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Abstract—This paper presents the V2R algorithm, a novel method for multiple

light source detection using a Lambertian sphere as a calibration object. The

algorithm segments the image of the sphere into regions that are each illuminated

by a single virtual light and subtracts the virtual lights of adjacent regions to

estimate the light source vectors. The algorithm uses all pixels within a region to

form a robust estimate of the corresponding virtual light. The circumstances under

which the light source detection problem lacks a unique solution are discussed in

detail and the way in which the V2R algorithm resolves the ambiguity is explained.

The V2R algorithm includes novel procedures for identifying the critical lines that

bound the regions, for estimating the light source vectors, and for identifying

opposite light pairs. Experiments are performed on synthetic and real images and

the performance of the V2R algorithm is compared to that of a recent algorithm

from the literature. The experimental results demonstrate that the proposed

algorithm is robust and that it gives substantially improved accuracy.

Index Terms—Computer vision, illuminant detection, Lambertian sphere

limitations, image synthesis.
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1 INTRODUCTION

THE problem of estimating illuminant directions and intensities
from an image arises in a number of areas of computer vision
including Augmented Reality and Shape from Shading. Early
research on illuminant estimation addressed the case of a single
point light source [1], [2], [3]. More recently, researchers have
developed techniques for estimating multiple point sources and
several approaches to this problem can be found in the literature.
One approach exploits the shadows that an object of known shape
casts onto a second object of known shape and reflectance [4], while
others make use of the reflections in one or more mirror-like
spherical test objects [5], [6]. A common approach [7], [8], [9], [10],
[11], also followed here, is to use a Lambertian sphere of known size
and constant albedo as a calibration object in order to detect
multiple illuminants which are assumed to be distant point sources.

This paper describes and evaluates a novel algorithm for

detecting multiple light sources using a spherical Lambertian test

object and also presents a detailed analysis of the fundamental

limitations of such algorithms. The algorithm is straightforward to

extend to anarbitrary convex test object of knownalbedoandcamera

aspect.

2 PROBLEM FORMULATION AND DEFINITIONS

2.1 Sphere Geometry

This paper is concerned with determining the directions and

intensities of the light sources illuminating a Lambertian sphere

with unit albedo. We choose the coordinate system so that the

sphere is of unit radius with its center at the origin. We

assume that the camera position is known and that its center of

projection lies on the positive z-axis at z ¼ c�1 with the image

plane at z ¼ 0. The case c ¼ 0 corresponds to orthogonal

projection with the camera at infinity. A point p on the sphere

with coordinates ½px py pz�T is projected onto the image plane

at ½x y�T ¼ ð1� cpzÞ�1½px py�T .
A plane through the origin with unit normal u ¼ ½ux uy uz�T

will intersect the sphere in a great circle of unit radius that is
projected onto the image plane as a partially visible ellipse having
the equation

u2zðx2 þ y2 � 1Þ þ ð1� c2Þðuxxþ uyyÞ2 þ 2cuzðuxxþ uyyÞ ¼ 0: ð1Þ

If juzj2 > 1� c2, then no part of the great circle will be visible to the

camera. When uz ¼ 0, the ellipse reduces to a straight line through

the origin with uxxþ uyy ¼ 0.

2.2 Sphere Illumination

When the sphere is illuminated by a point light source at infinity,

the image intensity at a point p on its surface is given by

ep ¼ maxðsnT
p u; 0Þ ¼ maxðnT

p s; 0Þ ¼
1

2
nT
p sþ

1

2
jnT

p sj; ð2Þ

where the unit column vectors u and np ¼ ½px py pz�T denote,
respectively, the direction of the light and the surface normal at p
and s denotes the light intensity [12]. The source vector, s ¼ su,
combines the direction and intensity of the light source into a
single quantity. A negative value of s corresponds to a light in the
direction �u. The points satisfying nT

p u ¼ 0 form the boundary
between the illuminated and unilluminated portions of the sphere.
This critical line forms a great circle on the sphere and is projected
onto the image as a segment of an ellipse.

With M source vectors, s1; . . . ; sM , (2) becomes

ep ¼
XM
m¼1

maxðnT
p sm; 0Þ ¼ nT

p

X
m:nTp sm>0

sm: ð3Þ

The summation in (3) is performed over all the light sources that
illuminate p, namely, those satisfying nT

p sm > 0. We may partition
the image into a finite number of regions, R1; . . . ; RK , such that all
the pixels within a region are illuminated by the same set of light
sources; these regions are bounded by the critical lines associated
with the light sources. If Lk is the set of light sources that
illuminate the pixels within Rk, then for all p 2 Rk,

ep ¼ nT
p

X
m2Lk

sm ¼ nT
p vk; ð4Þ

where vk is the virtual light associated with region Rk.

2.3 Opposite Lights

Two lights that are exactly opposite each other will share the same
critical line and, so, the number of regions in the sphere imagewill be
the same as if only one of the lights were present. The pair of opposite
lights may be represented as s1 ¼ s1u and s2 ¼ s2u where s1s2 < 0.
From (2), the combined effect on the intensity at p can be expressed as

ep ¼
1

2
ðs1 þ s2ÞnT

p uþ 1

2
jðs1 � s2ÞnT

p uj ¼
1

2
dnT

p sþ
1

2
jnT

p sj; ð5Þ

where s ¼ ðs1 � s2Þu and d ¼ ðs1 þ s2Þ=ðs1 � s2Þ. Thus, we may
describe the effect of the pair of opposite lights by combining a single
source vector swith a parameter d that lies in the range �1 and that
characterizes the relative strength of the two lights. The sum of the
opposite light intensities is jsj ¼ js1j þ js2j and the extreme cases of
d ¼ �1 correspond to single lights at s1 ¼ s and s2 ¼ �s, respec-
tively, in which case (2) may be regarded as a special case of (5).
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2.4 Fundamental Limitations

It is not always possible to determine all the light sources

unambiguously from the sphere image. There are two specific

sources of ambiguity: undetectable lights and opposite light pairs.
The critical line from a light source for which juzj2 > 1� c2 lies

on a part of the sphere invisible to the camera; such a light source is
said to be undetectable [10]. If the z component of an undetectable
source vector s is negative, then the light is hidden behind the
sphere and does not affect the image. If the z component is
positive, then the light is approximately in line with the camera
and illuminates all regions in the image. Following (4), the effect of
all such visible undetectable lights may be combined into a single
virtual light, v0, the camera light.

The second source of ambiguity arises if the source vectors, sm,
form a linearly dependent set. This can arise with as few as two
visible lights together with an undetectable light behind the sphere
and is always the case if there are four or more light source
directions. A special case of this ambiguitywas identified in [10], but
the treatment given here is more general. We first form a matrix
S ¼ ½s1 s2 . . . sM � from the distinct source vectors. Each column of S
represents either the direction and intensity of a single light or, as in
(5), the direction and intensity sum of a pair of opposite lights.

Following (5), we may express the intensity at p due to all

M source vectors as

ep ¼
1

2
nT
p Sdþ 1

2

XM
m¼1

jnT
p smj: ð6Þ

In (6), each element dm of the vector dmultiplies the corresponding
column of Swhich contains the source vector sm. If sm corresponds
to a single light, then the corresponding dm will equal either þ1 or
�1. If, on the other hand, sm corresponds to an opposite pair of
lights, then dm will lie in the range �1 according to the ratio of the
light intensities as described in Section 2.3 above. If the nullity of S
is J , we can find an M � J matrix, H, whose columns form a basis
for the null space of S and that satisfies SH ¼ 0. Since S has only
three rows, we will always have J � M � 3.

Given an arbitrary vector g of dimension J , we can define an
alternative set of coefficients as d0 ¼ dþHg and we see that

nT
p Sd

0 ¼ nT
p SðdþHgÞ ¼ nT

p Sdþ nT
p SHg ¼ nT

p Sd: ð7Þ

Thus, the intensity at p given by (6) is unchanged by the
replacement of d by d0. To represent a feasible set of coefficients,
each component of d0 must however lie in the range �1. For each of
the M rows, hT

m, of H, this imposes two linear constraints on the
vector g of the form

� 1 � dm þ hT
mg � þ1: ð8Þ

These 2M constraints restrict g to lie within a J-dimensional

polytope that includes the origin.
Each point g within the polytope corresponds to a different

configuration of lights that could have generated the observed
image. We resolve this ambiguity by selecting the configuration
that contains the fewest visible lights. This will always correspond
to one of the polytope vertices since moving away from a vertex
always increases the number of opposite light pairs. Also, it cannot
include more than three pairs of opposite lights since, at a vertex,
the directions of all remaining opposite pairs must be linearly
independent. In some situations, there may be more than one
feasible configuration having the fewest number of visible lights
and there is then no unique best choice. In particular, if a subset of
the sm sum to zero, then the corresponding dm may be negated
without affecting the illumination or the number of lights required;
under these circumstances, an ambiguity will arise even if all
opposite light pairs are excluded as in [10].

3 RELATED WORK

The detection of multiple light sources was initially addressed by
Yang and Yuille in [7]. Their algorithm is based on the observation
that, along a segment of the boundary that lies within a single
region, the image intensity varies sinusoidally with the angle of the
boundary normal for a smooth convex Lambertian object. Hougen
and Ahuja [8] begin by assuming a large number of predefined
light directions and then perform a least squares or nonnegative
least squares minimization to find which combination of these
lights can reconstruct the intensities on a grid of image points. A
similar approach can be found in Marschner and Greenberg’s work
[13]. Hougen and Ahuja’s method was evaluated by Yang [9] who
reported that only the nonnegative least squares technique
produced usable results. He reports that, although his algorithm
gives good results for image synthesis, the detected directions of
the light sources do not necessarily converge to the correct values.
This result is unsurprising in view of the fundamental limitations
discussed in Section 2.4 above.

More recently, Zhang and Yang [10], [11] have proposed a
scheme for detecting multiple light sources based on identifying
the critical lines on a Lambertian sphere. They observed that,
within a single region, the intensity function (4) along a great circle
on the sphere is a cosine wave whose phase and amplitude depend
on the virtual light vk. They detect the critical lines from
discontinuities in these cosine waves and find each light direction
as the normal to the plane containing a critical line. The light
intensities are found by minimizing the reconstruction error

F ðu0; s0; . . . ; sMÞ¼
XP
p¼1

ep�s0n
T
p u0�

XM
m¼1

maxðsmnT
p um; 0Þ

 !2

; ð9Þ

where P is the total number of image pixels. The algorithm cannot
detect pairs of opposite lights since it assumes that each detectable
light generates a distinct critical line. We have evaluated the
algorithm of [11] and found that, although it works well in some
cases, the minimization of (9) can converge to an incorrect local
minimum. The final solution reached depends on the choice of
initial signs for the fsmg and the only way to guarantee finding the
correct minimum is to try all 2M possible combinations.

Recently, Ramamoorthi and Hanrahan [14] and Basri and
Jacobs [15] have shown that a Lambertian surface attenuates the
high frequency components of the illumination and that the first
nine spherical harmonics capture most of the appearance of the
image. Figs. 1a and 1b show the absolute error when nine spherical
harmonics are used to approximate the intensity of a Lambertian
sphere illuminated by one and three lights, respectively. It can be
seen that the errors are concentrated at the gradient discontinuities
that exist along the critical lines. Although the mean square error
reduces rapidly as the number of harmonics is increased, the peak
error along the critical lines falls more slowly because of Gibb’s
phenomenon. Fig. 1c shows the absolute error for three lights
when using 225 coefficients with additive white noise at 40dB SNR.
Despite the attenuation of the high order harmonics by the
Lambertian surface, the critical lines are still apparent above the
noise floor and, by integrating over many pixels, the techniques
described in this paper make it possible to identify the critical lines
and the source vectors reliably.

4 VIRTUAL-TO-REAL ALGORITHM (V2R)

4.1 Overview

In this section, we describe a novel algorithm, the Virtual-to-Real
algorithm (V2R), for finding the source vectors. The basis of the
algorithm is that, if two regions R1 and R2 are adjacent on the
image, with v1 and v2 the corresponding virtual lights, then we see
from (4) and (5) that v1 � v2 ¼ sm, where jsmj is either the intensity
of the single light or the sum of the intensities of the opposite pair
of lights that correspond to the critical line. Wang and Samaras
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[16], [17] have independently proposed an algorithm that is also
based on this principle, but they use different approaches for
region segmentation and real light determination and do not
perform ambiguity resolution.

The V2R algorithm begins by determining the critical lines in the
image, dividing the image into regions, and then calculating the
virtual light vk for each region. By subtracting the virtual lights from
adjacent regions, the real lights are found to within a sign ambiguity
that is resolved by an ennumeration search. A final steepest descent
stage is then used to refine the estimated source vectors sm. In our
work, all images are quantized to 256 intensity levels.

4.2 Detailed Description of Algorithm

4.2.1 Region Segmentation

The first stage of the V2R algorithm is to identify the elliptical
critical lines on the image and to use them to segment the sphere
into regions. The procedure is illustrated by the two square
windows shown in Fig. 2a. One window lies entirely within
region R1 and the intensities of the pixels within it will satisfy (4)
with a single virtual light v1. However, the other window straddles
a critical line and will not satisfy (4) for any value of v since it
contains pixels from two different regions. For each pixel p in the
image, we construct a window Wp of size w� w centered on p. We
can estimate the corresponding virtual light, v, as the least squares
solution, v̂v, to the overdetermined set of equations

NWp
v ¼ eWp

) v̂v ¼ ðNT
Wp

NWp
Þ�1NT

Wp
eWp

; ð10Þ

where NWp
¼ ½n� n� � � � n!�T and eWp

¼ ½e� e� � � � e!�T for
f�; �; . . . ; !g 2 Wp. The components of eWp

are the image intensities
at each pixel of the window Wp, while the rows of NWp

contain the
corresponding surface normals. The matrix NWp

is independent of
the image intensities and it is always full rank if w > 1. The
resultant mean square error fp is [18]

fp ¼
1

w2
ðNv̂v� eÞT ðNv̂v� eÞ ¼

det ½e N�T ½e N�
� �
w2 detðNTNÞ

; ð11Þ

where the subscripts Wp have been omitted for clarity. A pixel p is
identified as a critical point if fp exceeds a threshold T whose value
is discussed in Section 4.3. Fig. 2b shows an image of a sphere

illuminated by three lights and Fig. 2c shows how fp varies over

the sphere’s surface. From the figure, it is clear that, when the

window straddles a critical line, the value of fp rises to many times

its value within the region. We apply dilation and erosion

operators to remove isolated pixels and to reduce the thickness

of the detected critical lines. We group the detected critical pixels

into elliptical projections of great circles using the Hough Trans-

form [19] for constrained ellipse detection. The search space is two-

dimensional since the three free parameters ux, uy, and uz in (1) are

reduced to two by the constraint juj ¼ 1.

4.2.2 Real Light Identification

For each region Rk bounded by the critical lines identified in the

previous stage, a virtual light is estimated as the least squares

solution to an overdetermined set of equations similar to (10), but

modified to include a bias term bk. This bias term accounts for any

isotropic background illumination or any DC offset arising from

the camera or quantization process and we have found that its

inclusion improves the estimation of the virtual light vk. For each

region k, the algorithm therefore finds the least squares solution to

the augmented equations

NRk
vk þ 1bk ¼ eRk

; ð12Þ

where 1 denotes a column vector containing 1 in each position and

NRk
and eRk

are defined as for (10) but now include all pixels

within the region Rk. Note that a bias term should not be used for

critical point determination in (10) as it reduces the difference in

mean square error fp between critical and noncritical pixels. A

global bias B is now determined as a weighted average of the

region bias estimates bk as

B ¼
PK

k¼1 jRkj2bkPK
k¼1 jRkj2

;

where jRkj is the number of pixels in region k. The choice of

weights penalizes the bias estimates from small regions since these

are based on fewer data pixels most of which lie close to a critical

line. A final estimate for the virtual light in each region is now

found as the least squares solution to
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Fig. 1. The absolute error when the intensity of a Lambertian sphere is approximated by a finite number of spherical harmonics using (a) one light and nine harmonics,
(b) three lights and nine harmonics, and (c) three lights and 225 harmonics with 40dB SNR.

Fig. 2. (a) Shows the windows Wp used in (10) when identifying critical points. The window that straddles a critical line will give a high value of fp in (11) and, so, the
corresponding point p will be identified as a critical point. (b) Shows a sphere illuminated with three lights at ½0 þ 1 � 1�, ½0 1 1�, and ½1 0 � 1�. (c) Shows, for each image
pixel, the value of fp from (11) when using a window size of w ¼ 9. Critical points correspond to high values of fp.



NRk
vk ¼ eRk

�B: ð13Þ

It can be shown that, if the region boundaries are correct, the mean
square error norm in the estimate of vk is given by

c trace NT
Rk
NRk

� ��1
� �

� 6:25cD2jRkj�2; ð14Þ

where the second expression was determined by fitting an
empirical formula to values for rectangular regions of the sphere
image. In (14), c is the mean square error of pixel intensity values,
D is the diameter of the sphere image in pixels, and jRkj the
number of pixels in region Rk.

Having found the virtual lights vk for each region, the source
vector sm associated with each critical line can be found to within a
sign ambiguity by taking the difference between pairs of adjacent
regions that are separated by the line. There will, in general, be
several pairs of adjacent regions that are separated by a particular
critical line and, so, these will give rise to several estimates of the
real light. We form a weighted average of these estimates using
ðjRjjjRkjÞ2 as the weight for the estimate from adjacent regions Rj

and Rk because we find this gives slightly better results than the
ðjRjj�2 þ jRkj�2Þ�1 implied by (14) under the assumption that the
individual errors are independent.

The final step of this stage is to resolve opposite light pairs and
determine the intensity of the camera light v0 whose direction
u0 ¼ ½0 0 1�T . The purpose of this virtual light is to account for any
real lights whose critical lines are not visible on the image as
discussed in Section 2. We wish to determine the M direction
indicators dm in the range �1 and the camera virtual light intensity
v0 > 0 that minimize the reconstruction error over the entire image
given by

F ðv0; d1; d2; . . . ; dMÞ ¼
XP
p¼1

ep � B� v0n
T
p u0 �

1

2

XM
m¼1

jnT
p smj �

1

2

XM
m¼1

dmn
T
p sm

 !2

;
ð15Þ

where P is the total number of image pixels. The problem of
minimizing (15) is an example of quadratic programming. In order
to resolve the ambiguities defined in Section 2.4, we find the
minimum by enumerating all possible constraint combinations.
From Section 2.4, we need only consider combinations in which at
most three of the fdmg are unconstrained and the remainder are set
to �1. The intensity v0 can also be unconstrained or else set to 0
and it can be shown that this gives a total of 2MðM3 þ 3M2 þ
20M þ 48Þ=24 combinations. For each feasible constraint combina-
tion, the algorithm determines the values of the unconstrained
variables that minimize (15) and rejects the solution if any
variables lie outside their permitted bounds. Of the accepted
combinations, the one that minimizes F is selected. To eliminate
unnecessary opposite light pairs (see Section 2.4), a penalty may be
added to F that is proportional to the number of visible lights. The
final stage of the algorithm is to refine the estimates for the lights
sm. Using a steepest descent algorithm, we minimize F in (15) with

respect to both the sm and the camera light v0 ¼ v0u0 while
keeping all the fdmg fixed. This refinement stage normally results
in a significant reduction in F .

4.3 Parameter Selection

4.3.1 Window Size and Critical Point Threshold

The identification of critical pixels using (11) works by fitting a
virtual light to the data in a small w� w window centered on each
image pixel. The use of a large window makes critical lines easier
to detect by increasing the difference in fp between critical and
noncritical pixels, but may mean that the algorithm is unable to
resolve two critical lines that are close together. Figs. 3a and 3b
show how the value of log10ðfpÞ from (11) varies with the window
size, w, for a critical and a noncritical pixel for five different image
sizes. Figs. 3c and 3d show how log10ðfpÞ varies with the window
size, w, for a critical and a noncritical pixel for different signal-to-
noise ratios. This demonstrates that, by selecting a sufficient large
window size, the critical points can be reliably detected as those
that exceed a threshold T . Fig. 4 shows, as a function of T , the
percentage of critical pixels detected within five pixels together
with the overall percentage of pixels detected for a 641� 641 image
with three lights. We have found that a window size of w ¼ 9 gives
good results for a 641� 641 pixel image having an SNR � 40 dB
and that w may be reduced for lower image resolutions but must
be increased for worse SNRs. From Fig. 4, it can be seen that the
choice of T does not have to be precise, in this case, any value in
the range 0:1 to 0:4 will correctly identify the critical points. In
practice, we select T adaptively such that 5 percent of the image
pixels are designated as critical.

4.3.2 Critical Line Limit

When using the Hough Transform to group the detected critical
pixels into critical lines, we carry on grouping critical pixels into
critical lines until the number of remaining critical pixels falls below
a limit. If this limit is set too high, wemay detect too few critical lines
and consequently fail to detect the corresponding light sources. On
the other hand, if the limit is set too low, wemay detect lines that do
not actually exist. The latter is a less serious problem as the
subsequent processing will either assign a very low intensity to the
corresponding source or else two lights will converge to the same
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Fig. 3. (a) and (b) Plot log10ðfpÞ versus window size w for image resolutions between 241� 241 and 641 � 641 pixels for (a) a critical pixel and (b) a noncritical pixel. (c) and
(d) Plot the same quantities for SNRs between 10dB and 60dB using an image resolution of 641 � 641 pixels for (c) a critical pixel and (d) a noncritical pixel.

Fig. 4. The figure shows how the overall percentage of pixels identified as critical
points and the percentage of the actual critical pixels identified varies as the
threshold T is varied between 0 and 2.



direction. We have found that a threshold of about 150 pixels gives
good results for an image resolution of 641� 641 pixels.

5 PERFORMANCE EVALUATION

The proposed algorithm has been evaluated with synthetic images
in which a sphere of known position and diameter is illuminated
using between one and seven light sources. The source directions
are chosen randomly and their intensities are chosen randomly in
the range 0.1 to 1. The sphere diameter is 641 pixels and pixel
intensities are scaled to a peak image intensity of 255 and then
quantized to integer values. Fig. 5 shows the corresponding mean
error of the direction and the intensity of the estimated source
vectors for 10 trials for each configuration. The bars indicate the
standard deviation. These graphs indicate that the errors remain
very small as the number of light sources is increased, but that they
vary substantially for different light configurations.

We have also implemented Zhang and Yang’s algorithm from
[11] and compared its performance with the V2R algorithm. The
parameters for Zhang and Yang’s algorithm were calculated as
proposed in [10], [11] and the recommended refinement for the
detection of the critical points was applied in all cases. In these tests,
we used a sphere illuminated with three sources as in Fig. 2. Fig. 6
shows how the mean error in the direction estimation of the source
vectors varies with the signal-to-noise ratio and the image

resolution. In Zhang and Yang’s algorithm, the critical lines can
only be determined to an accuracy defined by the resolution of the
Hough transform. This imposes a lower bound on the direction
estimation error which, as can be seen in Fig. 6b, is approached for
high image resolutions. There is no such bound for the
V2R algorithm and, for high image resolutions, the error is
proportional to D�2, as indicated by (14). Although all the
algorithms achieve good results with this example, it is clear that
the V2R algorithm with its refinement step is the best of the
algorithms by a substantial margin.

We attempted to compare the V2R algorithm with Zhang and
Yang’s algorithm for a test image with seven light sources using an
image resolution of 641� 641 pixels. However, Zhang and Yang’s
algorithm failed to detect the correct lights since the minimization
of the reconstruction error was converging to a wrong solution. To
overcome this, we performed an exhaustive search and found the
minimum of the reconstruction error for each of the 27 possible
sign combinations of the fsmg. With this modification, Zhang and
Yang’s algorithm correctly found the light vectors, but, as is shown
in Table 1, the V2R algorithm gives better performance.

We have performed experiments with real data using a ping-
pong ball as a calibration object and a desk lamp to approximate
point light sources. No camera calibration was performed and no
corrections were made for the nonuniform albedo of the ping-pong
ball.We found that,with fewer than four lights, the algorithmalways
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Fig. 5. Performance of the V2R algorithm for up to seven source vectors. (a) Shows the mean error in the light direction estimation, while (b) shows the mean error in the
intensity estimation. Each point on the graph is the average of 10 trials: The bars indicate the standard deviation and show that the performance varies substantially for
different light configurations.

Fig. 6. The graphs plot the mean error in the direction of the source vectors versus (a) the signal-to-noise ratio for an image resolution of 641� 641 and (b) the image
resolution for a fixed SNR of 60dB.

TABLE 1
Results for the Case of a Sphere with Seven Lights

The comparison is performed against the original unquantized image.



found the correct light positions with typical errors of a few degrees
and a worst-case error of 10 degrees. With four lights, the algorithm
always found the correct critical lines, but sometimes converged to
the wrong light positions due to poor signal-to-noise ratio. Fig. 7
shows an example of the original image, the detected critical pixels,
and reconstructed image for a case of three lights for the V2R and
Zhang and Yang’s algorithms. Comparing Figs. 7b and 7e, we see
that the detected critical points are denser andmore compact for the
V2R algorithm than for Zhang and Yang’s algorithm. The resultant
reconstruction errors are shown in Figs. 7d and 7g and are
significantly lower for the V2R algorithm than for Zhang and Yang’s
algorithm with mean square errors of 174 and 472, respectively.

6 CONCLUSIONS

In this paper, we have addressed the problem of identifying
multiple light source vectors using a Lambertian sphere as a
calibration object. We have introduced a novel procedure, the V2R
algorithm, for solving this problem and have demonstrated, using
synthesized and real images, that it performs substantially better
than the algorithm described in [10] and [11] even when the image
size is small or the signal-to-noise ratio is poor. This robustness
arises in part because, in contrast to previous approaches, the V2R
algorithm uses all the pixels in the image to estimate the source
vectors rather than a one-dimensional subset of the pixels. We have
identified the circumstances under which the problem lacks a
unique solution, have characterized the set of feasible solutions that
exist in this case, and have shown how this inherent ambiguity can
be resolved. The V2R algorithm will give correct results for these
cases and is able to identify pairs of opposite lights where these are
required. The V2R algorithm will identify any constant bias in the
image intensities and includes a final refinement step that results in
a significant improvement in the accuracy of the detected lights.

The V2R algorithm can be used as an initial step in Shape from

Shadingapplications, to compensate for illuminationvariability, and

to enable the synthesis of correctly shaded objects for Augmented

Reality applications. Futureworkwill aim to extend the algorithm to

include the identification of close and extended light sources.
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Fig. 7. Real sphere image (a) original, (b) detected critical points using V2R, (c) generated image using the detected light sources from V2R, (d) absolute error image
between (a) and (c). (e) Shows the detected critical points using Zhang and Yang’s algorithm, (f) is the corresponding reconstructed image, and (g) is the absolute error
image between (a) and (f). Images (d) and (g) are scaled to a maximum value of 55.
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