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Transactions Briefs

Algorithms for Max and Min Filters with Improved of the most recent input value that attains the current maximum. The
Worst-Case Performance revised algorithm, MAXLINEZ2, is shown in Fig. 1.
The algorithm stores the input samples in a circular bufféf of
Mike Brookes length K, whose contents are initialized to>. In step A, a new input

sampler(n) is stored in the buffer & j], overwriting the now obsolete

o . . . valuez(n — K'). The subsequent steps of the algorithm then update the
Abstract—This brief presents three algorithms for implementing a run- int hthabl] is th . | ithin the buffer. In st
ning-max/min filter of arbitrary order K, in which the average computa- poin erp., S_UC . ab[p] is the maximum ya Ue_W' _m e u er. Instep
tion time per sample is asymptotically independent off when the input B, we distinguish between three possible situations: 1)if) equals
data samples are statistically independent and identically distributed. The or exceeds the previous maximugip — 1), thenz(n) becomes the
algorithms differ in their worst-case performance when acting on corre-  new maximum; 2) otherwise, jf = j, then since the now discarded

lated input signals: for one of the algorithms, the computational complexity g - :
is of order K, while for the other two it is of order log (XK). This brief gives r(n — K) was the previous maximum, we must go to step C to search

the theoretical and experimental performance for a number of realand syn-  1OF @ New maximum; 3) if neither 1) nor 2) applies, we can retain the

thetic input signals. previous maximum, since it exceedg:) and is still within the buffer.
Index Terms—Algorithms, nonlinear filters, rank filters, tree data struc- ~ ONIY for case 2) do we perform step C, in which we search the entire
tures, sorting. buffer for its maximum value. We perform this search by examining the

elements of the buffer in reverse chronological order beginning with the
current samplé[;]. By performing the search in this order, we ensure
I. INTRODUCTION that if the maximum value should arise several times, we willpset
This brief is concerned with algorithms for implementing a runt® correspond to its most recent occurrence. In the final step of the
ning-max filter of orderk’, where the output is equal to the largest oflgorithm, step D, we outpi{p] as the current maximum and return
the previousk input samples. If the input and output of the filter ardO Step A to process the next input sample.

z(n) andy(n) respectively, we have We only perform step C when the previous maximym — 1) cor-
responded to the oldest sample within the buffer — K'). We will,
y(n) = N ax (z(n —k)). 1) therefore, minimize the number of searchgs required by ensuring that
k=0 p always corresponds to the most recent instance ofuheiet max-

The same algorithms can be used to implement a running-min fil{pum- We achieve this by settingn step C to the most recent instance
by reversing all the data comparisons. Running-max and -min filtef§ the maximum value and by updatipgin step B whenever a new
are widely used in the processing of speech and image signals becAljddt sample is equal to the current maximum.
of their robust behavior in the presence of noise and signal nonstation-
arities [1]-[3]. [ll. MAXTREE A LGORITHM

Three different algorithms, MAXLINE2, MAXTREE, and MAX- ¢ \|AXTREE algorithm, shown in Fig. 3, is similar in structure

TREE2, are described below, and their performance on a number oty 41g0rithm introduced in [4] and developed in [5]. Unlike those
input signals is evaluated. The following notation is used in the

- > " ; ; azL]gorithms, however, it has an average computation cost that is asymp-
gorithm descriptions:1p[j] denotes the contents of buffer 'ocat'ontotically independent of’ when ther(n) are independent.

J =0.1.....2)i%;j denotes the remainder w_héris'divid'e.d byj; The algorithm require8 K buffer locations logically arranged as a
3)i @ j denotes the bitwise exclusive-or of the integeasid;; and 4) - inary tree. The numbering of the tree nodesKor= 5 is illustrated
floor (=) denotes the largest integer not exceedinghe algebraically Fig. 2. Each nodg > 1 has a uniqu@arentnumbered floor {/2)
largest and smallest values that can be takem(m) are denoted by 5 5 yniqusiblingnumbered < 1. Nodes 0 and 1 are siblings but do

+oo and—oo, respectively. not have any parent. Trencestorf node; are all those nodes that
lie on the direct path between nogeand node 1. Thé( leaf nodes
Il. MAXLINE2 A LGORITHM are numberedy to 2K — 1 and form a circular buffer that contains

Pitas has presented the MAXLINE algorithm [4] for implementing &€/ most recent input samples: thus, samglie) is stored in buffer
running-max filter. He shows that when thér) are independent and locationb[ K + n%K]. The algorithm operates by storing at eat_:h of
identically distributed (i.i.d.), the expected number of data comparisoff¢ nonleaf nodes a value equal to the maximum of its two children.
per input value is independent of the filter ordér For largek’, how- Whenever we change the value of a leaf node, we need to update the
ever, the computation time of his algorithm is dominated by data mo&€e- Thus, in Fig. 2, if a new value is stored in node 8 we must set node
ments within the storage buffer and is asymptotically proportional b0 the maximum of nodes 8 and 9, then set node 2 to the maximum
K. The data movements can be eliminated and the performance of @&0des 4 and 5, and finally set node 1 to the maximum of nodes 2
algorithm improved by using a circular buffer to store the input value@Nd 3. Itis useful to think of each input value ascending the tree until
If the number of distinct values that can be taken:by) is small com- |t.re.aches a node Wherg it is less than or equal to 'Fhe value stored in its
pared tak, the performance can be further improved by keeping tradiPling node. Node 1 will always contain the maximum of &llleaf

nodes and is therefore the desired output signad).
Pseudocode for the MAXTREE algorithm is given in Fig. 3. All
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1 Initialise: setn =0, p=XK-1, y(-1) = —w and foreach j = 0 to K-1 set b[j] =—o .
2 Step A: setj=n%K, b[j]=x(n).

3 StepB: ifx(n)>y(n-1) then set p =j and go to step D.

4 else if p =j then go to step C.

5 else go to step D.

6 StepC: foreach m=j-1 downto O { if b[m] > b[p] then setp=m }

7 foreach m = K-1 downto j+1 { if b[m] > b[p] then set p =m }

9 StepD: sety(n)=>b[pl, n=n+1 and return to step A.

Fig. 1. MAXLINE2 algorithm.

Level 3: @ @ TABLE |
BUFFER CONTENTS DURING THE OPERATION OFMAXTREE
ALGORITHM; ALTERED CELLS ARE HIGHLIGHTED
Level 2: e
Buffer Contents: 5[*]
n |[xn)] 9 8 7 6 5 4 3 2 1 0
Level 1: Init —0 | =0} —0|—-o0|—0|—-0]—0|-—o0w|]—]|+wo
0 e 0 3 jJ—o|—o0|-w|-—w -0 | -0 +o0
1 2 | -0 | ~0| -0 3 | - 3 3 |+
2 3| <w|-wp3 | 2 3 | o 3 +00
Level 0: ° ° 37 |wiid] 323 ° oo
4 | 4 7 3 2 3 +00
Fig. 2. Logical arrangement of buffer locations for MAXTREE algorithm for 5 1 4 7 3 2 P +o0
K =5. 6 | 214732 1 +00
7 6 4 7161 2 1 +o0
i 8 2 4 2] 6 2 1 & +00
1 Initialise: set n =0, b[0] = +w and foreach j = 1 to 2K-1 set b[j] = —0 . o | 8 & 2 5 > T o
Step A:  setj =K+ (n % K), z=b[j] and b[j] = x(n). 019 5 3 3 > o
Step B: ¥ x(7) > z then go to step C else go to step D e

Step C:  If x(n) < b[jD1] then go to step E
else set j = floor(j/2), b[j] = x(n) and return to step C.

StepD: Ifz < b[j®1] then goto step E thanb[0] are initialized to—co and successive input samples are placed
else set j= floor(j/2), b[jJ=max(d[2/],6[2+1]) and return to step D.  into the circular buffer formed b¥[5] to b[9].

StepE:  set)(n) =b[1}, n=n+1 and return to step A. An example of a sample for which(n) < x(n — K') arises when

n = 8 and the value 0f[8] is decreased from 7 to 2. The comparison in

step B is false and we update the tree using step Davithe:(n—K') =

7. We execute step D four times as follows:

and D. The procedure for updating the tree depends on whether thel) 7 > 5[9] so we sejj = 4 andb[4] = max(b[8], b[9]) = 4;

contents ob[j] have been increased or decreased. Accordingly, in step2) 7 > b[5] so we sejj = 2 andb[2] = max(b[4], b[5]) = 4;

B, we comparer(n) to x(n — K') and proceed either to step C orto  3) 7 > b[3] so we sefj = 1 andb[1] = max(b[2], b[3]) = 6;

step D. The value(n — K) needed for this comparison was saved in 4) 7 < b[0] so the loop terminates and we proceed to step E.

step A as:. For the following sample: = 9, we haves(n) > x(n — K). The
If 2(n) > x(n— K), then the new value will rise at least as far up thealue ofb[9] is increased from 4 to 5, and we update the tree using step

tree as the previous position efn — K'). We must, therefore, ascendC. This step is repeated three times as follows withitially set to 9:

the tree and store the valu¢n) at each node until we reach a point 1) 5 > 58] so we sefj = 4 andb[4] = 5;

where it is less than or equal to it sibling; this procedure is performed 2) 5 > p[5] so we sej = 2 andb[2] = 5;

by step C, which we repeat for as longags:) > b[j © 1], the sibling  3) 5 < 5[3] so we exit the loop and proceed to step E.

of node;. Inline 5, we ascend the tree by setting= floor(j/2), set  Note that when, as here, the value of a leaf nodedesasedi.e.,

the newb[j] to z(n), and_then Ioo_p_t_)ac_:k to line 4 to check if we havem(n) > z(n — K), all the nodes that are updated take:) as their
ascended far enough. Since we initializg@] to +oo, the loop will, at o\ value. In contrast, when the value of a leaf nodieisreasedi.e.,

the latest, terminate when= 1. _ z(n) < z(n — K), the nodes that are updated all previously had the
If, on the other hand;(n) < x(n— K) in step B, then the new value valuez(n — K).

2(n) cannot ascend the tree any higher than the previous position of
z(n—IK). We, therefore, follow the tree up to the level that was attained
by x(n — K') and check that each node is correctly set to the maximum IV. MAXTREEZ ALGORITHM
of its two children; this procedure is performed by step D, which we It is possible to modify the algorithm so that an auxiliary ardgy)
repeat for as long as(n — K') > b[j ¢ 1]. In line 7, we ascend the stores the index of the leaf node whose value is storedjin The
tree by setting = floor(j/2), set the nevb[j] to the maximum of its use of this auxiliary array allows a number of data comparisons to be
children and then loop back to line 6 to check if we have ascended &iminated from the algorithm since whenever a new value is stored at
enough. leaf nodem, we know that all other nodes haviafj] = m must be
In the final step of the algorithm, step E, we outpjuf as the current updated.
maximum and then return to step A for the next input sample. Pseudocode for the revised algorithm MAXTREEZ2 is shown in
The procedure is illustrated in Table | fé¢ = 5. Each row of Fig. 4. In the initialization step, lines 3 and 4 ensure that the aifdy
the table shows the state of the buffer after processing the new injsutnitialized to consistent values wit#j] = j for each leaf node
sample,z(n), given in its second column. All buffer locations otherand d[j] = d[2j] for each nonleaf node. Steps A, B, and E are the

0~ A WN

Fig. 3. MAXTREE algorithm.
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1 Initialise: setn =0, d[0] =0, b[0] =+

2 foreach j =1 to 2K-1 set b[j] =—o .

3 foreach j = K to 2K-1 set d[j] =j.

4 foreach j = K-1 downto 1 set d[j] = d[2/]

5 Step A: setj=K+ (n%K), m=j, z=b[j] and b[j] = x(n).
6 StepB: if x(n) >=z then go to step C1 else go to step C2
7 Step Cl: if d[j/2] # m then go to step C2

8 else set j=floor(j/2), b[j]=x(n) and return to step C1
9 Step C2: if x(n) < b[jD1] then go to step E
10 else set j=floor(j/2), b[j]=x(n), d[j}=m and return to step C2

11Step D1:  if d[j/2] # m then go to step E else set j/=floor(j/2), and go to step D2
12 Step D2:  if [2/] = b[2j+1] then set b[j] = b[2/], d[j] = d[2/] and return to step D1
13 else set b[j] = b{2j+1], d[j] = d[2j+1] and return to step D1

14 Step E: set y(n) = b[1], n=n+1 and return to step A.

Fig. 4. MAXTREE?2 algorithm.

same as for the MAXTREE algorithm, except that a new variable  For simplicity, we restrict our analysis of the tree-based algorithms
is introduced in step A to remember the node in whi¢h) has been to the case wheR' is an exact power of two. For this case, all nodes at
stored. As before, the valugn — K') is saved as in step A. level R of the tree have exactly® leaf-node descendants. We define

If #(n) > »(n — K), we update the tree using steps C1 and C2. Whe “R-cousins” of the input sample that is stored at a particular leaf
know thatz(n) will ascend at least as far agn — I'), soin step C1we node to be the” input samples (including itself) whose leaf-nodes
ascend the tree settinfj] = x(n) for each node wherd{j] = m.We share with it an ancestor at levBlof the tree. It is useful to define the
then proceed to step C2 which, as in the MAXTREE algorithm, prop&sllowing quantities:

gatese(n) up the tree until it no longer exceeds the value of its sibling. log,(K'), the highest level in the tree, as shown in Fig. 2;
Whenever we séffj] = x(n), we must also update the auxiliary arrayp(h) probability thatz(n) > x(n — K') and thatc(n) rises to
by settingd[j] = m. precisely leveh in the tree;

If z(n) < xz(n — K), we update the tree using steps D1 and D2(g; )  conditional probability that(rn— K') had risen to precisely
Sincex(n) cannot ascend higher thafin — &), the nodes that need level g in the tree at the time of sample given the condi-
updating are precisely those nodes wifli] = m. For as long as this tion of p(h) above;
condition holds, we ascend the tree by setting floor(j/2) in step &,n equal to one iy = %, and zero otherwise.

D1 and setting[j] = max(b[2j], b[2j + 1]) in step D2. Thanax() We can derive an expression fef%) by noting thatz(n) will rise
operation is here performed using an explicit comparison because@a level>h in the tree if, and only if, it is the largest of itscousins,
well as updating[j], we must setl[j] to the corresponding leaf-nodei.e. the largest of” values. If, in addition, we require that{n) >
index that is stored in eithel{2;] or d[2j + 1]. x(n — K), thenz(n) must be the largest ¢fl + 2" )values, and since

Although the algorithm is somewhat more complex than MAXall values are i.i.d., this has probability + 2")~*. To calculate the
TREE, the number of data comparisons is significantly reducguiobability that it rises to precisely levk| we subtract the probability
because in steps C1 and D1 we instead use index comparisonshti it rises to a level(h + 1) from the probability that it rises to a
determine how far up the tree to ascend. level >h. Thus

V. COMPUTATIONAL COMPLEXITY p(h) = (142" = (1= 600 )(1 4 2",

For each algorithm, we will calculat®/, the expected number of
data comparisons per input sample for the case when the input vallibe factor(1 — &,1.) is needed because whén= L, the probability
are i.i.d. samples drawn from a continuous distribution. We assume tHzatz(n) rises to a leveb(h + 1) is zero.
the probability of two identical values within the buffer is negligible.  If the condition ofp(h) holds, thenz(n — K) cannot have been
The MAXLINEZ2 algorithm normally entails only one data comparhigher in the tree than levélsincex(n) > «(n — K'). The probability
ison, which is made in step B. The only exception arises when the valbat it was at a leveb g equals2™ 7, since it is just the probability that
being discarded from the buffefn — K) is in fact the current max- it was the greatest of itg-cousins. Following the previous argument,
imum. In this case, searching the buffer for a new maximum requiresve deduce that
further K — 1 data comparisons. This situation occurs whémn — ')
is the largest of thé& + 1 valuesz(n — K), ..., z(n), and for i.i.d.
input samples has a probability 6K + 1) *. The expected number
of data comparisons per input sample is thus given by

g(gi h) =277 = (1= 640)27FY,

We note that, by symmetry, the probabilitiee:) and¢(g; i) re-
K—1 2 Ko main unchanged if the quantitie$n) andx(» — K) in their defini-
Tl 2— i 2. tions are interchanged.

In the MAXTREE algorithm, one data comparison is always made
If the input data samples are correlated, the above analysis no lonigestep B, and further comparisons are made in either step C or step D
holds. The worst possible input signal for this algorithm is one thatcording to whether or netn) > =(n— K). Inthe first case, if:(n)
falls monotonically: for this signald = K, since the largest value in ends up at level in the tree then step C will be executkdr 1 times
the buffer is always the oldest sample and a search is required at evarg will entail’. + 1 data comparisons. In the second case(if — k)
sample. The best possible input signal is one that is nondecreasing, &ad previously at levél in the tree, then step D will be executkd- 1
in this case no searches are required}se= 1. times for a total o~ + 1 data comparisond: + 1 from line 6 andh

M=1+
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o 4t MT i In the MAXTREE?2 algorithm, one data comparison is always made
TE1 in step B and further comparisons are made in either step C or step
g 3 MT2 D according to whether or nat(n) > xz(n — K). In the first case,
g 2 if (n) ends up at levek in the tree and:(n — K) was previously
g L ML2 at level g, then steps C1 and C2 are execugedt 1 andh — g + 1
8 1 ’ times, respectively. In the second case;(it — K') was previously at
8 level v in the tree, then steps D1 and D2 will be executed 1 andh
0 5 10 20 50 100 200 times respectively. Only steps C2 and D2 entail data comparisons, so
filter order the number of data comparisons in these two casks-ig + 1 andh

respectively. We can express the average number of data comparisons
Fig. 5. Number of data comparisons per sample for the MAXLINE (ML)as

MAXLINE2 (ML2), MAXTREE (MT) and MAXTREE2 (MT2) algorithms as
a function of filter of order for uniform random input data.

L h
s n— — M=1+> > (h—g+p(h)g(g: h)-l—th (h)
() / h=0 g=0 h=0
% MT /
s 2 ML2
§ :1—1—2]7]1)(2}1—1—1—2(](1(],]7))
S 1 h=0
£ ML/40 (o)
— g9 g9
0 _1—|—Zp(h 2]1+1—Zg2 —i—ZqZ
5 10 20 50 100 200 h=0
filter order
] o _1+th 2h+1—2279
Fig. 6. Execution time per sample for the MAXLINE (ML), MAXLINE2
(ML2), MAXTREE (MT) and MAXTREE2 (MT2) algorithms as a function
of filter of order for uniform random input data. Results for the ML algorithm _h
have been divided by 40. =1+ ZP m (2n+27")

h=0

8 ' _1—1—2(211—1—2_’1) (1+2’l)_

:‘_:’. 6 | h=0
£ MT L1 _
% 40 - (’)h + Q*h) (1 + 2’”1)
(%] Z
8 | — T2 =
s 2t L
g ML2 - -1 ]
e :1.5+Z(2—2 h) (1+2”) _L—cc, 9 7935,
8 o . ,
1 10 100 1000

Time Constant of low-pass filter (samples)

If the input data are not independent but are monotonically in-
Fig. 7. Number of data comparisons per sample for the MAXLINE2 (MLZ)C . P Bi d P | d coi Y d
MAXTREE (MT) and MAXTREE2 (MT2) algorithms for a filter of order 12 C'€asing, step B Is executed once per sample and step C2 Is execute

for low-pass filtered uniform random input data. 1 4+ L times, giving a total ofd/ = 2 4 L. For monotonically
decreasing data this decreasesifo= 1 + L, since step D2 is only

. . . . executedL times.
from line 7. Both cases arise with probabiljiyi ), so we can express

the average number of data comparisons as

VI. RESULTS

M=1 +i(h + 1)p(h) -I-i(?h + 1)p(h) The four al_gorithm_s discqssed aboye were implemen_ted in C and
prd — evaluated using an input signal consisting of 500000 integer sam-
L ples uniformly distributed in the range (0100000). The average
=1 +Z(3h +2)p(h) number of comparisons per sample is shown in Fig. 5 as a func-
h=0 tion of filter order and matches the theoretical predictions very

L L-1 closely. The root-mean-square deviation from theory is21@ith
=1 +Z(3h +2)(1+2M)7" —Z(3h +2)(1 427! a maximum discrepancy of 0.012. The program execution time per
h=0 h=0 sample for each algorithm is shown in Fig. 6 when using a SUN

b1 _ b1 SPARC 5 workstation. The execution times for the original MAX-

=14+ (Bh+2)(1+2")7" =3 (3h - 1)(1+2") LINE algorithm have been divided by 40 and, as expected, are far

h=0
L
=2+3) (1+2")7" £==,4.2935.

h=1

greater than for the other algorithms. The original MAXLINE algo-
rithm is not considered further in this paper as its revised version,
MAXLINEZ2, is uniformly superior.

Figs. 7 and 8 show the results for fixed ordér= 128 when the

If the input data are not independent but are monotonically imput data is passed through a low-pass filter with transfer function
creasing, step B is executed once per sample and step C is execiféd) = (1 — ¢~ '/7=~")~" wherer denotes the time constant of
L + 1 times, giving a total ofA/ = 2 + L. For monotonically the filter. It can be seen that this correlated input data degrades the per-
decreasing data, this increases\fo= 2 + 2L, since step D is now formance of all the algorithms with MAXLINE2 affected much more
executed and entails two comparisons. than the others.
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Table 1l gives the performance of the algorithms for the following 4
six input signals. 0 MT2
1) Random:z:(n) = random number in range 0 to 100 000. g 3 T
2) Binary:z(n) = random number either 0 or 1. g 2
3) Constantz(n) = 0. d ML2
4) Increasing Sawtooth:(n) = n%100 000. £ 1
5) Decreasing Sawtooth(n) = —(»%100000). 0 )
6) Speech sampled at 16kHz: TIMIT file test/dr1/faksO/sal [6]. 1 10 100 1000

The number of samples was 317440 for the speech signal and Time Constant of low-pass filter (samples)

500 000 samples for all others. The table gives the average execu‘;%r? 8. Execution time per sample for the MAXLINE2 (ML2), MAXTREE

times in microse_cond§ per input sample for= 10 and K" = 128.  (T) and MAXTREE2 (MT2) algorithms for a filter of order 128 for low-pass
The table also gives, in parentheses, the average number of data ciM@red uniform random input data.

parisons per input sample. The computational costs of the MAXTREE

and MAXTREE?2 algorithms exceed that of the MAXLINE2 algorithm TABLE I
by 44% and 74%, respectively, for i.i.d. input data; for speech datafFXECUTION TIMER PER SAMPLE (IN 1+S) AND, IN PARENTHESES AVERAGE
these numbers fall to 32% and 64%. NUMBER OF DATA COMPARISONSPER UNIT SAMPLE
MAXLINE2 MAXTREE MAXTREE2
VII. Discussion k=10 k=128 | k=10 k=128 | k=10  K=128

The results verify the theoretical predictions and confirm that fc
both speech and random i.i.d. data, the execution time and the num
of data comparisons are largely independent of the filter order. Binary 1300) 13(10) |2028 2028 |2723) 273

MAXLINE2 is based on the MAXLINE algorithm from [4], but be-
cause it uses a circular buffer to avoid data movements, it has a mt Constant 13(L.0) 1310 [17@20 1720 |24(20) 24(.0)
lower computational cost as shown in Fig. 6. The two algorithms wi
normally involve identical data comparisons. However, whereas MA) Increasing [ 13(1.0)  13(1.0) |32(54) 47(9.0) |40(54) 6.0(90
LINE needs to search the entire buffer whenevér — K) equals
the current maximum, MAXLINE2 only does so when it is the sole
instance of the current maximum. Thus, MAXLINE2 never require
more data comparisons than MAXLINE and will require fewer when
ever the current maximum occurs more than once within the buffer.

The MAXTREE and MAXTREE2 algorithms use a binary tree . . . . .
o . . . algorithm as this uses index comparisons rather than data comparisons
structure that is similar to that of algorithms described by Réteel. : .
; . - . to control the number of loop iterations.
in [4] and [5] but store their samples in a circular buffer rather than . . . . )
. ; . - The algorithms differ in their storage requirements: the MAXLINE2
a shift register. The use of a circular buffer gives three advantage?

1) the I data movements per sample that dominate the computat%ﬁomhm only requires a data buffer of lengkh whereas the tree-

Random |17(1.8) 17@20) |24@0) 2503) [29(@26) 3028

Decreasing | 7.3 (10.0) 78.4(128) [3.9(8.8) 6.1(16.0) |52(44) 8.9(8.0)

Speech 23(28) 2027 |27@7 27@9 [3331) 34(32)

requirements of the Pitas algorithms are eliminated; 2) throughout %&Ssgzagggmmi :233::i:l;:Zi:(ﬁg?yn%?éir;?ri?g?Tértwgiﬁvﬁr:(e-

time in the buffer an input sample stays in the same position Wlthlﬁ?AXLINEZ algorithm has the smallest code size but since all three

the tree, and hence retains the same ancestor nodes; 3) no algor Pm . . . LT )
P . NI . algorithms are compact and this is unlikely to be a significant consid-
modifications are required whédng, (k) is a noninteger. Advantage eration

2) is the most significant, and it is this that reduces the average
number of data comparisons for i.i.d. data frovg, (K') for the Pitas
algorithms to a constant that is independenkof

In some applications, the comparison of two data values may in-Three algorithms for a running max filter have been presented each
volve many operations. The MAXTREE2 algorithm generally requirasf which has as execution time that is independent of the filter order
fewer data comparisons than the MAXTREE algorithm, and will therder i.i.d. data samples. The MAXLINEZ algorithm is an improved ver-
fore give improved performance in situations where data comparisaisn of the algorithm in [4] and offers very good average performance
are expensive. The MAXLINE2 algorithm has the lowest number @ i.i.d. data. For real-time applications, however, latency restrictions
data comparisons for i.i.d. data but, as Fig. 7 demonstrates, this daad data buffering requirements are determined by the worst-case com-
not remain true for strongly correlated input data. Even for the mildlyutation time and, even for i.i.d. data, this is proportionakio For
correlated speech data, the average number of data comparisons foctheelated input data, such as arises in speech or image processing,
MAXTREE2 algorithm is only 20% more than for the MAXLINE2 al- the performance is less good and ultimately becomes worse than the
gorithm. tree-based algorithms.

The worst-case execution time arises when the input signal is monofor i.i.d input data, the MAXTREE and MAXTREEZ2 have greater
tonically decreasing (MAXLINE2 and MAXTREE) or increasingcomputational requirements than the MAXLINEZ2 algorithm on av-
(MAXTREE2). For these cases, the number of data comparisogsage, but their worst-case requirements are proportionilgtdy’)
matches theoretical predictions and the execution time is only wfther than/'. Of the two algorithms, MAXTREE2 has a higher over-
orderlog(K) for the tree-based algorithms, but is of ordérfor the head but entails fewer data comparisons, and will therefore have a
MAXLINE2. lower computational cost in applications where data comparisons are

Comparing the first three rows of the table, we see that the perfaxpensive. These algorithms require twice as much data memory as the
mance of all algorithms improves uniformly as the number of distinéAXLINE2 algorithm and MAXTREEZ2 require, in addition an auxil-
data values is reduced. The improvement is least with the MAXTREHR&RY index array of siz K.

VIII. CONCLUSION
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In summary, the MAXLINE2 algorithm is the clear winner in
terms of data buffer requirements and average execution time on i.i.d.
data. However, for applications involving correlated input data or for
real-time applications where worst-case execution time is important,
the MAXTREE and MAXTREE?2 algorithms are the preferred choice.
Finally, it should be noted that although the Pitas algorithm from [5]
is, as noted above, uncompetitive as a software algorithm, it remains a
good choice for a parallel hardware implementation since it requires
only K registers andog,(K) comparators.
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(a) Tapered CMOS buffer and (b) its timing diagram.
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Fig. 2. (a) Feedback-controlled split-path CMOS buffer and (b) its timing

Abstract—A new CMOS buffer without short-circuit power consump- !
diagram.

tion is proposed. The gate- driving signal of the output pull-up (pull-down)
transistor is fed back to the output pull-down (pull-up) transistor to get
tri-state output momentarily, eliminating the short-circuit power consump-
tion. The HSPICE simulation results verified the operation of the proposed
buffer and showed the power-delay product is about 15% smaller than con-
ventional tapered CMOS buffer.

power consumption of a CMOS buffer driving a capacitive load con-
sists of dynamic switching power and short-circuit power. While the
switching-power consumption is unavoidable to drive a capacitive load,
short-circuit power is a waste of current and should be minimized or
even eliminated for low-power operation.

A conventional tapered CMOS buffer, shown in Fig. 1(a), consumes
both the dynamic switching power and short-circuit power due to si-

With the high integration level of CMOS very large scale integrar_nultaneous turn-on of the pull-up/pull-down transistors, as illustrated

tion (VLSI), the capacitive load of periodic signals such as clock h % Fig. 1(b) [1]. Short-circuit power consumption can be eliminated by

become very large. With such a large capacitive load, driving circui rsl-statlng the output node momentarily before every output signal tran-

: . gltion. In [2], asymmetric inverters were used as waveform shaper to
consume a relatively large portion of the total power of a VLSI. Th . . ) L
get momentary tri-state output period, but the propagation delay is in-

creased by the asymmetric inverters. As an alternative, a feedback-con-
Manuscript received June 1999; revised June 2000. This paper was recamHed split-path (FS) CMOS buffer was proposed, where the output

mended by Associate Editor M. Bayoumi. . signal is fed back to control the output pull-up and pull-down transis-
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tute of Technology, Zurich, Switzerland. He is now with Samsung Electronicig_rsx_ as f5h0W” in Fig. 2_, tr|-§tat|ng the output momentarlly apd thereby
Kiheung, Korea. eliminating the short-circuit power consumption [3]. But, in the FS
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