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Abstract 

We study the structure of multi-view images and introduce the notion of plenoptic hyper-
volumes. We then present a segmentation algorithm based on the level set method to extract 
such hyper-volumes. . 
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1. Introduction 

Multi-view camera systems have attracted a 
lot of attention in recent years thanks in a 
large part to the dropping prices of memory 
and digital cameras. Multi-view systems 
lead to new challenging problems such as 
the sheer amount of data involved. 
Traditional algorithms do not scale 
properly with the number of cameras and 
become impracticable when the number of 
images acquired is large. Efficient 
representation and analysis methods are 
therefore a primordial issue. Thankfully, as 
we will show in the paper, the multi-view 
data has a very particular structure and a 
high degree of regularity that can be used to 
achieve an efficient representation of such 
information. 

The visual information captured from any 
viewpoint in any direction, time and 
wavelength can be parameterized in a 
single seven dimensional function called 
the plenoptic function [1]. Consider the 
particular 3D case of the video or the 
space-time volume. A moving object carves 
out a 3D volume and the information inside 
it is highly regular. This is the observation 
reported by Ristivojevic and Konrad in [2] 
where they introduce object tunnels. 
Similarly, consider another 3D case of the 
plenoptic function where the time 
dimension is replaced by letting the 
viewing position move along a line. This is 

the case of a set of multi-baseline images or 
the Epipolar Plane Image (EPI) [3]. 
Volumes are carved out by objects at 
different depths in very much the same way 
as in the video and this was reported in [4] 
where Criminisi et al. introduce EPI tubes. 
Both cases reveal that there is a potential 
gain in segmentation accuracy and 
reliability by analyzing all the data in a 
single multidimensional function especially 
in the case of occlusions. In an effort to 
generalize the notion to all the dimensions 
of the plenoptic function, we introduce the 
plenoptic hyper-volumes and propose a 
hyper-volume extraction scheme based on 
active contours that is scalable to higher 
dimensions as well as takes into account 
the particular structure of the data.  

Thanks to their ability to exploit coherence, 
the extraction of plenoptic hyper-volumes 
is a very useful step for applications such as 
multi-view layer based representations, 
MPEG-4 like object based coding and 
disparity compensated and shape adaptive 
coding of multi-view data. Image Based 
Rendering (IBR) in which sampling with 
truncated windows is used also stands to 
benefit from the segmentation. Finally, 
extracted hyper-volumes also allow for 
scene understanding, occlusion detection 
and object classification. 

The paper is organized as follows: In 
Section 2 we analyse the structure of multi-
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view data, introduce the notion of plenoptic 
hyper-volumes and discuss their shape 
constraints. Section 3 proposes a variational 
framework for the extraction of the 
volumes and derives constrained surface 
evolutions. Experimental results are shown 
in Section 4 and we conclude in Section 5. 

2. Structure of Multiview Data 

The plenoptic function was introduced by 
Adelson and Bergen in order to 
characterize general free-viewpoint vision. 
The idea is to describe the intensity of each 
light ray that reaches a point in space. It can 
therefore be characterized by seven 
parameters namely the visual angle, the 
wavelength, time and the viewing position:  

),,,,,,(7 zyx VVVtPP λφθ=  

Figure 1 shows the concept where a camera 
symbolizes the viewing point. Intuitively, 
we see that the camera has 3 degrees of 
freedom (dof) for its position in space and 
itself has 2 dof to address the pixels of the 
image. With two more parameters, namely 
time and wavelength, it is possible to 
characterize any light ray. The general 
function is difficult to analyze due to its 
high number of dimensions. However, 
certain valid assumptions can be made in 
order to reduce its complexity. First, we 
simplify the wavelength into three channels 
for red, green and blue or one channel for 
greyscale images. Second, we consider that 
air is transparent, thus intensity does not 
change along a light ray unless it is 
occluded. Third, we limit ourselves to static 
scenes and drop the time parameter.  

 
Figure 1: The plenoptic function describes the 

intensity of each light ray that reaches any point 
in space at any time. It is therefore characterized 
by 7 parameters, namely the viewing position, the 

viewing direction, time and wavelength. 

Despite its apparent complexity, the 
plenoptic function is in fact a highly 
structured function especially in the case 
where the viewing points are constrained 
and can be parameterized.  

Consider, for example, the case of a linear 
multi-camera system, that is, the case 
where the viewing position is constrained 
to be along a straight line. This setup is 
illustrated in Figure 3. The plenoptic 
function sampled by this array is 
characterized by three dimensions namely 
the two dimensions x and y of the images 
and the location xV  of the camera along the 
line. Using a projective camera model, it is 
straightforward to show that points in space 
are projected onto lines in the plenoptic 
function and that the slope of the line is 
inversely proportional to the depth of the 
point. Lines with higher slopes therefore 
always occlude lines with smaller ones. 
The shape carved in the plenoptic domain 
by the cube of Figure 2 is shown in Figure 
3. In line with the work of Adelson and 
Bergen, we call the volume carved by the 
object plenoptic hyper-volume. 
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Figure 2: Linear camera array. The X,Y and Z 

coordinates correspond to the real world. 

Similar intuitions apply to other camera 
setups such as the circular case illustrated 
in Figure 4 and Figure 5. This setup was 
studied in [5] where Feldmann et al. 
introduce Image Cube Trajectories. They 
show that just like in the linear array 
parameterization, points in space are 
projected on to particular trajectories in the 
plenoptic function and occlusion 
compatible orders can be defined.  

 
Figure 3: Structure of the plenoptic function. The 

shape of the plenoptic volume carved by an 
object or a layer is constrained by the camera 

setup. 

In summary, in all the parameterizations of 
the plenoptic function, gathering a 
collection of lines that do not intersect 
generates a volume or a hypervolume nν  in 
which the information is highly regular. 
Notice that this usually corresponds to an 
object or a layer in the scene. The occlusion 
compatible order determines how occluding 
volumes carve through the background 

ones. By ordering the volumes from front 
to back, we can write:  

∑
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where nν  is the hyper-volume as if there 
was no occlusion and ⊥  denotes that the 
volume has been geometrically 
orthogonalised with the other volumes 
occluding it. Higher dimensional hyper-
volumes are generated in the same manner 
for higher dimensional plenoptic functions. 
In the case of the light field 
parameterization [6], for instance, the 
cameras are constrained to a plane and 4D 
hypervolumes are carved out by the 
objects.  

In an attempt to extract these volumes or 
hypervolumes, we set ourselves in a 
variational framework. 
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Figure 4: Circular camera array. The X,Y and Z 

coordinates correspond to the real world. 

 
Figure 5: The plenoptic function generated by 

two objects in the circular setup. In this context 
occlusion can be predicted. 
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3.  Extraction of Plenoptic Hyper-
volumes Using a Variational Framework 

Since the seminal work of Kass et al. [7], 
active contours have been used for 
numerous image and video segmentation 
schemes. It was rapidly noticed that the 
same principles can be extended to active 
surfaces and were used amongst other 
applications for space-time sequence 
analysis [2]. The methodology is also 
extendable to higher dimensions thus 
making it ideal for the segmentation of the 
plenoptic function. 

In the next subsection, we briefly review 
the level set method which is a form of 
active-contour segmentation technique, we 
then present, in the following sub-section, 
our segmentation approach that takes into 
account the geometrical (epipolar) 
constraints and the occlusion ordering. 

3.1  A Glimpse at the Level Set Method 

There are numerous object based 
segmentation methods for still images and 
video. In the case of still images, the main 
criteria to segment objects are intensity 
gradients. One approach is to use the level 
set methodology [8] to grow surfaces with 
a speed inversely proportional to the image 
gradient. The level set method has been 
used in region-based video segmentation 
[2][9]. The main idea is to use the level set 
method in order to minimize a certain 
energy functional which is usually a 
measure of variance along a motion 
trajectory. The curve stops at large 
gradients in the motion boundary map. 

The key idea of the level set method is to 
represent a closed curve )(tΓ  as the zero 
level set of a 3D surface ),,( tyxφ , i.e. 

{ }0),,(|),()( ==Γ tyxyxt φ . The higher 
dimension function φ  may be set to be the 
signed distance function of )(tΓ . In this 
case, we have 1=∇φ . The curve is grown 
according to the partial differential 
equation: 

0=∇+ φφ Ft  

where F  is the ‘speed function’. This 
method provides several added advantages 
[8]. First, the curve may break or merge 
providing better handling in the case of 
topological changes. Second, the 
geometrical properties of the curve like 
curvature and normal vectors can be 
computed directly from the level set 
function. Third and most important in our 
case, the methodology allows for efficient 
numerical implementation in high 
dimensions. 

4. A Variational Framework for 
Plenoptic Hyper-volumes Extraction 

Without loss of generality, we derive a set 
of constrained evolution equations for two 
volumes only νν =⊥

1 and νν =⊥
2  in a 3D 

plenoptic function where the cameras are 
constrained to a line (i.e. the EPI volume). 

Following the variational framework, we 
set the extraction of plenoptic hyper-
volumes as an energy minimization 
problem. The functional we seek to 
minimize can be written in the form: 

∫∫∫∫∫∫ += xdxgxdxfEtot
rrrr )()()( )()( τντντ  

where the )(xf r  and )(xg r  are descriptors 
measuring the consistency with the front 
and back volumes respectively. Assuming 
opaque Lambertian surfaces, popular 
choices for the descriptors are the variance 
along EPI lines or cross-correlation. Notice 
that in order to use correspondences, these 
descriptors depend on depth however we 
assume for the moment that depth is 
known. Using the Euler Lagrange equations 
or Eulerian derivatives, it can be shown that 
the gradient of the energy is given by [7,9] 

,))](()([)(
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τ
τ

ν
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d
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where ν∂   is the border of the volume, σ
rd  

is a differential surface element, W
r

 is the 
speed of the evolving interface and M

r
 is 
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its inward unit normal. Following the 
classical derivation, evolving the surface in 
a steepest descent fashion leads to the 
evolution equation MxgxfW

rrrr
)]()([ −= . 

However, this evolution does not fully take 
advantage of the plenoptic constraints 
imposed by the camera setup.  

The shape of the plenoptic volume carved 
out by an object is constrained by the 
camera setup. In the EPI case as illustrated 
here, the volumes are constrained to tubes. 
It is therefore possible to write the 3D 
normal speed function MW

rr
⋅  as a function 

of the 2D normal speed NV
rr

⋅  of the curve 
at xV =0. Namely, the curve related to the 
first image in the stack of images. More 
precisely, we have that: 

),()( tsNVMW α
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where ),( tsα  is a weighting factor 
depending on the depth map of the object 
or layer and the camera setup. Using this 
relation, we can rewrite the gradient of the 
energy as:    
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We now have an evolving curve in a two 
dimensional subspace where the speed 
function is essentially the original 
descriptor integrated over the line 
constituting the boarder of the volume. It is 
implemented as active contour instead of an 
active surface with evolution equation: 
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The estimation of the contours delimiting 
the plenoptic hyper-volume as described 
above requires the knowledge of the depth 
of the layer or the slope of the lines in the 
case of the EPI. We model the depth map 
as a linear combination of bicubic splines. 
The weights of the splines are determined 
by minimizing the energy functional where 
the shape of the contours is kept constant. 

In order to perform the minimization, we 
use non linear optimization methods such 
as the ones in Matlab's optimization 
toolbox. There are several advantages to 
this particular depth model. First, a great 
variety of smooth objects can be modelled. 
Second, only a limited amount of weights 
on control points need to be estimated 
depending on the lattice size. Finally, the 
depth map can be forced to have a certain 
shape. For instance, strictly fronto-parallel 
regions can be extracted by forcing all the 
weights to be the same for a given layer. 

The overall optimization is performed by 
iteratively alternating depth estimation 
given the contour of the volume and 
estimation of the contour given depth until 
there is no significant decrease in energy. 
In the case of multiple volumes in a scene 
we perform one iteration of the evolution 
for each hyper-volume while keeping the 
other contours fixed. It is interesting to 
notice that by the volume construction, the 
plenoptic hyper-volumes only compete 
with the other volumes they are occluding 
or disoccluding. The intuition behind this 
property is that the evolution of an 
occluding layer changes the background 
one (i.e. the background is more or less 
occluded) however the rear layer just 
evolves behind the front one.  

It is also worth mentioning that like all 
partial differential equation based methods, 
active contours require careful 
initialization. Classical block matching or 
stereo computer vision methods can be 
used. 

5. Simulation Results 

In this section, we illustrate some results 
for real multi-view data. In these results, 
the descriptor used is the variance along an 
EPI line and the contour evolution is 
performed using the level set method. 
There are several advantages to using this 
method over the classical active contour 
method. These include independence of 
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topology and numerical stability. We refer 
to [8] for a detailed discussion.  

 

Figure 6: Multi-view dataset. Here we show the 
first and the last of the 15 multi-view images 

acquired. 

Figures 6-8 illustrate the extracted 
plenoptic hyper-volumes in the case of real 
calibrated images. In order to segment 
regions at different depths, we force the 
depth model of the hyper-volume to be 
fronto-parallel therefore all the lines 
constituting the boarder of the volumes are 
parallel. Notice that the feet and the nose of 
the tiger are at a different depth than the 
body and the face. This is why separate 
volumes are extracted. Initialization is 
performed using block matching where 
blocks with similar motion parameters are 
merged.  

 

Figure 7: Left, one slice of the plenoptic function 
generated by the dataset of Figure 6. Right, 

layers extracted from the plenoptic function. 

 

Figure 8: The four hypervolumes extracted with 
your segmentation method. 

6. Conclusions 

We have proposed a segmentation 
algorithm for multi-view images that is 
based on 3D space continuity and that takes 
into account occlusions explicitly. Using 
epipolar geometry, we reduce the 3D 
problem of segmenting the multi-view 
images into a 2D curve evolution. The 
speed that governs the curve evolution 
however is computed using the whole stack 
of images. The main contribution of the 
scheme presented lies in the competition 
formulation that enables a global energy 
minimization instead of extracting layers 
individually.  

The extraction of the plenoptic hyper-
volumes that is achieved with this 
algorithm is an attractive step for numerous 
multi-view imaging applications. In 
particular, we aim to study the use of such 
hyper-volumes for object recognition and 
classification. 
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