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ABSTRACT

Automatic target recognition from high range resolution

radar profiles remains an important and challenging prob-

lem. In this paper, we present a novel feature set for this task

that combines a representation of the target’s radar shadow

with a noise-robust superresolution characterisation of the

target scattering centres derived from the MUSIC algorithm.

Using an HMM to represent aspect dependence, we demon-

strate that the inclusion of the shadow features results in

a significant improvement in recognition performance. We

evaluate our proposed feature set on a closed-set identifica-

tion task using targets from the MSTAR database and show

that it results in lower recognition error rates than previously

published methods using the same data.

1. INTRODUCTION

The automatic detection and classification of targets from

their radar signatures is an important and difficult problem

that has attracted considerable research effort. Algorithms

for target recognition from high range resolution (HRR)

radar signals generally use as their primary input either a

synthetic aperture radar (SAR) image or else a sequence of

one or more one-dimensional range profiles. The image-

based approaches generally have higher performance but

are much less robust to target motion because of their long

data acquisition time. Some image-based algorithms use

the pixel values of the image as their recognition features

[9, 10, 12] while others first transform the image to another

domain [4, 16]. An alternative approach for targets that are

large compared with the radar wavelength is to model the

radar return as emanating from a discrete set of orientation-

dependent points known as scattering centres [1]. In this ap-

proach, the SAR image is processed to generate an explicit

list of scattering centre positions and associated radar cross

sections on which the recognition features are based [2, 8].

In the same way, systems that act on the one-dimensional

range profiles can either use the raw [18] or transformed
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Fig. 1. (a) HRR profiles (b) SAR image of T72 tank

[7] profile values as their features or else can process the

profiles to estimate the scattering centre locations and cross

sections [5]. Both SAR images and HRR profiles often ex-

hibit large variations for small changes in target orientation.

Target recognition systems must account for this aspect-

dependency by using a rotation invariant transform [4] or

by having multiple, orientation-dependent, target represen-

tations which may conveniently be embedded in an HMM

[5, 13, 16].

In this paper, we present a novel feature set for auto-

matic target recognition from a sequence of radar range pro-

files. Our feature set uses a noise-robust super-resolution

technique for identifying scattering centre locations and

combines this information with additional features that

characterise the shape of the radar shadow. Fig. 1 (b) shows

a SAR image of a T72 tank taken from the MSTAR [14, 15]

dataset. This image may be divided into three regions hav-

ing significantly different characteristics: (a) the target it-

self characterised by discrete scattering centres within a rel-

atively uniform background, (b) the target shadow with very

low signal levels and (c) a clutter region surrounding the tar-

get. As can be seen in this example, the shape of the shadow

region gives potentially useful information about the verti-

cal profile of a target that is sited on level ground. This

information is not available from the direct target returns

which are insensitive to vertical displacement. The shadow

information has been used by others to improve target detec-

tion [6] but is not generally used explicitly in target recog-

nition.
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In Section 2 of this paper, we describe our proposed fea-

ture set in detail and in Section 3, we describe the Hidden

Markov model that we use to represent the aspect depen-

dency of the radar returns. In Section 4 we evaluate the

performance of our target recognition system using obser-

vation data from the MSTAR database [15] and compare its

performance with that of other systems from the literature

that use the same database. Finally, we summarise our re-

sults in Section 5.

2. RECOGNITION FEATURE SET

The features that we use for target recognition are de-

rived from the sequence of complex-valued HRR profiles,

x(n, k), obtained by applying a discrete Fourier transform

(DFT) to the windowed phase history radar returns. Here n
is the profile index and k is the range-bin index covering the

region of interest. Fig. 1(a) shows a typical plot of |x(n, k)|
and Fig. 1(b) shows the SAR image that results from win-

dowing x(n, k) and taking the DFT with respect to n. Visi-

ble in the image are the target itself, with signal levels well

above the clutter noise level and also a well defined shadow

region with very low signal levels. For each value of the pro-

file index n, we obtain a feature vector, u(n), that charac-

terises the positions and intensities of the scattering centres

within the target and another, w(n), that characterises the

shape of the shadow area. Both these feature vectors are de-

rived from 2P +1 consecutive profiles centred on profile n.

We therefore define the data matrix xn(p, k) = x(n + p, k)
where p ∈ {−P, . . . , P}. The derivation of u(n) and w(n)
is illustrated in Fig. 2 and the processing steps are described

below where, for clarity, we omit the profile index, n. Each
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Fig. 2. Procedure to calculate features from HRR profiles

scattering centre in range bin k gives rise to a complex ex-

ponential term in x(p, k) and the first step in obtaining u is

to identify these terms. We do this by applying the MUSIC

algorithm [17] which uses the data model

x(p, k) =
M∑

m=1

am,kexp(jωm,kp) + v(p, k) (1)

where am,k, ωm,k are the complex amplitudes and frequen-

cies of the scattering centre terms and v(p, k) is assumed

to be white noise. The reasons for using the MUSIC algo-

rithm are that it is resistant to noise, does not require win-

dowing of x(p, k) and is able to estimate ωm,k with high

Target Image

cross range [m]

ra
n

g
e 

[m
]

14 16 18 20 22 24

23

22

21

20

19

18

17

16

15

Reconstruced Target Image

cross range [m]

ra
n

g
e 

[m
]

12 14 16 18 20 22 24 26

35

30

25

20

Fig. 3. (a) The image y(l, k) (b) The image reconstructed using u
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Fig. 4. (a) The two level shadow image, b(l, k) (b) The image recon-

structed using w

resolution independently of P . Within range bin k, each of

the M components in (1) corresponds to a scattering cen-

tre whose cross-range displacement is proportional to ωm,k.

The maximum number of scattering centres, M , could be

chosen adaptively for each range bin but we have, in the

experiments below, fixed it at 10.

After discarding any scattering centres whose displace-

ment lies outside the target mask, we convert the continuous

displacements, ωm,k, to discrete values. We create a contin-

uous signal containing an impulse for each scattering centre

which we then low-pass filter and sample to give

y(l, k) =
M∑

m=1

|am,k|2 h(l − cωm,k) (2)

where h(l) = (0.33πl)−1sin(0.33πl) is the low-pass fil-

ter response and c = 0.5λ (2π∆φ∆r)−1
is a constant with

λ, ∆φ,∆r the wavelength, azimuth increment and cross

range resolution, respectively. Fig. 3 (a) shows an exam-

ple of y(l, k) corresponding to the central portion of the im-

age shown in Fig. 1 (b). The final step in forming the feature

vector is to compress the image information by taking the 2-

dimensional discrete cosine transform (DCT) of log y(l, k)
and to retain only coefficients in the low frequency triangle

of size 10-by-10 with (0,0) omitted to form the 54-element

feature vector u. Fig. 3(b) shows the reconstructed im-

age using only the retained coefficients. To compute the

shadow shape feature vector, w, we first form a SAR image

by windowing x(p, k), zero-padding to obtain the correct
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cross-range resolution and taking the DFT in the p direc-

tion. We then apply an adaptive threshold to the resultant

image to obtain a binary-valued image, b(l, k), represent-

ing the shadow. Fig. 4 (a) shows the shadow image ob-

tained from the data of Fig. 1 (b) and it can be seen that the

shadow is well identified although some clutter remains. As

with the scattering centre features, we compress the shadow

image by taking a 2-dimensional DCT and retaining 54 low

frequency coefficients to form the shadow feature vector, w.

The reconstructed image using w is shown in Fig. 4 (b).

3. AZIMUTH HIDDEN MARKOV MODEL

HRR profiles exhibit significant variability with target ori-

entation. We model this for each target using an HMM con-

taining S states which correspond to different target aspects.

Within an observation sequence, consecutive HRR profiles

correspond either to the same or adjacent states. Thus the

only allowable state transitions are from a state to itself or

to the adjacent state in the direction of sensor motion.

We initialise the states to correspond to equal aspect in-

crements of 360◦S−1 and for each state we train a Gaussian

mixture model (GMM) [3] using all available training data

from the corresponding range of aspects. The transi-

tion probability between adjacent states is initialised to be

S∆φ/360◦ where ∆φ is the azimuth increment between

successive feature vectors.

Using these initial values, we then re-estimate the GMM

parameters and the HMM transition probabilities using em-

bedded Baum-Welch training [19].

4. EXPERIMENTAL RESULTS

Our experimental evaluations make use of the Moving and

Stationary Target Acquisition and Recognition (MSTAR)

database collected by the Sandia National Laboratory using

an X-band SAR sensor in 0.3m resolution spotlight mode

[15, 14]. The database contains complex valued SAR im-

age chips of 10 confusable targets and their variants. For

each target, the images cover a full 360◦ azimuth range at

depression angles of 15◦ and 17◦. The SAR images have

a resolution of ∆r = 0.3m in both the range (vertical) and

cross range (horizontal) directions.

For our experiments, the SAR image chips were con-

verted into a sequence of HRR profiles [5]. Each chip cov-

ers an azimuth interval of approximately 3◦ [18] with suc-

cessive HRR profiles separated by an angular increment of

∆φ = 0.03◦.

For our experiments we used an HMM containing S =
60 states each corresponding to an initial azimuth interval of

6◦. Within each state, feature vector distributions are repre-

sented by a two-component diagonal-covariance Gaussian

Table 1. Recognition error rates (%)
3◦ aperture 6◦ aperture

Target u w u + w u w u + w

BMP2 6.7 34.0 2.6 3.5 34.3 0

BRDM2 1.1 16.1 6.2 1.1 4.8 0

BTR60 0 13.5 0 0 9.9 0

BTR70 3.6 34.0 8.2 4.1 25 4.4

D7 1.8 0.4 1.1 0 0 0

T62 4.4 1.5 1.1 0 0 0

T72 1.5 19.6 2.1 1.7 14.3 1.5

ZIL131 1.5 0 0 1.4 0 0

ZSU234 1.1 0.7 0.4 0 1.7 0

2S1 6.6 4.4 2.9 2.0 1.1 0.6

Average 3.8 12.4 2.5 1.4 9.1 0.6

mixture model. We used a 9m × 9m target mask. For train-

ing, a total of 3000 image chips containing 17◦-depression

angle data was used to train the HMM. For testing, we used

a total of 5000 15◦-depression angle data without any com-

pensation for the slight mismatch in depression angle.

We evaluated three alternative feature sets: the scatter-

ing centre features (u), the shadow features (w) and the con-

catenation of the two (u + w). The first two sets contain 54

elements while the last has 108. The feature vectors were

formed using P = 25 corresponding to an aperture of 1.5◦.

For each identification experiment, we take a sequence of

observations covering an azimuth aperture of either 3◦ or

6◦ and determine the model with the highest likelihood.

Model training and recognition were performed using the

HTK recognition software [19].

Table 1 shows the recognition error rate for a closed set

identification tasks using 10 different targets for each of the

three feature sets for both 3◦ and 6◦ azimuth apertures. The

table lists the percentage error rate for each target as well as

the average error rates. Using a 6◦ azimuth aperture we see

that the u and w parameter sets give overall error rates of

1.4% and 9.1%. In both cases the errors are concentrated in

a small number of poorly recognised targets and when the

two feature sets are combined to form u + w we find that

the overall error rate is reduced to 0.6% with seven of the

ten targets error-free.

When the azimuth aperture is reduced to 3◦, the average

error rate of all three feature sets increase. As before, the

combined feature set (u + w) performs significantly better

than either set individually and the overall error rate is only

2.5%. Note however that the inclusion of the w features

increases the error rate for three of the targets.

The error rate of 2.5% obtained using a 3◦ aperture can

be directly compared with other published results based on

the MSTAR database with the same recognition task. In

[11], the authors obtained error rates of 4.1% using an ap-

proach based on the SAR image and in [5] an error rate of

17.8% was obtained when performing recognition on the

HRR profiles directly.

The MSTAR database contains 11 variants of the T72

tank and 3 variants of the BMP2 tank, manifested by differ-

ent realisations of the fuel tank, antenna, etc [5]. To evalu-
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Table 2. Error rates with unknown targets (%)
Target Strict Class Class from [5]

BMP2-c21 7.6 0 6.1

BMP2-9563 29.1 3.2 7.0

BTR70 4.4 - 14.1

BRDM2 0 - 8.6

BTR60 0 - 13.7

D7 0 - 4.8

T62 0 - 9.0

T72-a04 3.7 0 2.9

T72-a10 0 0 3.4

T72-a62 11.6 0 3.9

T72-132 5 .5 1.5 7.6

ZIL131 0 - 10.3

ZSU234 0 - 8.5

2S1 0 - 4.7

BMP2-9566 - 9.0 37.5

T72-a05 - 2.0 14.5

T72-a07 - 2.3 16.1

T72-a32 - 3.4 22.9

T72-a63 - 0 15.9

T72-a64 - 6.5 31.7

T72-s7 - 28.4 17.1

T72-812 - 15.7 29.6

ate the robustness of our recogniser to these variations, we

trained models on two BMP2 variants, four T72 variants and

the eight other targets using the u + w feature set. We then

conducted recognition tests on all 22 targets in the database

using a 6◦ azimuth aperture. If the recogniser identified an

incorrect variant of the correct tank model, it was counted

as an error in the “Strict” column of Table 2 but as a correct

identification in the “Class” column.

For targets included in the training set, the average class

error rate is 0.65% and in most cases the precise variant of

a particular target was identified correctly. For the unseen

variants listed in the lower section of the table, the average

class error rate was 8.4% with over half of the errors arising

from the T72-s7 and T72-812 tank variants.

The final column of Table 2 shows the “Class” error

rates reported in [5] for the same task. We see that for all

targets except T72-s7 the recognition performance for our

proposed feature set is considerably better. We note how-

ever that since [5] bases its recognition on individual HRR

profiles, it will be less sensitive to target motion than when

feature set described here is used with a large value of P .

5. CONCLUSIONS

This paper has presented a novel radar target recognition

technique combining two-dimensional target and shadow

information. The new technique complements the SAR-

ATR and HRR-ATR techniques by using a feature extrac-

tion method that is robust to noise and that can extract tar-

get and shadow information accurately with limited azimuth

aperture length. The experimental results using MSTAR

database indicate that the new technique can achieve supe-

rior performance than other published techniques.
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