fact that the sampling theory does not
take into account some effects such as the fattening of the
spectrum due to occlusions. Note that the difference in SNR
between consecutive choices forM are due to the fact that
the depths in the scene are not uniformly distributed. It may
be useful in some cases (e.g. scenes with only three depths) to
use non-uniformly spaceddm. Figure 3 illustrates an example
of extracted layers and rendered images for differentM . The
layer extraction therefore behaves well with respect to the
sampling theory. Note that the overall degradation in the SNR
of the rendered images in the cases were the baseline is bigger
is due to the fact that the layer extraction becomes a more
difficult task.

For the second set of results, we feed to the rendering
system only the images(0, 1, 2, 4, 6) of the Cones LF (i.e.
the images are not uniformly sampled). The number of layers
is adaptively changed based on the method in Section IV-B.
Figures 4(a-b) illustrate the layers and the rendered image

in ti = 0.5. In this case, the algorithm estimatedM = 5.
Figures 4(c-d) show the layers and the rendered image in
ti = 3.0. In this case, the baseline is doubled and the adaptive
algorithm increases the number of layers toM = 10.

The EDISON implementation of the mean-shift segmenta-
tion was used.3 The segment matching, layer extraction and
rendering functions were implemented using a combination
of Matlab and C++. In this setup, the segmentation times for
the Cones images (375 by 450 pixels) are 2.38 seconds for
the mean-shift segmentation of the reference image and 1.64
seconds for extracting the layers withM = 5 and K = 3.
Once the layers have been extracted, the rendering time is 0.3
seconds per frame. Note that these times are given for the
experimental setup and can be significantly reduced by using
optimized code.

VI. CONCLUSION

Plenoptic sampling theory has shown that there is a clear
tradeoff between the amount of geometry and the number
of images available. Moreover, there is a minimum sampling
criterion that gives the number of depth layers needed based
on the spacing of the sample images and the maximum and
minimum depths. In this paper, we presented a simple and
effective layer extraction method that deals with occlusions
and is designed for image based rendering (i.e. the cost func-
tion minimizes blurring). Finally, in contrast to previouswork,
the algorithm takes into account occlusions and automatically

3Available at: http://www.caip.rutgers.edu/riul/research/code.html.
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Fig. 4. Adaptive layer extraction on theCones data set. Images(0, 1, 2, 4, 6) are fed to the rendering algorithm. (a-b) When rendering an image inti = 0.5,
the layer extraction is adapted toM = 5 layers. (c-d) Rendering the view inti = 3.0 requires more layers since the baseline is increased. Here,the layer
extraction is adapted toM = 10 layers.

adapts the number of depth layers to extract based on the
scene itself and the spacing between the sample views. In
future work, we will extend these results to non-linear camera
movements and interpolating viewpoints that are not on the
camera path.
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