
930 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 9, SEPTEMBER 2000

Transactions Briefs__

Algorithms for Max and Min Filters with Improved
Worst-Case Performance

Mike Brookes

Abstract—This brief presents three algorithms for implementing a run-
ning-max/min filter of arbitrary order , in which the average computa-
tion time per sample is asymptotically independent of when the input
data samples are statistically independent and identically distributed. The
algorithms differ in their worst-case performance when acting on corre-
lated input signals: for one of the algorithms, the computational complexity
is of order , while for the other two it is of order log(). This brief gives
the theoretical and experimental performance for a number of real and syn-
thetic input signals.

Index Terms—Algorithms, nonlinear filters, rank filters, tree data struc-
tures, sorting.

I. INTRODUCTION

This brief is concerned with algorithms for implementing a run-
ning-max filter of orderK, where the output is equal to the largest of
the previousK input samples. If the input and output of the filter are
x(n) andy(n) respectively, we have

y(n) =
K�1

max
k=0

(x(n� k)) : (1)

The same algorithms can be used to implement a running-min filter
by reversing all the data comparisons. Running-max and -min filters
are widely used in the processing of speech and image signals because
of their robust behavior in the presence of noise and signal nonstation-
arities [1]–[3].

Three different algorithms, MAXLINE2, MAXTREE, and MAX-
TREE2, are described below, and their performance on a number of
input signals is evaluated. The following notation is used in the al-
gorithm descriptions:1)b[j] denotes the contents of buffer location
j = 0; 1; . . .; 2) i%j denotes the remainder wheni is divided byj;
3) i� j denotes the bitwise exclusive-or of the integersi andj; and 4)
floor (z) denotes the largest integer not exceedingz. The algebraically
largest and smallest values that can be taken byx(n) are denoted by
+1 and�1, respectively.

II. MAXLINE2 A LGORITHM

Pitas has presented the MAXLINE algorithm [4] for implementing a
running-max filter. He shows that when thex(n) are independent and
identically distributed (i.i.d.), the expected number of data comparisons
per input value is independent of the filter orderK. For largeK, how-
ever, the computation time of his algorithm is dominated by data move-
ments within the storage buffer and is asymptotically proportional to
K. The data movements can be eliminated and the performance of the
algorithm improved by using a circular buffer to store the input values.
If the number of distinct values that can be taken byx(n) is small com-
pared toK, the performance can be further improved by keeping track

Manuscript received April 1998; revised April 2000. This paper was recom-
mended by Associate Editor N. Ranganathan.

The author is with the Electrical and Electronic Engineering Department, Im-
perial College of Science, Technology and Medicine, London SW7 2BT, U.K.

Publisher Item Identifier S 1057-7130(00)07753-3.

of the most recent input value that attains the current maximum. The
revised algorithm, MAXLINE2, is shown in Fig. 1.

The algorithm stores the input samples in a circular bufferb[�] of
lengthK, whose contents are initialized to�1. In step A, a new input
samplex(n) is stored in the buffer atb[j], overwriting the now obsolete
valuex(n�K). The subsequent steps of the algorithm then update the
pointerp, such thatb[p] is the maximum value within the buffer. In step
B, we distinguish between three possible situations: 1) ifx(n) equals
or exceeds the previous maximum,y(n � 1), thenx(n) becomes the
new maximum; 2) otherwise, ifp = j, then since the now discarded
x(n�K) was the previous maximum, we must go to step C to search
for a new maximum; 3) if neither 1) nor 2) applies, we can retain the
previous maximum, since it exceedsx(n) and is still within the buffer.
Only for case 2) do we perform step C, in which we search the entire
buffer for its maximum value. We perform this search by examining the
elements of the buffer in reverse chronological order beginning with the
current sampleb[j]. By performing the search in this order, we ensure
that if the maximum value should arise several times, we will setp

to correspond to its most recent occurrence. In the final step of the
algorithm, step D, we outputb[p] as the current maximum and return
to step A to process the next input sample.

We only perform step C when the previous maximumy(n� 1) cor-
responded to the oldest sample within the bufferx(n �K). We will,
therefore, minimize the number of searches required by ensuring that
p always corresponds to the most recent instance of the current max-
imum. We achieve this by settingp in step C to the most recent instance
of the maximum value and by updatingp in step B whenever a new
input sample is equal to the current maximum.

III. MAXTREE A LGORITHM

The MAXTREE algorithm, shown in Fig. 3, is similar in structure
to an algorithm introduced in [4] and developed in [5]. Unlike those
algorithms, however, it has an average computation cost that is asymp-
totically independent ofK when thex(n) are independent.

The algorithm requires2K buffer locations logically arranged as a
binary tree. The numbering of the tree nodes forK = 5 is illustrated
in Fig. 2. Each nodej > 1 has a uniqueparentnumbered floor (j=2)
and a uniquesiblingnumberedj�1. Nodes 0 and 1 are siblings but do
not have any parent. Theancestorsof nodej are all those nodes that
lie on the direct path between nodej and node 1. TheK leaf nodes
are numberedK to 2K � 1 and form a circular buffer that contains
theK most recent input samples: thus, samplex(n) is stored in buffer
locationb[K + n%K]. The algorithm operates by storing at each of
the nonleaf nodes a value equal to the maximum of its two children.
Whenever we change the value of a leaf node, we need to update the
tree. Thus, in Fig. 2, if a new value is stored in node 8 we must set node
4 to the maximum of nodes 8 and 9, then set node 2 to the maximum
of nodes 4 and 5, and finally set node 1 to the maximum of nodes 2
and 3. It is useful to think of each input value ascending the tree until
it reaches a node where it is less than or equal to the value stored in its
sibling node. Node 1 will always contain the maximum of allK leaf
nodes and is therefore the desired output signal,y(n).

Pseudocode for the MAXTREE algorithm is given in Fig. 3. All
buffer locations are initialized to�1 except forb[0], which is per-
manently set to+1. In step A of the algorithm, we save the new input
samplex(n) in the circular buffer at positionb[j], replacing the pre-
vious contentsx(n�K), which are retained asz for use in steps B

1057–7130/00$10.00 © 2000 IEEE

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 9, SEPTEMBER 2000 931

Fig. 1. MAXLINE2 algorithm.

Fig. 2. Logical arrangement of buffer locations for MAXTREE algorithm for
K = 5.

Fig. 3. MAXTREE algorithm.

and D. The procedure for updating the tree depends on whether the
contents ofb[j] have been increased or decreased. Accordingly, in step
B, we comparex(n) to x(n � K) and proceed either to step C or to
step D. The valuex(n�K) needed for this comparison was saved in
step A asz.

If x(n) > x(n�K), then the new value will rise at least as far up the
tree as the previous position ofx(n�K). We must, therefore, ascend
the tree and store the valuex(n) at each node until we reach a point
where it is less than or equal to it sibling; this procedure is performed
by step C, which we repeat for as long asx(n) > b[j � 1], the sibling
of nodej. In line 5, we ascend the tree by settingj = oor(j=2), set
the newb[j] to x(n), and then loop back to line 4 to check if we have
ascended far enough. Since we initializedb[0] to+1, the loop will, at
the latest, terminate whenj = 1.

If, on the other hand,x(n) � x(n�K) in step B, then the new value
x(n) cannot ascend the tree any higher than the previous position of
x(n�K). We, therefore, follow the tree up to the level that was attained
byx(n�K) and check that each node is correctly set to the maximum
of its two children; this procedure is performed by step D, which we
repeat for as long asx(n � K) > b[j � 1]. In line 7, we ascend the
tree by settingj = oor(j=2), set the newb[j] to the maximum of its
children and then loop back to line 6 to check if we have ascended far
enough.

In the final step of the algorithm, step E, we outputb[1] as the current
maximum and then return to step A for the next input sample.

The procedure is illustrated in Table I forK = 5. Each row of
the table shows the state of the buffer after processing the new input
sample,x(n), given in its second column. All buffer locations other

TABLE I
BUFFERCONTENTSDURING THE OPERATION OFMAXTREE

ALGORITHM; ALTEREDCELLS ARE HIGHLIGHTED

thanb[0] are initialized to�1 and successive input samples are placed
into the circular buffer formed byb[5] to b[9].

An example of a sample for whichx(n) � x(n �K) arises when
n = 8 and the value ofb[8] is decreased from 7 to 2. The comparison in
step B is false and we update the tree using step D withz = x(n�K) =
7. We execute step D four times as follows:

1) 7 > b[9] so we setj = 4 andb[4] = max(b[8]; b[9]) = 4;
2) 7 > b[5] so we setj = 2 andb[2] = max(b[4]; b[5]) = 4;
3) 7 > b[3] so we setj = 1 andb[1] = max(b[2]; b[3]) = 6;
4) 7 � b[0] so the loop terminates and we proceed to step E.
For the following samplen = 9, we havex(n) > x(n �K). The

value ofb[9] is increased from 4 to 5, and we update the tree using step
C. This step is repeated three times as follows withj initially set to 9:

1) 5 > b[8] so we setj = 4 andb[4] = 5;
2) 5 > b[5] so we setj = 2 andb[2] = 5;
3) 5 � b[3] so we exit the loop and proceed to step E.

Note that when, as here, the value of a leaf node isincreased, i.e.,
x(n) > x(n � K), all the nodes that are updated takex(n) as their
new value. In contrast, when the value of a leaf node isdecreased, i.e.,
x(n) < x(n � K), the nodes that are updated all previously had the
valuex(n � K).

IV. MAXTREE2 ALGORITHM

It is possible to modify the algorithm so that an auxiliary arrayd[j]
stores the index of the leaf node whose value is stored inb[j]. The
use of this auxiliary array allows a number of data comparisons to be
eliminated from the algorithm since whenever a new value is stored at
leaf nodem, we know that all other nodes havingd[j] = m must be
updated.

Pseudocode for the revised algorithm MAXTREE2 is shown in
Fig. 4. In the initialization step, lines 3 and 4 ensure that the arrayd[�]
is initialized to consistent values withd[j] = j for each leaf node
andd[j] = d[2j] for each nonleaf node. Steps A, B, and E are the

932 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 9, SEPTEMBER 2000

Fig. 4. MAXTREE2 algorithm.

same as for the MAXTREE algorithm, except that a new variablem
is introduced in step A to remember the node in whichx(n) has been
stored. As before, the valuex(n �K) is saved asz in step A.

If x(n) > x(n�K), we update the tree using steps C1 and C2. We
know thatx(n) will ascend at least as far asx(n�K), so in step C1 we
ascend the tree settingb[j] = x(n) for each node whered[j] = m. We
then proceed to step C2 which, as in the MAXTREE algorithm, propa-
gatesx(n) up the tree until it no longer exceeds the value of its sibling.
Whenever we setb[j] = x(n), we must also update the auxiliary array
by settingd[j] = m.

If x(n) � x(n � K), we update the tree using steps D1 and D2.
Sincex(n) cannot ascend higher thanx(n �K), the nodes that need
updating are precisely those nodes withd[j] = m. For as long as this
condition holds, we ascend the tree by settingj = oor(j=2) in step
D1 and settingb[j] = max(b[2j]; b[2j + 1]) in step D2. Themax()
operation is here performed using an explicit comparison because as
well as updatingb[j], we must setd[j] to the corresponding leaf-node
index that is stored in eitherd[2j] or d[2j + 1].

Although the algorithm is somewhat more complex than MAX-
TREE, the number of data comparisons is significantly reduced
because in steps C1 and D1 we instead use index comparisons to
determine how far up the tree to ascend.

V. COMPUTATIONAL COMPLEXITY

For each algorithm, we will calculateM , the expected number of
data comparisons per input sample for the case when the input values
are i.i.d. samples drawn from a continuous distribution. We assume that
the probability of two identical values within the buffer is negligible.

The MAXLINE2 algorithm normally entails only one data compar-
ison, which is made in step B. The only exception arises when the value
being discarded from the bufferx(n �K) is in fact the current max-
imum. In this case, searching the buffer for a new maximum requires a
furtherK�1 data comparisons. This situation occurs whenx(n�K)
is the largest of theK + 1 valuesx(n �K); . . . ; x(n), and for i.i.d.
input samples has a probability of(K + 1)�1. The expected number
of data comparisons per input sample is thus given by

M = 1 +
K � 1

K + 1
= 2�

2

K + 1
K!1
����! 2:

If the input data samples are correlated, the above analysis no longer
holds. The worst possible input signal for this algorithm is one that
falls monotonically: for this signalM = K, since the largest value in
the buffer is always the oldest sample and a search is required at every
sample. The best possible input signal is one that is nondecreasing, and
in this case no searches are required, soM = 1.

For simplicity, we restrict our analysis of the tree-based algorithms
to the case whenK is an exact power of two. For this case, all nodes at
levelR of the tree have exactly2R leaf-node descendants. We define
the “R-cousins” of the input sample that is stored at a particular leaf
node to be the2R input samples (including itself) whose leaf-nodes
share with it an ancestor at levelR of the tree. It is useful to define the
following quantities:
L log2(K), the highest level in the tree, as shown in Fig. 2;
p(h) probability thatx(n) > x(n �K) and thatx(n) rises to

precisely levelh in the tree;
q(g; h) conditional probability thatx(n�K) had risen to precisely

levelg in the tree at the time of samplen, given the condi-
tion of p(h) above;

�gh equal to one ifg = h, and zero otherwise.
We can derive an expression forp(h) by noting thatx(n) will rise

to a level�h in the tree if, and only if, it is the largest of itsh-cousins,
i.e. the largest of2h values. If, in addition, we require thatx(n) >
x(n�K), thenx(n) must be the largest of(1+ 2h)values, and since
all values are i.i.d., this has probability(1 + 2h)�1. To calculate the
probability that it rises to precisely levelh, we subtract the probability
that it rises to a level�(h + 1) from the probability that it rises to a
level�h. Thus

p(h) = (1 + 2h)�1 � (1� �hL)(1 + 2h+1)�1:

The factor(1� �hL) is needed because whenh = L, the probability
thatx(n) rises to a level�(h+ 1) is zero.

If the condition ofp(h) holds, thenx(n � K) cannot have been
higher in the tree than levelh sincex(n) > x(n�K). The probability
that it was at a level�g equals2�g, since it is just the probability that
it was the greatest of itsg-cousins. Following the previous argument,
we deduce that

q(g; h) = 2�g � (1� �gh)2
�(g+1):

We note that, by symmetry, the probabilitiesp(h) andq(g; h) re-
main unchanged if the quantitiesx(n) andx(n � K) in their defini-
tions are interchanged.

In the MAXTREE algorithm, one data comparison is always made
in step B, and further comparisons are made in either step C or step D
according to whether or notx(n) > x(n�K). In the first case, ifx(n)
ends up at levelh in the tree then step C will be executedh+ 1 times
and will entailh+1 data comparisons. In the second case, ifx(n�K)
was previously at levelh in the tree, then step D will be executedh+1
times for a total of2h+ 1 data comparisons:h+ 1 from line 6 andh

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 9, SEPTEMBER 2000 933

Fig. 5. Number of data comparisons per sample for the MAXLINE (ML),
MAXLINE2 (ML2), MAXTREE (MT) and MAXTREE2 (MT2) algorithms as
a function of filter of order for uniform random input data.

Fig. 6. Execution time per sample for the MAXLINE (ML), MAXLINE2
(ML2), MAXTREE (MT) and MAXTREE2 (MT2) algorithms as a function
of filter of order for uniform random input data. Results for the ML algorithm
have been divided by 40.

Fig. 7. Number of data comparisons per sample for the MAXLINE2 (ML2),
MAXTREE (MT) and MAXTREE2 (MT2) algorithms for a filter of order 128
for low-pass filtered uniform random input data.

from line 7. Both cases arise with probabilityp(h), so we can express
the average number of data comparisons as

M =1 +

L

h=0

(h+ 1)p(h) +

L

h=0

(2h+ 1)p(h)

= 1 +

L

h=0

(3h+ 2)p(h)

= 1 +

L

h=0

(3h+ 2)(1 + 2h)�1 �

L�1

h=0

(3h+ 2)(1 + 2h+1)�1

=1 +

L

h=0

(3h+ 2)(1 + 2h)�1 �

L

h=1

(3h� 1)(1 + 2h)�1

=2 + 3

L

h=1

(1 + 2h)�1 L!1
����! 4:2935:

If the input data are not independent but are monotonically in-
creasing, step B is executed once per sample and step C is executed
L + 1 times, giving a total ofM = 2 + L. For monotonically
decreasing data, this increases toM = 2 + 2L, since step D is now
executed and entails two comparisons.

In the MAXTREE2 algorithm, one data comparison is always made
in step B and further comparisons are made in either step C or step
D according to whether or notx(n) > x(n � K). In the first case,
if x(n) ends up at levelh in the tree andx(n � K) was previously
at levelg, then steps C1 and C2 are executedg + 1 andh � g + 1
times, respectively. In the second case, ifx(n�K) was previously at
levelh in the tree, then steps D1 and D2 will be executedh+ 1 andh
times respectively. Only steps C2 and D2 entail data comparisons, so
the number of data comparisons in these two cases ish� g + 1 andh
respectively. We can express the average number of data comparisons
as

M =1+

L

h=0

h

g=0

(h� g + 1)p(h)q(g; h) +

L

h=0

hp(h)

= 1 +

L

h=0

p(h) 2h+ 1�

h

g=0

gq(g; h)

= 1 +

L

h=0

p(h) 2h+ 1�

h

g=0

g2�g +

h�1

g=0

g2�(g+1)

=1+

L

h=0

p(h) 2h+ 1�

h

g=1

2�g

=1+

L

h=0

p(h) 2h+ 2�h

=1+

L

h=0

2h+ 2�h 1 + 2h
�1

�

L�1

h=0

2h+ 2�h 1 + 2h+1
�1

=1:5 +

L

h=1

2� 2�h 1 + 2h
�1

L!1
����! 2:7935:

If the input data are not independent but are monotonically in-
creasing, step B is executed once per sample and step C2 is executed
1 + L times, giving a total ofM = 2 + L. For monotonically
decreasing data this decreases toM = 1 + L, since step D2 is only
executedL times.

VI. RESULTS

The four algorithms discussed above were implemented in C and
evaluated using an input signal consisting of 500 000 integer sam-
ples uniformly distributed in the range (0 100 000). The average
number of comparisons per sample is shown in Fig. 5 as a func-
tion of filter order and matches the theoretical predictions very
closely. The root-mean-square deviation from theory is 10�2 with
a maximum discrepancy of 0.012. The program execution time per
sample for each algorithm is shown in Fig. 6 when using a SUN
SPARC 5 workstation. The execution times for the original MAX-
LINE algorithm have been divided by 40 and, as expected, are far
greater than for the other algorithms. The original MAXLINE algo-
rithm is not considered further in this paper as its revised version,
MAXLINE2, is uniformly superior.

Figs. 7 and 8 show the results for fixed orderK = 128 when the
input data is passed through a low-pass filter with transfer function
H(z) = (1 � e�1=�z�1)�1 where� denotes the time constant of
the filter. It can be seen that this correlated input data degrades the per-
formance of all the algorithms with MAXLINE2 affected much more
than the others.

934 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 9, SEPTEMBER 2000

Table II gives the performance of the algorithms for the following
six input signals.

1) Random:x(n) = random number in range 0 to 100 000.
2) Binary:x(n) = random number either 0 or 1.
3) Constant:x(n) = 0.
4) Increasing Sawtooth:x(n) = n%100000.
5) Decreasing Sawtooth:x(n) = �(n%100000).
6) Speech sampled at 16kHz: TIMIT file test/dr1/faks0/sa1 [6].

The number of samples was 317 440 for the speech signal and
500 000 samples for all others. The table gives the average execution
times in microseconds per input sample forK = 10 andK = 128.
The table also gives, in parentheses, the average number of data com-
parisons per input sample. The computational costs of the MAXTREE
and MAXTREE2 algorithms exceed that of the MAXLINE2 algorithm
by 44% and 74%, respectively, for i.i.d. input data; for speech data,
these numbers fall to 32% and 64%.

VII. D ISCUSSION

The results verify the theoretical predictions and confirm that for
both speech and random i.i.d. data, the execution time and the number
of data comparisons are largely independent of the filter order.

MAXLINE2 is based on the MAXLINE algorithm from [4], but be-
cause it uses a circular buffer to avoid data movements, it has a much
lower computational cost as shown in Fig. 6. The two algorithms will
normally involve identical data comparisons. However, whereas MAX-
LINE needs to search the entire buffer wheneverx(n � K) equals
the current maximum, MAXLINE2 only does so when it is the sole
instance of the current maximum. Thus, MAXLINE2 never requires
more data comparisons than MAXLINE and will require fewer when-
ever the current maximum occurs more than once within the buffer.

The MAXTREE and MAXTREE2 algorithms use a binary tree
structure that is similar to that of algorithms described by Pitaset al.
in [4] and [5] but store their samples in a circular buffer rather than
a shift register. The use of a circular buffer gives three advantages:
1) theK data movements per sample that dominate the computation
requirements of the Pitas algorithms are eliminated; 2) throughout its
time in the buffer an input sample stays in the same position within
the tree, and hence retains the same ancestor nodes; 3) no algorithm
modifications are required whenlog

2
(K) is a noninteger. Advantage

2) is the most significant, and it is this that reduces the average
number of data comparisons for i.i.d. data fromlog

2
(K) for the Pitas

algorithms to a constant that is independent ofK.
In some applications, the comparison of two data values may in-

volve many operations. The MAXTREE2 algorithm generally requires
fewer data comparisons than the MAXTREE algorithm, and will there-
fore give improved performance in situations where data comparisons
are expensive. The MAXLINE2 algorithm has the lowest number of
data comparisons for i.i.d. data but, as Fig. 7 demonstrates, this does
not remain true for strongly correlated input data. Even for the mildly
correlated speech data, the average number of data comparisons for the
MAXTREE2 algorithm is only 20% more than for the MAXLINE2 al-
gorithm.

The worst-case execution time arises when the input signal is mono-
tonically decreasing (MAXLINE2 and MAXTREE) or increasing
(MAXTREE2). For these cases, the number of data comparisons
matches theoretical predictions and the execution time is only of
orderlog(K) for the tree-based algorithms, but is of orderK for the
MAXLINE2.

Comparing the first three rows of the table, we see that the perfor-
mance of all algorithms improves uniformly as the number of distinct
data values is reduced. The improvement is least with the MAXTREE2

Fig. 8. Execution time per sample for the MAXLINE2 (ML2), MAXTREE
(MT) and MAXTREE2 (MT2) algorithms for a filter of order 128 for low-pass
filtered uniform random input data.

TABLE II
EXECUTION TIMER PER SAMPLE (IN �s) AND, IN PARENTHESES, AVERAGE

NUMBER OF DATA COMPARISONSPER UNIT SAMPLE

algorithm as this uses index comparisons rather than data comparisons
to control the number of loop iterations.

The algorithms differ in their storage requirements: the MAXLINE2
algorithm only requires a data buffer of lengthK whereas the tree-
based algorithms require a buffer of length2K. In addition, the MAX-
TREE2 algorithm requires an auxiliary index array of length2K. The
MAXLINE2 algorithm has the smallest code size but since all three
algorithms are compact and this is unlikely to be a significant consid-
eration.

VIII. C ONCLUSION

Three algorithms for a running max filter have been presented each
of which has as execution time that is independent of the filter order
for i.i.d. data samples. The MAXLINE2 algorithm is an improved ver-
sion of the algorithm in [4] and offers very good average performance
on i.i.d. data. For real-time applications, however, latency restrictions
and data buffering requirements are determined by the worst-case com-
putation time and, even for i.i.d. data, this is proportional toK. For
correlated input data, such as arises in speech or image processing,
the performance is less good and ultimately becomes worse than the
tree-based algorithms.

For i.i.d input data, the MAXTREE and MAXTREE2 have greater
computational requirements than the MAXLINE2 algorithm on av-
erage, but their worst-case requirements are proportional tolog(K)
rather thanK. Of the two algorithms, MAXTREE2 has a higher over-
head but entails fewer data comparisons, and will therefore have a
lower computational cost in applications where data comparisons are
expensive. These algorithms require twice as much data memory as the
MAXLINE2 algorithm and MAXTREE2 require, in addition an auxil-
iary index array of size2K.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 9, SEPTEMBER 2000 935

In summary, the MAXLINE2 algorithm is the clear winner in
terms of data buffer requirements and average execution time on i.i.d.
data. However, for applications involving correlated input data or for
real-time applications where worst-case execution time is important,
the MAXTREE and MAXTREE2 algorithms are the preferred choice.
Finally, it should be noted that although the Pitas algorithm from [5]
is, as noted above, uncompetitive as a software algorithm, it remains a
good choice for a parallel hardware implementation since it requires
onlyK registers andlog

2
(K) comparators.

ACKNOWLEDGMENT

The author would like to thank the anonymous reviewers and Dr.
J. Chambers for their helpful comments which substantially improved
this paper.

REFERENCES

[1] G. R. Arce and M. P. McLoughlin, “Theoretical analysis of the max-
median filter,” IEEE Trans. Acoust., Speech, Signal Processing, vol.
ASSP-35, pp. 60–69, Jan. 1987.

[2] P. A. Maragas and R. W. Schafer, “Morphological filters—Part I: Their
set theoretic analysis and relations to linear shift invariant filters,”
IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-35, pp.
1153–1184, Aug. 1987.

[3] R. Martin, “Spectral subtraction based on minimum statistics,” inProc.
EUSIPCO-94, Edinburgh, Scotland, Sept. 1994, pp. 1182–1185.

[4] I. Pitas, “Fast algorithms for running ordering and max/min calculation,”
IEEE Trans. Circuits Syst., vol. 36, pp. 795–804, 1989.

[5] D. Coltuc and I. Pitas, “On fast running max-min filtering,”IEEE Trans.
Circuits Syst. II, vol. 44, pp. 660–664, Aug. 1997.

[6] J. Garofoloet al., “DARPA TIMIT acoustic-phonetic continuous speech
corpus (CD-ROM),” National Institute of Standards and Technology,
1990.

A CMOS Buffer Without Short-Circuit
Power Consumption

Changsik Yoo

Abstract—A new CMOS buffer without short-circuit power consump-
tion is proposed. The gate- driving signal of the output pull-up (pull-down)
transistor is fed back to the output pull-down (pull-up) transistor to get
tri-state output momentarily, eliminating the short-circuit power consump-
tion. The HSPICE simulation results verified the operation of the proposed
buffer and showed the power-delay product is about 15% smaller than con-
ventional tapered CMOS buffer.

Index Terms—CMOS buffer, short-circuit power consumption.

I. INTRODUCTION

With the high integration level of CMOS very large scale integra-
tion (VLSI), the capacitive load of periodic signals such as clock has
become very large. With such a large capacitive load, driving circuits
consume a relatively large portion of the total power of a VLSI. The

Manuscript received June 1999; revised June 2000. This paper was recom-
mended by Associate Editor M. Bayoumi.

The author was with Integrated Systems Laboratory (IIS), Swiss Federal Insti-
tute of Technology, Zurich, Switzerland. He is now with Samsung Electronics,
Kiheung, Korea.

Publisher Item Identifier S 1057-7130(00)07752-1.

Fig. 1. (a) Tapered CMOS buffer and (b) its timing diagram.

Fig. 2. (a) Feedback-controlled split-path CMOS buffer and (b) its timing
diagram.

power consumption of a CMOS buffer driving a capacitive load con-
sists of dynamic switching power and short-circuit power. While the
switching-power consumption is unavoidable to drive a capacitive load,
short-circuit power is a waste of current and should be minimized or
even eliminated for low-power operation.

A conventional tapered CMOS buffer, shown in Fig. 1(a), consumes
both the dynamic switching power and short-circuit power due to si-
multaneous turn-on of the pull-up/pull-down transistors, as illustrated
in Fig. 1(b) [1]. Short-circuit power consumption can be eliminated by
tri-stating the output node momentarily before every output signal tran-
sition. In [2], asymmetric inverters were used as waveform shaper to
get momentary tri-state output period, but the propagation delay is in-
creased by the asymmetric inverters. As an alternative, a feedback-con-
trolled split-path (FS) CMOS buffer was proposed, where the output
signal is fed back to control the output pull-up and pull-down transis-
tors, as shown in Fig. 2, tri-stating the output momentarily and thereby
eliminating the short-circuit power consumption [3]. But, in the FS
CMOS buffer, the logic states of the split output stage drivers change

1057–7130/00$10.00 © 2000 IEEE

