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ABSTRACT
The enhancement of noisy speech in the eigenspectral domain
requires an estimate of the clean speech eigenspectrum. In this
paper, we develop a model for clean speech eigenspectra for a
speaker and use it to constrain the estimation process. As a re-
sult, the estimate is contrained by the acoustic space defined by
the model and is thus robust even for high levels of noise.

1. INTRODUCTION

Many methods of speech enhancement explicitly incor-
porate a spectral model of speech sounds. A much-used
model for speech denoising is a time-varying autoregressive
(AR) model of speech production, the parameters of which
are estimated from the noisy speech [1]. Ephraim [2] uses
a Hidden Markov Model (HMM) where each Gaussian
class is an AR model that represents statistically similar
speech sounds. Deng et al [3] propose a statistical model
for the static and dynamic cepstral coefficients of the noisy
speech and use a Bayesian framework for enhancement.
Attias et al [4] choose to model the noisy signal power
spectral coefficients instead because they are linearly re-
lated to the clean speech and noise coefficients.
In eigendomain-based speech enhancement [5] noisy
speech vectors are projected onto the signal subspace, the
identification of which requires an estimate of the clean
speech eigenspectrum [6]. The eigenspectral estimate is
usually obtained by noise energy subtraction, but this may
allow it to have values that are not likely to occur for clean
speech sounds. In this paper we propose a model for the
clean speech eigenspectra for a speaker and use this to ap-
ply a soft constraint on the estimate.

2. MODEL-BASED EIGENSPECTRUM
ESTIMATION

The enhancement of speech corrupted by additive noise in
the eigenspectral domain requires an estimate of the clean
speech eigenspectrum. For additive uncorrelated noise,
the covariance matrices of the clean speech, Ry, and of
the noise, Rw, add up to give the noisy speech covariance
matrix, Rz with eigendecomposition:

Rz = Ry + Rw = VΛzVT = V(Λ̃y + Λ̃w)VT (1)

where
Λ̃y = VT RyV Λ̃w = VT RwV (2)

We assume that Λ̃y and Λ̃w are approximately diagonal
as in [6]. In this paper, we denote the vectors of diagonal
elements of the eigenvalue matrices as follows

z = diag(Λz) y = diag(Λ̃y) w = diag(Λ̃w) (3)

where diag(.) gives a vector of the diagonal elements of
the input matrix. In practice we observe z and want to
form an estimate ŷ that incorporates prior knowledge of
the acoustic space for a speaker.

2.1. Clean speech eigenspectrum model

We obtain feature vectors to train our speech model using
clean speech extracts for a single speaker. The covari-
ance matrix Ry is calculated over frames of 16ms dura-
tion. From the eigendecomposition of Ry , we obtain the
vector of clean speech eigenvalues, y. We normalize y
in a frame with respect to the energy, c = ‖y‖1, in that
frame to make the feature vectors independent of signal
amplitude. We then multiply by the DCT matrix, D, to
decorrelate the coefficients giving yD

norm:

yD
norm = D

(y
c

)
=

1
c
D(y) =

1
c
yD (4)

We use a Gaussian Mixture Model (GMM) to model
the energy distribution in the eigenspectrum for differ-
ent frames of clean speech from the same speaker. The
premise is that the clean speech eigenspectra can be clus-
tered in shape-groups according to the spectral character-
istics of speech sounds. We perform training on about 600
seconds of speech, sampled at 16kHz, for a single speaker.
By excluding periods of silence and pauses, we restrict the
training to regions of speech only; the training feature vec-
tors are used to estimate the parameters of the GMM us-
ing the Expectation-Maximization (EM) algorithm. Each
Gaussian class, Cm, of the GMM is defined by the mean,
µm, and the covariance matrix, Σm, with its contribution
weighted by αm:

Cm , N (µm,Σm) for m ∈ [1,M ] (5)



We use M = 15 different classes in our implementation.
The probability model for the normalized vector of DCT
coefficients, yD

norm, is given by

P (yD
norm|GMM) =

M=15∑
m=1

αmP (yD
norm|Cm) (6)

2.2. Noise energy distribution

We look at the distribution of the noise energy along an
eigenvector and show that it can be approximated with a
normal distribution. We assume that the noise signal is
stationary over a frame of N samples. Let the frame w(t)

be partitioned into non-overlapping vectors of K samples,
w(t)(j) for j ∈ [1, N/K], where (t) denotes the time-
domain signal. Denote the K×K noise signal covariance
matrix for the frame of N samples as Rw. The energy
along a normalized eigenvector v is given by

λ = vT Rwv (7)

Now, by definition, Rw = E{w(t)(j)w(t)(j)T } ∀j, so
that

λ = vT E{w(t)(j)w(t)(j)T }v
= E{vT w(t)(j)w(t)(j)T v} for a fixed v
= E{p(j)2}

λ̂ = 1
N/K

∑N/K
j=1 p(j)2

(8)

p(j) = vT w(t)(j) is the coefficient of projection of w(j)
onto v and its distribution for the different noise types is
shown in Figure 1.
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Figure 1: Histogram of projection coefficients, p, of different noise

vectors - (a) white , (b) speech-like, (c) car, (d)operations room - onto a

fixed eigenvector

We select v to be the eigenvector corresponding to the
highest energy in the first frame from 4 s extracts of dif-
ferent approximately stationary noise types from the NOI-
SEX database [7]. For each noise type, we calculate the
values of p(j) for K = 64 over the whole extract. The
p(j) variables are not in general independent, except for
white noise. We note from Figure 1 that the distribution

plots for speech-like noise, car noise and operations room
noise (from NOISEX [7]) are similar to that for white
noise. If we assume that p(j) ∼ N (0, σ2) for some σ2

and that the p(j) variables are independent, λ has a χ2

distribution with N/K degrees of freedom with mean µw

and variance σ2
w:

µw = (N/K)σ2 σ2
w/µ2

w = 2/(N/K) , k (9)

In this work we approximate the distribution of the noise
energy along an eigenvector as N (µw, kµ2

w) even if the
p(j)s are not independent.

2.3. Noisy signal model

We augment the clean speech eigenspectrum model
with the estimated noise statistics to model the noisy
speech feature vector, zD. We assume that each noisy
speech vector belongs to a single class in the GMM.
Our model for zD is given in (10) where both the clean
speech and noise vectors are Gaussian random variables:
yD

m ∼ N (µm,Σm) for the mth class of the GMM and
wD ∼ N (µw,Σw) from the previous section with µw =
D(diag(VT RwV)).

zD = cyD
m + wD

= (cmµm + εy) + (µw + εw)
= cmµm + µw + ε where ε = εy + εw

(10)
where εy ∼ N (0, c2

mΣm), εw ∼ N (0,Σw) and ε ∼
N (0, c2

mΣm + Σw). In (10), we add the subscript m to c
to show the dependence of the scaling factor on the chosen
GMM class m. The maximum-likelihood (ML) estimate
for this cm is obtained by maximizing the likelihood func-
tion P (zD|yD

m,wD). With the estimate of cm, we can cal-
culate the noise- and scaling factor-adjusted vector, zD

m.

zD
m =

zD − µw

cm
= µm+εm εm ∼ N

(
0,

c2
mΣm + Σw

c2
m

)

(11)
Since we do not know the class m∗ to which the noisy
speech vector belongs, we calculate the ML estimate of
cm for each mixture component Cm with m ∈ [1,M ].
We also calculate the corresponding likelihood value
P (zD

m|GMM) using the distribution in (6) and select m∗

corresponding to the maximum likelihood value. cm∗ is
the corresponding scaling factor estimate or equivalently
the estimate of the clean speech energy.
In Figure 2 we compare our estimate of the clean speech
energy values with the true values for test speech extracts
(not used for training) corrupted with noise from the NOI-
SEX database [7]. We observe that our estimate of the
clean speech energy from the model, cm, closely follows
the true energy for the different noisy speech extracts.
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Figure 2: True clean speech energy and its estimate from the model for

(a) speech 1 + white noise, (b) speech 2 + speech-like noise, (c) speech 3

+ helicopter noise and (d) speech 4 + aircraft noise all at an input SNR

of 5dB.

2.4. Estimation of clean speech eigenspectrum

Given the acoustic class m∗ and scaling factor esti-
mate cm∗ for a frame, we want to estimate the clean
speech eigenspectrum ŷ for that frame. We replace
(cm∗ , µm∗ ,Σm∗) by (c, µy,Σy) in the text that follows
for clarity. We write

zD = yD + wD = cyD
norm + wD (12)

where yD ∼ N (cµy, c2Σy) and wD ∼ N (µw,Σw).
We choose ŷD to maximize the joint probability density
function (pdf), φ(yD,wD), conditional on the observa-
tion zD which is the sum of two variables from Gaussian
processes.

log(φ(yD,wD)) =
− 1

2 (yD − cµy)T (c2Σy)−1(yD − cµy)
− 1

2 (wD − µw)T (Σw)−1(wD − µw) .
(13)

We substitute wD = zD − yD in (13), differentiate with
respect to yD and set to zero to give

(c2Σy)−1yD − (c2Σy)−1cµy =
(Σw)−1(zD − µw)− (Σw)−1yD (14)

which can be simplified to

ŷD = {c2Σy(c2Σy + Σw)−1}(zD − µw)+
{Σw(c2Σy + Σw)−1}cµy

(15)

and consequently

ŷ = D−1
(
ŷD

)

= D−1
(
c2Σy

(
Σw + c2Σy

)−1 (zD − µw)

+Σw

(
Σw + c2Σy

)−1
cµy

)
.

(16)

The diagonal elements of Σy and Σw are estimated as
D−1(kµ2

y) and D−1(kµ2
w) to give Σu

y and Σu
w respec-

tively. The updated equation (17) shows that the estimated
eigenspectrum is a combination of two possible eigen-
spectra, ŷs and ŷm, the first obtained by subtracting the
noise energy and the second by weighting the class mean.
ŷ is closer to ŷm for noisy speech with a high noise energy
level.

ŷ = c2Σu
y

(
Σu

w + c2Σu
y

)−1
D−1(zD − µw)

+Σu
w

(
Σu

w + c2Σu
y

)−1
D−1(cµy)

= As ×D−1(zD − µw) + (I−As)×D−1(cm∗µm∗)
= Asŷs + (I−As)ŷm

(17)

3. ESTIMATION RESULTS

We analyse the properties of ŷs and ŷm from (17) by us-
ing them to perform speech enhancement [6]. We write

ŷ(t) = VGVT z(t) (18)

where G = f(ŷ, z) with gain transfer function f as in [6].
The noisy test speech was not used in the training of the
GMM and it is contaminated with white noise for an input
SNR of 5dB. Rw is estimated from the noisy speech sig-
nal for example as in [8]. The model parameters - noise
vector µm, most likely class m∗ and scaling factor cm∗ -
are obtained as in Section 2.3. We also obtain the true val-
ues for the class and scaling factor from the clean speech
eigenspectra. In all, we estimate the clean speech signal,
y(t), using (a) the subtraction-based eigenspectrum, ŷs,
giving ŷ(t)

s , (b) the model-based eigenspectrum, ŷm̂, with
estimated parameters m̂∗ and ĉm∗ to give ŷ(t)

m̂ , and (c) the
model-based eigenspectrum, ŷm, with true parameters m∗

and cm∗ to give ŷ(t)
m . The spectrograms of the enhanced

speech from the three cases, ŷ(t)
s , ŷ(t)

m̂ and ŷ(t)
m , are plotted

in Figure 3.
Both model-based speech estimates, ŷ(t)

m̂ and ŷ(t)
m , sound

more distorted for weak speech sounds compared to ŷ(t)
s .

This can be seen for example close to time instant 0.7s
and 1.1s in Figure 3. Nevertheless, our model successfully
synthesizes eigenspectra for speech not encountered dur-
ing training using only the GMM class and the scaling fac-
tor. When these parameters are estimated from the noisy
speech, the resulting signal, ŷ(t)

m̂ (Figure 3(d)), shows a
slight degradation compared to ŷ(t)

m (Figure 3(e)), for ex-
ample close to time instant 1.35s, but the results are still
encouraging. The subtraction-based speech estimate, ŷ(t)

s ,
has the least distortion for weak speech sounds for exam-
ple close to time instant .2s and .7s. However, the level
of residual noise is higher as can be seen during silent in-
tervals. This analysis reinforces our choice of estimation



equation (17) with ŷ(t)
s chosen when the speech energy

dominates and ŷ(t)
m when the noise energy is high.

We analyse further the difference in performance of the
two estimates, ŷs and ŷm̂. We calculate the normalized
error for a frame by subtracting the true speech eigenspec-
trum, y, from the subtraction-based estimate, ŷs, and the
model-based one, ŷm̂, and normalizing as follows:

es = ‖ŷs − y‖/‖z‖ em = ‖ŷm̂ − y‖/‖z‖ . (19)

The normalized error terms are averaged over all speech
frames for a noisy test speech, e.g. test speech 1 and
white noise for different values of the input SNR. The re-
lationship between the average error terms and the input
SNR value for this particular speech/noise combination is
shown in Figure 4(a) as a solid line for ŷw and a dot-
ted line for ŷm̂. The plots for three further speech/noise
combinations from the NOISEX [7] database are shown
in Figures 4(b), (c) and (d).
For values of the input SNR above -3 dB, the normalized
error average and hence speech distortion energy are lower
with the subtraction-based estimator, as expected. As the
input SNR decreases to very low values, the error average
is relatively lower with the model-based estimator con-
firming that the performance for our model decreases to
a lesser extent as input SNR decreases. One way to in-
terpret this result is that for the model, the estimate is se-
lected from a template of different possible fixed speech
eigenspectra. With the subtraction approach, the variance
of the estimate involves the noise variance which is high
for low values of input SNR.

−60

−40

(a)

0.5 1 1.5 2
0
2
4
6
8

−60

−40

(b)

0.5 1 1.5 2
0
2
4
6
8

−60

−40

F
re

qu
en

cy
 (

kH
z)

(c)

0.5 1 1.5 2
0
2
4
6
8

−60

−40

(d)

0.5 1 1.5 2
0
2
4
6
8

−60

−40

Time (s)

(e)

0.5 1 1.5 2
0
2
4
6
8

Figure 3: Spectrograms of (a) clean speech, y(t), (b) noisy speech,

z(t), (c) subtraction-based estimate, ŷ(t)
s , (d) model-based estimate with

estimated parameters, ŷ(t)
m̂ and (e) model-based estimate with true pa-

rameters, ŷ(t)
m
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Figure 4: Mean difference in eigenspectra for (a) test speech 1 + white

noise, (b) test speech 2 + speech-like noise, (c) test speech 3 + lynx

helicopter noise and (d) test speech 4 + phantom aircraft noise at various

input SNR values.

4. CONCLUSION

In this paper, we propose a model for the eigenspec-
tra of clean speech sounds for a speaker and investigate
its use for the enhancement of noisy signal eigenspectra.
The estimation equation for the clean speech eigenspec-
trum combines a noise subtraction-based estimate with a
model-based one. The latter is shown to be robust for
noisy speech at low input SNR values because it is se-
lected from known clean speech eigenspectrum clusters
represented by the proposed model.

5. REFERENCES

[1] J. Lim and A. Oppenheim, “All-pole modeling of degraded speech,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 26, no. 3, pp.
197–210, 1978.

[2] Y. Ephraim, “Statistical-model-based speech enhancement systems,” Proceed-
ings of the IEEE, vol. 80, no. 10, pp. 1526–1555, 1992, keywords: Review /
survey of state of art, Model-based approach, Hidden Markov models.

[3] L. Deng, J. Droppo, and A. Acero, “A Bayesian approach to speech feature
enhancement using the dynamic cepstral prior,” in Proceedings of the Interna-
tional Conference on Acoustics, Speech and Signal Processing, 2002, vol. 1,
pp. 829–832.

[4] H. Attias, L. Deng, A. Acero, and J.C. Platt, “A new method for speech
denoising and robust speech recognition using probabilistic models for clean
speech and for noise,” in Proceedings of the 7th Eurospeech Conference, 2001,
pp. 1903–1906.

[5] Y. Ephraim and H.L. Van Trees, “A signal subspace approach for speech
enhancement,” IEEE Transactions on Speech and Audio Processing, vol. 3,
no. 4, pp. 251–266, 1995.

[6] A. Rezayee and S. Gazor, “An Adaptive KLT Approach for Speech Enhance-
ment,” IEEE Transactions on Speech and Audio Processing, vol. 9, pp. 87–95,
2001.

[7] A. Varga and H.J.M. Steeneken, “Assessment for automatic speech recogni-
tion: II. NOISEX-92: A database and an experiment to study the effect of
additive noise on speech recognition systems,” Speech Communication, vol.
12, no. 3, pp. 241–246, 1993.

[8] V. Bhunjun and D.M. Brookes, “Narrowband noise estimation in the sub-
space domain,” in Proceedings of the International Symposium on Intelligent
Multimedia, Video and Speech Processing, 2004, pp. 1–4.


