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ABSTRACT

Finding the correct correspondences in an image sequence
is a significant task for deriving 3D structure from motion.
Most research has concentrated on extracting and matching
salient feature points for correspondence. Block-matching
has largely been disregarded due to its significant number
of correspondence-outliers and its complexity. However,
nowadays real-time hardware is available to obtain block-
motion vectors. We present a fast method to filter out more
than99.7% of all outliers and show that the obtained cor-
respondences can be used to derive the 3D scene depth of
real image sequences.

1. INTRODUCTION

Deriving structure from motion remains a challenging task
in computer vision. It is normally tackled using a sequence
of steps. The first of these steps aims to find correspond-
ing points in a pair of images [1, 2]. In subsequent steps
the Epipolar Geometry [3] encapsulated in the 3x3 Funda-
mental Matrix is derived from the correspondences and this
matrix is decomposed into the camera extrinsic and intrinsic
parameters [4]. Finally the structure is determined from the
camera parameters and the correspondences [5]. The first
step is very computationally intensive and therefore a prob-
lem for many real-time applications such as 3D-television.

Except for some degenerate cases [6] the above steps
allow the derivation of the scene structure up to a scale am-
biguity, assuming the correspondences are correct. In real
image sequences the correspondences are often not correct.
They are perturbed by image noise and include outliers aris-
ing from gross errors [2]. Since the calculation of the Epipo-
lar Geometry is very sensitive to outliers, all subsequent cal-
culations will be incorrect even with few outliers. This em-
phasizes the importance of rejecting outliers.

Most previous research [2, 7, 8] concentrates on extract-
ing salient feature points from the source images as the first
step in 3D reconstruction and subsequently aims to match
these feature points between images. Since the features are
not positioned regularly, outliers cannot be removed easily

on the basis of vector field constraints and computation-
ally intensive (non-regular) methods must be implemented
[2, 3]. In contrast to this, block matching vector fields are
regular, which allows us to filter outliers efficiently using
knowledge of the characteristics of realistic vector fields.
Real-time hardware for block matching now exists [9, 10]
and in many applications such as MPEG en-/decoders mo-
tion vectors are readily available. Thus the vector fields can
be obtained at no extra cost, however they include a large
proportion of outliers; these must be removed in order to
obtain a correct 3D reconstruction.

The following contributions are made in this publica-
tion: (a) Description of the motion vector field in terms
of the camera motion, focal lengths and object surface tilt.
(b) Derivation of a reliable and fast outlier rejection scheme.
(c) Presentation of a simple sub-pixel refinement method.
(d) Evaluation of the new methods on synthetic and real im-
ages.

2. BLOCK MATCHING

In block matching the initial image is divided into rectan-
gular shaped blocks. The best match for each block in the
initial image is searched for in the subsequent image. The
2-dimensional search is usually limited by a window and the
search steps within that window can differ depending on the
precision required (e.g. full or half-pixel). Thebest match
has the least absolute or squared difference of luminance
values summed over all block pixels.

2.1. Sub-pixel search refinement

For a good 3D reconstruction it is important that the corre-
spondence vectors have high accuracy. The vector precision
obtained from block matching can be improved by interpo-
lating between the position of the best match and its eight
nearest neighbors (Figure 1). Using a least squares criterion
we fit a quadratic surface to these nine points, of the form:

z(x, y) = ax2 + bx + c + dy2 + ey + fxy (1)
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Fig. 1. Best match and eight surrounding positions in the
search window as the sample points of the matching error
surface

and use the minimum of the surface as the refined motion-
vector.

2.2. Sources of outliers

Block matching outliers occur if the scene has little texture
or large levels of noise. Outliers also occur near a center of
rotation on the image plane or if the scene texture is repet-
itive or one-dimensional. Occlusions and depth discontinu-
ities in the scene may also lead to outlier vectors.

3. OUTLIER REJECTION

3.1. Characteristics of vector fields

In order to filter outliers from vector fields it is important
to know how vector fields are created by the camera motion
and the focal length change. For a tilted planar object the
vector field is described by the following equations, which
are derived from the perspective projection model of rigid
motion [3, 4]:

vx = fk(ΥR11+ΛR21+ΨR31)
ΥR13+ΛR23+ΨR33

− fpx(f−pymy)
Θ

(2)

vy = fk(ΥR12+ΛR22+ΨR32)
ΥR13+ΛR23+ΨR33

− fpy(f−pxmx)
Θ

(3)

with

Υ = pxz0(f − py
dz
dy )− tx(f − px

dz
dx )(f − py

dz
dy )

Λ = pyz0(f − px
dz
dx )− ty(f − px

dz
dx )(f − py

dz
dy )

Ψ = z0Θ− tz(f − px
dz
dx )(f − py

dz
dy )

Θ = (f2 − px
dz
dxpy

dz
dy )

(4)

wherevx and vy are the vectors in horizontal and verti-
cal direction, respectively, at image position[px, py] and
dz
dx and dz

dy are the surface tilts.z0 is the surface depth at
px = py = 0. R, t, f are the rotation, translation and initial
focal length of the camera andk is the factor of change of
the focal length from the first to the second view. Complex
scenes may be approximated as piecewise planar segments.

Use of (2) and (3) to analyze the characteristics of vector
fields leads to the conclusion: So long as the object remains
in front of the camera and there are no occlusions or depth
discontinuities, the motion vector fields change smoothly
across the image plane independent of the camera motion.
Furthermore, the relative change of a vector from a block
to any of its eight direct neighbors is small, as long as the
block is not near a zero vector. Such a null vector arises for
example from a focal length change, a camera translation in
viewing direction or a rotation around an object point.

From these observations two criteria have been devel-
oped to filter outliers, which involve only the eight blocks
in the immediate vicinity of the analyzed block. This allows
a parallel hardware implementation for real-time execution.

3.2. Filter criteria

The first criterion (‘smooth change’) is illustrated in the left-
most example of Figure 2. Here the motion vector from the
central block is compared with the averages of four pairs of
opposite neighbours. In this example, the two pairs shown
in white give averages that are close to the central block mo-
tion vector while the shaded pairs do not. The central block
is accepted as an inlier if the number of unshaded supporting
pairs is above a threshold, which is determined in Section 4.

Fig. 2. Left: Smooth-change constraint; Right: Neigh-
borhood constraint; reference block at center, supporting
blocks are white

For the second criterion (‘neighborhood’), illustrated in
the rightmost example of Figure 2, we consider the abso-
lute difference between the central block’s motion vector
and those of its eight neighbors. In this example, three of
the neighbors, shown unshaded, have motion vectors that
lie within a tolerance circle centered on the central vector.
If the number of these supporting blocks exceeds a threshold
the central block is accepted. The threshold is determined
in Section 4.

3.3. Comparison of criteria

The two filter criteria are intended to remove outliers from
motion vector fields of real image sequences. These how-



ever may contain depth discontinuities and a large propor-
tion of outliers. As a result most blocks are not supported by
all of their eight neighboring blocks and therefore we have
to set the support thresholds of the filter criteria below the
maximum.

Both criteria have different individual filter properties:
The first criterion (smooth change) filters correctly even near
a null vector, however it rejects some inlier vectors at depth
discontinuities and when several of the blocks in the vicinity
are outliers. The second criterion (neighborhood) is rather
insensitive to large proportions of outliers and to depth dis-
continuities, since eight blocks are compared separately and
not in pairs as in the first criterion. However it rejects some
inlier vectors in the vicinity of a null vector.

This mutual support of both criteria implies to combine
them and to reject (outlier) blocks only if both criteria fail.

4. SIMULATION RESULTS

The outlier rejection criteria have been tested and calibrated
on a large set of random vector fields with injected outliers.
The vector fields are created on the basis of (2) and (3) for
three mutually occluding, randomly shaped planar objects
under common camera motion. Each object is assigned a
random depth and surface tilt. The combined scene vector
field is generated by concatenating the three object vector
fields. The camera position, orientation and focal lengths
are changed at random such that the vector fields do not
exceed the limits:[x, y] = [−64..64,−32..32]. This re-
striction models vector fields more realistically and is not a
requirement for our criteria. Outliers are injected by adding
a random offset vector with a minimum length of two pixels
and a standard deviation of 20 pixels to a fraction of vectors.

Each of the two presented criteria has two parameters:
the number of supporting blocks or block pairs and the sim-
ilarity threshold. We aim to find those parameter values that
give a high outlier rejection while keeping a large number
of correct blocks. In order to determine the best set of pa-
rameters, several thousand tests with 100 to 10000 iterations
each have been run.

We have found that a good compromise is obtained if
thesmooth changeconstraint (Section 3.2) is required for at
least 2 pairs with a tolerance of3% of the vector length and
if the neighborhoodconstraint is alternatively required for
3 blocks with a tolerance of8% of the vector length.

The mean result of the outlier rejection with the cali-
brated parameters on10000 synthetic random vector fields
is shown in Table 1.

If the proportion of outliers in the input sequence is30%
or less we obtain more than92% of correct blocks of the
input vector field while rejecting more than99.7% of its
outliers. With larger proportions of outlier blocks we ob-
tain a proportionally higher rejection of outlier blocks but

% input
outliers 10 30 50 70

% incorrectly
removed blocks 1.7 7.7 24.8 58.9
% undetected

outliers 0.27 0.21 0.14 0.08
% output
outliers 0.03 0.10 0.19 0.43

Table 1. Mean result of our outlier rejection scheme on
10000 random scene vector fields. The last row lists the
proportion of outliers in the resulting vector field after ap-
plying our method.

also a higher proportion of rejected valid blocks. In any of
the measured cases (10%-70% outliers) the resulting vector
field contains more than99.5% correct vectors and less than
0.5% outliers. This makes the outlier rejection scheme very
suitable for determining the Epipolar Geometry.

5. EPIPOLAR GEOMETRY

Since the computation of the Epipolar Geometry is very
sensitive to outliers we reduce the number of outliers fur-
ther. The RANdom SAmpling Consensus (RANSAC) [2] is
a frequently used method to remove outliers in sets of image
correspondences. The number of RANSAC iterations in-
creases exponentially with the percentage of outliers. Thus
RANSAC is hard to implement in real-time for large pro-
portions of outliers. Since we have reduced the number of
outliers to less than0.5% only very few iterations need to
be run to remove the remaining outliers and to obtain the
correct Epipolar Geometry.

6. ALGORITHM

The complete algorithm for deriving correspondences and
the scene depths can be summarized as following:

(a) obtain motion vectors on pixel level through given
hardware [9, 10]; (b) refine motion vectors to sub-pixel pre-
cision as shown in Section 2.1; (c) filter vectors using neigh-
borhood and smoothness constraints as shown in Section
3.2; (d) run few iterations of RANSAC [2] to eliminate pos-
sibly remaining outliers. At this stage reliable correspon-
dences are obtained. (e) Compute the Epipolar Geometry
and camera parameters as described in [3, 4] and use trian-
gulation to obtain the scene depths [5].



7. REAL IMAGE SEQUENCES

To verify the results, the algorithm has been run on ten im-
age sequences and the Epipolar Geometry and depth for
each of these has been derived. On average1.9 outliers re-
mained amongst the 273 correct correspondences after ap-
plying the constraints of Section 3.2. Thirty iterations of
RANSAC have been sufficient to eliminate these outliers in
all ten cases. The mean distance to the Epipolar lines of the
more than 200 remaining features of each sequence is less
than0.25 pixels. This precision confirms the benefit of the
sub-pixel refinement method described in Section 2.1. An
example image of the surviving vectors, Epipolar Geometry
and derived scene depth is shown in Figure 3.

Fig. 3. Remaining correct vector field after outlier rejec-
tion, corresponding Epipolar lines, and depth map of blocks
(darker=nearer); Corridor sequence [11] (original images as
inset; edge image shown in the background)

It can be seen that the blocks arising from featureless
walls are correctly rejected by the algorithm. As a result
of the outlier rejection the Epipolar lines correctly intersect
inside the image as is expected for a forward camera motion.
The blocks in the center of the image are lighter (=further
away) than those at the outside. This reflects the correct 3D
structure of the corridor.

8. CONCLUSION

Motion vector fields have been analyzed and the equations
describing the relation between camera motion, scene struc-
ture and the resulting vector fields have been derived. From

these, two criteria to filter out incorrect motion vectors have
been developed. The criteria have been tested on a large set
of synthetic data and it has been shown that a correspon-
dence vector field with up to70% outliers can be filtered
such that the output vector field contains less than0.5% out-
liers. Finally it has been shown that the Epipolar Geometry,
and 3D depth can be derived reliably from real image se-
quences using our outlier rejection scheme as an initial step.
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