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Abstract 

We consider the problem of representing large sets of multiview images efficiently. We first 
study the properties of such data and recall the notion of plenoptic function. Then propose an 
efficient segmentation algorithm based on level-set method. 

Keywords : Plenoptic Function, Multiview Imaging, Image Segmentation 

1. Introduction 

Recent advances in sensor network 
technology are radically changing the way 
in which we sense, process and transport 
signals of interest. In this work we consider 
camera networks and assume that a large 
number of cameras are monitoring a certain 
scene from multiple viewpoints. The aim 
then is to fuse all this data acquired to 
perform scene interpretation and 
classification, preferably in an automatic 
fashion. 

Traditional algorithms do not scale 
properly with the number of cameras and 
become impracticable when the number of 
images acquired is large. We therefore aim 
to develop algorithms that are able to 
perform classification and scene 
interpretation when the quantity of data 
acquired is huge and to exploit the intrinsic 
redundancy of the information to increase 
robustness. 

The data acquired by multiple cameras 
from multiple viewpoints can be 
parameterized with a single function called 
the plenoptic function. It was first 
introduced by Adelson and Bergen [1] in an 
attempt to describe what one sees from an 
arbitrary viewpoint in space. Such a 
function requires seven dimensions in order 
to characterize all the free parameters. In 

most cases, assumptions can be made to 
reduce the number of parameters. For 
instance, Levoy and Hanrahan in 1996 
introduced the 4D light field 
parameterization [5] of the plenoptic 
function. 

From its introduction, the light field 
parameterization has benefited from a large 
popularity thanks to the highly structured 
nature of the images. The idea is basically 
to setup a 2D camera array that is 
uniformly sampled. Several of such arrays 
have already been developed mainly with 
the goal of performing Image Based 
Rendering (IBR). As the problem is in 
essence a sampling problem, the spectral 
properties of the data have been extensively 
studied [3, 9, 10]. In these papers, it is 
shown in various ways that the plenoptic 
function is approximately bandlimited and 
therefore most IBR techniques rely on 
spectral based algorithms. However, we 
believe spatial based algorithms are more 
adapted for multiview image representation 
and interpolation. Following this train of 
thought we define the following approach. 

The approach consists in an accurate 
segmentation such that the scene can be 
efficiently represented in a layer based 
fashion. Indeed, layers, otherwise known as 
epipolar tunnels or tubes, capture local 
coherence and make occlusion events 
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explicit. This observation has already been 
made in the context of video processing 
and compression [8]. Here, we make a 
parallel between multiview data and 
moving images. Unfortunately, it seems 
that a robust automatic layer extraction 
algorithm remains an unsolved problem. 
While most segmentation algorithms 
perform the segmentation using two 
consecutive frames, we believe that the 
processing should be done on all the 
images at once in a multidimensional 
manner in order to fully take advantage of 
the structured data. Furthermore, we 
believe that the redundant nature of 
multiview data should enable a more 
accurate segmentation. After segmentation, 
each extracted layer should be properly 
classified and localized. The classification 
issue is not considered in this paper and is 
the subject of future research. 

The paper is organized as follows: In the 
next section we introduce the notion of the 
plenoptic function and recall its main 
properties. Then, in Section 3, we discuss a 
layer-based representation of the plenoptic 
function and propose a novel segmentation 
algorithm based on the level-set method. 
We present some preliminary results in 
Section 4 and conclude in Section 5. 

2.  Properties of Multiview Data 

The plenoptic function was introduced by 
Adelson and Bergen in order to 
characterize general free-viewpoint vision. 
The idea is to describe the intensity of each 
light ray that reaches a point in space. It can 
therefore be characterized by seven 
parameters namely the visual angle, the 
wavelength, time and the viewing position:  

),,,,,,(7 zyx VVVtPP λφθ=  

Figure 1 shows the concept where a camera 
symbolizes the viewing point. Intuitively, 
we see that the camera has 3 degrees of 
freedom (dof) for its position in space and 
itself has 2 dof to address the pixels of the 

image. With two more parameters, namely 
time and wavelength, it is possible to 
characterize any light ray. The general 
function is difficult to analyze due to its 
high number of dimensions. Thankfully, 
certain valid assumptions can be made in 
order to reduce the complexity. First, we 
simplify the wavelength into three channels 
for red, green and blue or one channel for 
greyscale images. Second, we consider that 
air is transparent, thus intensity does not 
change along a light ray unless it is 
occluded. Third, we limit ourselves to static 
scenes and drop the time parameter. And 
finally, restrictions can be made to the 
viewing position. Indeed, the viewer can be 
constrained to a plane, a line or a point, 
removing one, two or three dimensions 
respectively. 

 
Figure 1: The plenoptic function describes the 

intensity of each light ray that reaches any point 
in space at any time. It is therefore characterized 
by 7 parameters, namely the viewing position, the 

viewing direction, time and wavelength 

It is interesting to notice that common 
pictures and videos are a particular case of 
the plenoptic function. Indeed, if we 
constrain the viewing point on all three 
axes and remove time and wavelength, we 
have a 2D function ),(2 φθPP =  which is in 
fact a picture. The addition of the time 
parameter creates a well known 3D 
plenoptic function ),,(3 tPP φθ= : the 
video. The next step is to add dimensions to 
the viewing position. To this effect, several 
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representations have been proposed like the 
light field [5] and the concentric mosaics 
[7]. Both representations extend the 
viewing space to finite planes. 

At first, this function may appear difficult 
to work with. However, it is in fact a highly 
structured function especially in the case 
where the viewing points are structured.  

 
Figure 2: Illustration of epipolar geometry and 

the epipolar plane. A point in space X is 
projected onto two image planes with camera 

centres in camera1 and camera2. The point x′  in 
the second image is constrained to the epipolar 

line l′  

The geometry that governs the correlations 
in multiple view imaging is known as 
epipolar geometry [4]. The basic idea is to 
correlate the positions in each image of a 
point in space. Let us consider the simple 
case where there are two cameras viewing a 
scene from different locations and there is a 
point X  visible in both views as seen in 
Figure 2. The rules that govern the relation 
between the position x  of the point in first 
image and the position x′  of the same point 
in the second image are known as epipolar 
constraints. We call the line that passes 
through both camera centres the baseline 
and its intersection with the image planes 
the “epipoles”, e  and e′ . Then the 
constraint is the intersection of the image 
planes with the plane that contains both the 
baseline and the point of interest X . This 
plane, shown in Figure 2, is the “epipolar 
plane”. The intersections of this plane with 
the image planes are called the epipolar 

lines l  and l′ . Suppose we know the 
location x . Then the location x′  is 
restricted to the epipolar line l′  in the 
second image. The benefit of this 
observation for stereo correspondence is 
that the search for x′  need not be pursued 
on the whole image. The relation between 
x  and x′  can be formalized with a single 
matrix called the fundamental matrix F  
[4]. The epipolar constraint may then be 
represented as a matrix equation  

0=′ Fxx T  

where x  and x′  are expressed in 
homogenous coordinates. The advantage of 
such a description is that F  can be 
computed from image correspondences 
alone, without computing any of the 
cameras’ intrinsic parameters. In practice, 
F  may be found using the 8 point 
algorithm. We refer the reader to [4] for a 
more detailed discussion. 

Consider the case where the cameras are 
pointing in the direction perpendicular to 
the line passing through the camera centres. 
In this case, the baseline never intersects 
the image planes and the epipoles are at 
infinity. The fundamental matrix equation 
reduces to yy ′= . Furthermore, when more 
cameras are involved, the relations between 
two consecutive images remain the same as 
long as the cameras are equally spaced. 
One common setup which follows this 
layout is the light field. In the next section, 
we will concentrate on the geometrical 
properties of this particular case. 

2.1  The Light Field Parameterization 

The light field representation of the 
plenoptic function is a 4-dimensional 
parameterization proposed by Levoy and 
Hanrahan [5] in order to characterize the 
case of a planar camera array where all the 
cameras are pointing in the direction 
perpendicular to the camera plane. This 
parameterization was proposed with the 
objective of performing Image Based 
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Rendering. The popularity of this 
representation is due to the simplicity of the 
parameterization and the layout. The idea is 
to characterize a light ray with four 
parameters  

),,,(4 tsvuPP =  

that relate to the correspondence between 
the location of the camera on a plane ),( ts  
and the image plane ),( vu  as seen in Figure 
3. The distance that separates the two 
planes is the focal length of the cameras f . 

 
Figure 3: 4D light field (or light slab) 

parameterization. A light ray is uniquely 
characterized by its intersection between the 
camera plane (s,t) and the image plane (u,v). 
Each light ray is therefore addressed by its 

coordinate (u,v,s,t). 

This parameterization has the property of 
mapping points onto their epipolar lines. 
Therefore, the plenoptic domain consists of 
a collection of straight lines with slopes 
that are inversely proportional to the 
distance from the camera plane. In this 
case, the plenoptic domain is also known as 
the Epipolar Plane Image (or EPI). This 
property is observed in Figure 4 where we 
show the 2D light field and the 
corresponding plenoptic function. The 2D 
function is obtained by taking a ),( vt  slice 
of the light field thus fixing s  and u . The 
z -axis represents the depth and the v  and 
t  axes represent the focal and the camera 
planes respectively. Geometrically, we see 
that a point in space ),( zt  is projected on to 
the focal plane, fz = , according to  

1)( −′−=′− fzttvv  

where t  and t′  correspond to two different 
camera locations. Notice that the depth z  
can be retrieved thanks to the dependence 
on 1−z  of the slopes. Furthermore, the 
intensity along the line remains constant 
under the assumption of Lambertian 
surfaces, i.e. surfaces that reflect any 
incident light uniformly in all directions. 

 
Figure 4: 2D Light field parameterization where 

z represents the depth in the scene, t is the 
camera position axis and v is the focal axis of the 

cameras (positioned in z=f) 

In the discrete case, the problem becomes a 
4-dimensional sampling and interpolation 
problem. There is not only the sampling in 
the ),( vu -plane which corresponds to the 
pixels of a digital camera for instance but 
also the sampling in the ),( ts -plane which 
corresponds to the number of camera 
viewpoints in the array. In [5], the authors 
render novel views using basic quad-linear 
interpolation. For example, a new light ray 

),,,( 0000 tsvu  is computed from the 16 
neighbouring light rays. One main 
advantage of this rendering is that it can be 
done without any knowledge of the scene 
geometry, hence the term “Image Based 
Rendering”. However, as a result, the 
number of samples needed is very large. 
This problem is overcome by reducing the 
signal bandwidth with appropriate pre-
filtering, at the expense of image sharpness. 
The sampling problem and spectral 
characteristics are discussed in the next 
section. 

2.2  Spectral Analysis of the Plenoptic 
Function 

Sampling of the plenoptic function and 
view interpolation has until now mainly 
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been considered in a traditional framework. 
The idea is to apply the Fourier transform 
to the signal and sample it according to its 
spectrum. Chai et al. in [3] found that, 
assuming the scene is Lambertian and 
occlusion-free, the plenoptic function is 
approximately bandlimited. Indeed, the 
support in the frequency domain is bound 
by the maximum and minimum depths in 
the scene irrespective of how complicated it 
is. Recall from (4) that a point in space is 
mapped to a line in the EPI with slope 
inversely proportional to its depth. When 
the scene is at constant depth 0z  then the 
Fourier transform is reduced to a line  

01
0 =Ω+Ω−

tvfz  

It is shown in the paper that in the case of a 
scene with depths bound between minz  and 

maxz  as in Figure 5(a), the spectral support 
is still approximately bandlimited. An 
illustration of the spectrum is shown in 
Figure 5(b). Furthermore, it was later 
shown by Zhang and Chen in [10] that the 
assumption of approximate 
bandlimitedness still holds in the case of 
scenes with occlusions. 

 
Figure 5: Spectrum of a light field. (a) A scene 

with varying depth and no occlusions. (b) 
Idealized spectrum of the EPI. (c) Spectrum of 

the sampled EPI 

Assume we capture a scene with a finite 
number of cameras. The sampling process 
causes the replication of the spectrum as 
shown in Figure 5(c) and aliasing occurs 
when interpolated viewpoints are rendered. 
The ways of getting round this problem are 
the same as in classical sampling theory. 
One possibility is to use high sampling 
frequencies such that the aliasing does not 

occur. This setup implies a high density of 
cameras along the t-axis. 

The observation that the plenoptic function 
is bandlimited is only a first order 
approximation. There are numerous reasons 
why the band is in fact not limited. The 
first, and most intuitive, is that objects that 
have non bandlimited textures pasted onto 
them cause the band of the plenoptic 
function to be infinite. Furthermore, object 
boundaries and occlusions also cause 
discontinuities that have the same effect. 
Therefore, it seems natural to pursue 
efficient representations or scene 
interpolation in a space based fashion rather 
than a spectrum based one. 

3.  The Layer-Based Representation of 
the Plenoptic Function 

Most common image representations are 
based on ‘low-level’ image processing 
concepts like the discrete cosine transform 
and the wavelet transform for example. An 
ideal ‘high level’ coding algorithm would 
recognize objects, however it seems 
unlikely that such techniques will emerge 
in the near future. In [8], it suggested that a 
‘mid-level’ layer based representation can 
prove to be very efficient. Indeed, the 
knowledge of object and occlusion 
boundaries is critical in multiple view 
imaging. Therefore, we believe that the key 
to efficiently represent multiview data lies 
in segmentation and constructing a layer 
based representation of the scene. 

In this section, we provide a new algorithm 
for object segmentation based on video 
segmentation schemes and the level set 
method. We emphasize the importance of 
the capacity of handling occlusions. 
Throughout the section, we set ourselves in 
the context of a uniformly sampled light 
field and assume Lambertian surfaces. 

3.1  Representing Scenes with Layers 

The layer based representation was 
introduced in [8] in order to provide a 
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coding scheme with a certain understanding 
of the scene. Indeed, it takes into account 
several aspects like segmentation, depth 
perception, coherent movement and 
occlusions. While this representation is 
proposed for moving images, we apply it to 
the multiview case. Indeed, the plenoptic 
function can be represented as a 
superposition of epipolar layers. The whole 
scene can then be compressed into a plane 
plus parallax representation for each tunnel. 
Furthermore, this representation has the 
advantage of providing information for 
view interpolation with coherent occlusion 
handling. As mentioned in Section 2.2, the 
plenoptic function is not bandlimited and 
the sampling process causes aliasing. 
Spectral based algorithms were used in 
previous attempts to interpolate new 
viewpoints. With the advantage of scene 
segmentation, we can interpolate scenes by 
interpolating the motion parameters of the 
objects in a way that makes physical sense 
as we can follow the epipolar constraints. 
Thus, there will be no blurring effect 
around the edges. 

The problem of segmenting objects in a 
scene is well studied but remains ill-posed. 
Take an outdoor scene for instance. The 
segmentation is actually quite subjective. 
Do you segment each branch or leaf of a 
tree or do you consider the tree as whole?  
If the camera zooms in, do you change the 
segmentation to separate each leaf?  In the 
context of efficient representations, our 
main criteria will be the motion parameters 
that characterize the correlation of points in 
multiple views. Object based segmentation 
in a multiview framework is closely related 
to video segmentation. For example, 
consider the case of the 3D light field of a 
static scene. Then the images put in a stack 
are the same as a video taken with a camera 
that is translated along the t -axis of the 
light field. Therefore, video segmentation 
algorithms are applicable in our context as 
well with the added advantage that in our 
case the motion model is highly structured. 

3.2  Level Set Based Segmentation 

There are numerous object based 
segmentation methods for still images and 
video. In the case of still images, the main 
criteria to segment objects are intensity 
gradients. One approach is to use the level 
set methodology [6] to grow surfaces with 
a speed inversely proportional to the image 
gradient. The level set method has been 
used in region-based video segmentation 
[2]. The main idea is to use the level set 
method in order to minimize a certain 
energy functional which is usually a 
measure of variance along a motion 
trajectory. The curve stops at large 
gradients in the motion boundary map. 

The key idea of the level set method is to 
represent a closed curve )(tΓ  as the zero 
level set of a 3D surface ),,( tyxφ , i.e. 

{ }0),,(|),()( ==Γ tyxyxt φ . The higher 
dimension function φ  may be set to be the 
signed distance function of )(tΓ . In this 
case, we have 1=∇φ . The curve is grown 
according to the partial differential 
equation  

0=∇+ φφ Ft  

where F  is the “speed function”. This 
method provides several added advantages 
[6]. First, the curve may break or merge 
providing better handling in the case of 
topological changes. Second, the 
geometrical properties of the curve like 
curvature and normal vectors can be 
computed directly from the level set 
function. Third and most important in our 
case, the methodology allows for efficient 
numerical implementation in high 
dimensions. 

3.3  Segmentation Applied to Multiview 
Images 

In the context of multiview imaging, we 
replace the time dimension with the t -axis 
of the light field, representing camera 
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position, and a similar procedure can be 
used. In the case of a uniformly sampled 
and calibrated camera array, the motion 
model is highly structured. Moreover, the 
uniformity of the samples provides constant 
motion parameters throughout the stack of 
images. Under the assumption of 
Lambertian surfaces, we have constant 
intensity values for a point in space. Then a 
rigid object that is approximately planar 
should have the same motion parameters 
for all its points. Therefore, we use a 
motion estimation algorithm and use the 
parameters to segment scenes. In the first 
stages, we consider only a 3D light field 
comprising a single line of uniformly 
spaced cameras all pointing in the direction 
perpendicular to the baseline. 

The first step is to define a motion model. 
Let ),,( ityxI  be the intensity of pixel 

),( yx  in the image taken from a camera in 
location it  of a 3D light field. If the same 
point in space can be seen in two 
consecutive images then we have  

( )1),,(),,(),,( −= ii tyxgyxfItyxI  

where ),( yxf  and ),( yxg  describe a 
certain transformation. In the context of 
multiview imaging, these motion functions 
can be estimated using epipolar geometry. 
Recall from Section 2 that the EPI consists 
of a collection of lines with slopes 
inversely proportional to the distance 
between the point and the focal plane. 
Consider a scene made of planar objects 
with constant depth. Then the equivalent 
motion model consists strictly in 
translations along the x  direction and we 
have  

),,(),,( 11 −+= ii typxItyxI  

where ℜ∈1p . Figure 6 shows an example 
of such a scene with two planes. Notice that 
the plane that is closer occludes the 
background plane and that its slope in the 
EPI will be steeper. In the case of slanted 

planes, another dimension must be added to 
the motion parameters. The motion model 
can be adapted to the complexity of the 
scene resulting in a motion parameter 
vector, p . In general, we may use any 
affine transform. In the context of a 
uniformly sampled 3D light field, the 
motion parameters remain constant for each 
pair of consecutive images. Therefore, we 
have  

( )
( ) ( )( )2

1

,),(,),(
),,(),,(),,(

−

−

=
=

i

ii

tyxggyxffI
tyxgyxfItyxI

 

and so on for the whole stack. The 
advantage here is that the parameter 
estimation is performed over all the images 
at once since the motion is constant. In 
practice, we use a modified block matching 
algorithm for parameter estimation. The 
minimization of the square error is not 
performed on two consecutive images but 
for the whole EPI.  

 
Figure 6: Scene made of two planar objects 

3.4  Layer Extraction 

The problem of object based segmentation 
once the motion parameters have been 
computed boils down to expanding the 
block as long the pixel intensities along 
those motion parameters are consistent. The 
idea is to use the level set method with a 
speed function that minimizes the variance 
of the intensity along a motion trajectory. 
Assume the motion parameters p  for the 
object have already been computed with a 
block matching algorithm. Then we extend 
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the parameters to the whole stack of images 
and retain the areas where the photo 
consistency is good. In practice, we use the 
level set method with a specific speed 
function for each layer. 

Let ),;( txtx ip  be a motion trajectory 
through a stack of N  images defined by 
the motion parameters p . In other words, 

px  is the spatial position of a pixel in the 
image from camera it  that moved from 
position x  on camera t  with motion 
parameters p . Since the points need not be 
on the sampling grid, we denote the 
interpolated intensity as ),,(~ tyxI . Then the 
speed function  

( ) 1
layer

2
layer ),,(1),(

−
+= px tyxF σ  

where  

( )( )

( )∑

∑

=

−

=

−

=

−=
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ii
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i
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ttttxINt

1

1

2

1

12

),,;(~),,(

),,(),,;(~),,(

xpx

pxxpx

p

p

µ

µσ
 

is the inverse of the variance of the 
intensity along the motion trajectory. The 
level set equation becomes  

φ
τ
φ

∇=
∂
∂

layerF  

for each layer. The speed function relates 
only to one object tunnel at a time. In order 
to pass on to the next layer, we remove the 
current one from the stack of images thus 
geometrically orthogonalising the process. 
Notice that in order to perform the iterative 
segmentation, we have to start with the 
closest layer and work our way backwards. 
This order ensures that non-occluded 
objects are segmented first and further 
occlusions are explained. The foremost 
layer in the images is chosen to by finding 
the one with the maximum disparity. Once 
all the layers have been extracted, the fully 
non occluded versions are obtained by 

averaging the intensity values along the 
motion of the layer disregarding all the 
pixels that belonged to other layers, thus 

),,(),( layerlayer px tyxI µ=  with µ  as defined 
above. 

4. Simulation Results 

A basic simulated scene has been created in 
order to evaluate the performance of the 
algorithm. We place ourselves in the case 
of two planar layers with natural textures 
pasted on to them. Sixty uniformly 
distributed viewpoints have been created. 
Notice that the layers are parallel to the 
camera baseline and therefore they both 
undergo translations which are proportional 
to their depth. 

 
Figure 7: Simulation result. Illustration of the 

segmentation in the Epipolar Plane Image where 
the 2D contour (shown in red) is extended 

according to the motion parameters of the layer. 
The horizontal and vertical axes correspond to 

camera position, t, and pixel position, v, within a 
single horizontal scan line 

Motion parameters have been computed 
using a least squares algorithm. Here we 
have tracked two blocks of size 20 by 20 
pixels that were manually chosen such that 
they are entirely lying in their respective 
layers. As described above, the level set 
method is used to grow the block with a 
speed function that minimizes variance 
along the motion trajectory. In practise, we 
found that threshholding the speed function 
produces more accurate segmentations. In 
this case, we set the initial contour to the 
boarders of the block. After 9000 iterations 
of the fast marching algorithm, we obtain 
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the contour shown in Figure 7. The number 
of iterations was chosen to yield the best 
results from a batch of experiments. This 
2D contour is then extended to 3D 
according to the motion parameters of the 
layer being segmented. The resulting layer 
extraction is shown in Figure 8.  

  
 

Figure 8: Illustration of the segmented layers 

5. Conclusions 

We have placed ourselves in a multiview 
framework and have studied the structure 
of the images in the case of calibrated light 
field cameras. We have shown that 
according to epipolar geometry, the 
Epipolar Plane Image consists of a 
collection of lines with slopes inversely 
proportional to the distance to the camera 
plane. In this case, occlusions are highly 
structured events. 

We proposed a layer based representation 
of the plenoptic function and based 
ourselves on video processing algorithms to 
segment the scene according to the 
disparity. We emphasized the importance 
of multidimensional processing in order to 
fully take advantage of the structured 
nature of the data. We have proposed a new 
segmentation algorithm based on the level 
set method and have shown encouraging 
preliminary results. The layer based 
representation benefits from several 
advantages. First efficient representation as 
the scene can be coded as a sum of layers 
with their motion parameters. Second, view 
interpolation is straightforward as the 
motion parameters can be interpolated. 
Third, we have put forward the potential for 
performing classification and interpretation 

of the extracted layers; this will form the 
focus of later stages of this project. 
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