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Abstract 

This paper presents a categorisation of image-based modelling (IBM) algorithms based on 

their approach to the IBM problem. This categorisation groups the algorithms into three 

classes, surface reduction, depth map and sparse point algorithms. We then cover a further 

four key considerations or aspects related to choosing and designing an IBM algorithm, 

scene type, prior information, type of features and similarity measures. Finally the paper 

presents an implementation of an IBM algorithm based on the previous discussion and shows 

some simulation results using data from the Middlebury website www.middlebury.edu/stereo. 

Keywords : Image-based modelling, Multi-view stereo 

1. Introduction 

Visual media is currently undergoing the 

biggest change in decades, the move from 

2D to 3D scene representation. For 

instance broadening the user’s experience 

to that of the real world with 3DTV or free 

viewpoint TV (where the user decides 

upon the viewpoint). Moving away from 

media entertainment, 3D scene 

representation, such as virtual viewpoint 

synthesis or 3D modelling, is also used in 

object tracking and recognition. These 

applications are a product of the expanding 

research into multi-view imaging, in 

particular the fields of Image-Based 

Rendering (IBR) and Image-Based 

Modelling (IBM). IBR and IBM form the 

two extremes of 3D scene representation 

[1]. 

In IBR arbitrary new virtual views of a 

scene are interpolated from a finite set of 

multi-view images without the need to 

generate a 3D model, hence giving the 

impression of a 3D scene. This is achieved 

by considering each image as capturing a 

set of light rays travelling from an object 

or scene to the camera [1]. Under this 

model the virtual view is simply 

determined by selecting the correct light 

rays from the image set. The interpolation 

is required as the image set is finite, hence 

it does not contain all possible light rays. 

As a result the intensity values of the 

arbitrary new views are found by 

interpolation of nearby light rays [2]. 

The light rays in question are described 

using the following seven dimensional 

function proposed by Adelson and Bergen 

[3], known as the plenoptic function 

( )
zyx vvvtII ,,,,,,7 λφθ=  (1) 

where ( )
zyx vvv ,,  is the viewing position, 

( )φθ ,  is the viewing direction, λ is the 

wavelength and t is the time. In practice, 

as images are used, the viewing direction 

is parameterised in terms of ( )yx,  

coordinates [3]. Figure 1 illustrates the 

plenoptic function parameters. 

Bearing this in mind, IBR can be viewed 

in terms of sampling and reconstruction of 

the plenoptic function. The finite set of 

images with finite resolution, samples the 

continuous plenoptic function and the 

virtual view is the reconstruction of the 

samples [1]. 

At the other extreme, the goal of IBM is to 

reconstruct a 3D model of a scene or 



 

 4
th
 SEAS DTC Technical Conference - Edinburgh 2009 A9  

object given a set of 2D images from 

multiple viewpoints [4]. Therefore the 3D 

information (i.e. geometry) of the scene is 

recovered and stored from the multi-view 

images. This means that the scene or 

object is represented directly as a 3D 

model, although virtual views can be 

formed via projection of the 3D model into 

the image plane. 

 

Figure 1: Diagram showing the seven 

parameters of the plenoptic function, where (vx, 

vy, vz) is the viewing position, (x,y) is the viewing 

direction, λλλλ is the wavelength and t is the time 

[2] 

This process is a generalisation of the 

classic stereo reconstruction problem, 

hence also being known as multi-view 

stereo reconstruction. For an overview of 

stereo reconstruction algorithms see [5]. 

Consequently both approaches require a 

set of multi-view images of a scene; they 

differ, however, in the size of that set, the 

type of data that is stored and the type of 

3D representation they provide. 

Focusing on the size of the image set first, 

high quality view synthesis in IBR can 

only be achieved with a very large image 

set, whereas in IBM a much smaller set 

can be used to generate a 3D model. 

Consequently IBR requires that the large 

image set be stored, compared to a 

considerably smaller image set plus 3D 

model in the case of IBM. Lastly IBR, by 

definition, provides renderings from any 

angle of the scene, whereas IBM provides 

the 3D model directly. Hence IBR gives 

the impression of 3D compared to the 

actual 3D model generated by IBM. 

Bearing this in mind, the remainder of this 

paper will focus on IBM algorithms. The 

paper is organised as follows, section 2 

provides an overview of IBM algorithms, 

dividing them into three main classes 

based on their approach to the problem. In 

general no one algorithm works best for all 

scenes and certain aspects of an algorithm 

can be varied to achieve different results, 

such as feature points or similarity 

measures. As a result section 3 will 

examine key considerations when 

constructing an IBM algorithm. Lastly 

section 4 describes our implementation of 

an IBM algorithm based on the previous 

discussion with some simulations results 

and section 5 concludes the paper. 

2. IBM Algorithms Classification 

A recent survey of multi-view stereo 

reconstruction by Seitz et al. [6] classifies 

the algorithms according to six 

fundamental properties: scene 

representation, photo-consistency measure, 

visibility model, shape prior, 

reconstruction algorithm and initialisation 

requirements. However in this paper we 

consider a coarser and looser classification 

scheme, in which algorithms are classified 

based on their approach to the problem. As 

such there are three classifications, surface 

reduction approach, depth map based 

approach and sparse point approach. Note 

that details such as feature points and 

similarity measures are explained in 

section 3.   

2.1 Surface Reduction Algorithms 

Algorithms in this category use the 

assumption that the scene (or more 

precisely the object as discussed later) can 

be modelled by a surface. Hence they 

approach IBM from the end product point 

of view, i.e. the result of the algorithm 

should be a surface that represents the 

scene. Note that in general the surface is 
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complete, so some algorithms consider the 

volume enclosed by the surface. 

The high level approach is to start with a 

rough initial surface containing the scene 

and refine it until it is equivalent to the 

scene. This refinement process means that 

the initial surface is reduced to fit the 

scene, hence it can be considered as the 

minimisation of the surface given some 

constraints. For example common 

constraints would be to impose 

smoothness on the surface, use a photo-

consistency measure, such as colour 

consistency or a similarity measure, or to 

impose geometric consistency [6]. Other 

than that, as [7] highlights, the competing 

algorithms mostly differ in the type of 

optimisation technique used, level set 

method, gradient descent or graph cut. 

An example of this class of algorithm is 

the one proposed by Pons, Keriven and 

Faugeras [8]. The algorithm works by 

using the level set technique to minimise 

the surface defined by a prediction error. 

The prediction error is generated by 

measuring the similarity between a point 

in on image and the related point projected 

via the scene space into another image. 

2.2 Depth Map Algorithms 

This class of algorithm approaches IBM 

from the stereo reconstruction point of 

view, hence treating it as a number of 

stereo reconstruction problems linked 

together. The first step is to generate the 

depth map of each image; hence the depth 

of each pixel is computed. Once computed 

the depth maps are then merged to form a 

3D representation of the scene, either as a 

3D point cloud or a surface. Figure 2 

shows the basic principle of computing the 

depth of a point given its position in two 

images. 

Similar to the previous category, the 

method of computing the depth maps per 

image varies depending on the algorithm. 

For instance the depth map can be 

calculated using the image space [9] or by 

projection from the scene space [10,11], 

between two images [9] or over all the 

images [10,11]. 

The algorithm proposed in [9] is an 

example of calculating the depth maps 

between two images in the image space. In 

this algorithm, once the camera positions 

are determined, a dense stereo matching is 

performed on adjacent views. This process 

tries to match each pixel in one image to a 

pixel in another image by pair wise 

disparity estimation using a dynamic 

programming scheme, see [12]. The 

dynamic programming is performed 

between two corresponding epipolar lines. 

The computation is reduced by rectifying 

the images beforehand so that the epipolar 

lines coincide with the scan-lines of the 

images. The depth maps are then fused by 

a controlled correspondence linking. Each 

pixel in the reference image is transferred 

to another view and if the resultant depth 

estimate is within a confidence interval the 

link is considered good and it carries on to 

the next image. If this is not the case the 

linking is stopped. 

 

Whereas the algorithm in [10] calculates 

the depth maps for each image using all 

the other images and the scene space. The 

algorithm works by assuming that the 

scene is bounded within a volume and that 
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Figure 2: Diagram shows the basic 

principle of depth estimation of a point 

using frontal parallel images. Z is the 

depth, v’x and vx the positions of the 

cameras, f is the focal length and (x’–x) 

the disparity [2] 
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for the reference image each pixel 

corresponds to a light ray passing through 

the volume. Then at each depth value 

along the ray the corresponding point is 

projected into the neighbouring images as 

possible matches. The match is evaluated 

using a similarity measure and the average 

value of the measure is taken across all the 

neighbouring images. Once this has been 

done for all the depth values along the ray, 

the one with the highest average similarity 

measure, above a certain threshold, is 

chosen, i.e. a depth is assigned to a pixel. 

This process is repeated for all the pixels 

in all the images. The thresholding 

imposed when choosing a depth value 

means that it is possible to have gaps in a 

depth map, however depth maps are 

calculated for all the images hence the 

gaps are likely to be filled. 

2.3 Sparse Point Algorithms 

The final class of algorithm approaches 

IBM from yet another view point, image 

matching and correspondence. In this 

category a set of feature points are 

extracted from all the images and then 

matched. The resultant sparse or patchy 

3D point cloud is then turned into 3D 

model by fitting a surface to the points. 

Although these algorithms may seem to be 

similar to the depth map algorithms there 

is a distinct difference in their aim. The 

aim of the depth map algorithms is to 

relate each pixel in the image to a depth 

value by determining correspondence 

between other view points. Hence each 

image should have a depth map that is as 

complete as possible allowing for a 

complete 3D reconstruction. Whereas the 

aim of the sparse point algorithms is to 

match and reconstruct key features. 

An example of this class is proposed in 

[7]. The algorithm works by dividing each 

image into smaller sections and extracting 

a set number of features from each section. 

Two types of features are extracted from 

the image, corner features and blobs 

(explained in more detail in section 3). The 

features are then matched with features 

along the corresponding epipolar lines in 

other images. The matching process in this 

algorithm results in a patch being created, 

hence after the matching a sparse set of 

patches is returned. The second step is to 

expand these patches to nearby patches 

and then the final step is to filter the 

patches to remove outliers. The second and 

final steps are repeated three times to 

increase the patch density. The sparse 

patch cloud is then turned into a surface 

mesh. 

3. Key IBM Considerations 

Having defined three categories of 

algorithms this section looks at key 

considerations and aspects that are relevant 

to all algorithms. These are split into four 

groups, the types of scenes being 

modelled, the effect of prior information 

on the choice of algorithm, the choice of 

feature to be extracted and the type of 

similarity measures used for matching 

images. The first two groups are 

considerations when choosing an 

algorithm, whereas the last two cover 

interchangeable aspects related to all 

algorithms. 

3.1 Types of Scenes 

When choosing an algorithm it is 

important to consider the type of 3D scene 

that it should model. For instance some 

algorithms require the scene to be bounded 

in a volume [10] or to have images from 

all around the scene (surface reduction 

algorithms). Furukawa and Ponce, [7], 

define three types of scene datasets: 

objects, scenes and crowed scenes. 

The first type of dataset consists of a 

single target object that is fully visible 

from all angles [7], hence the object is the 

sole focus of the image set. This means 

that there is almost no background 

information or occlusion to consider 

within the images. Algorithms using 
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surface reduction are ideal for this type of 

dataset as the target object is bounded 

within a volume making an initial estimate 

of the surface easy, and the image set can 

cover a wide set of viewpoints [7]. 

The second dataset, scenes, consists of one 

or more targets that are embedded with 

other non-basic objects or clutter [7]. 

Consequently the targets could be partially 

occluded or the number of viewpoints 

constrained. An example of this dataset 

would be outdoor urban scenes. These 

more complex scenes are better suited to 

depth map or sparse algorithms as an 

estimate of the bounding volume is 

difficult and they deal with occlusion 

better. Note that if the scene is not too 

complex the target objects can be 

separated from the clutter or background 

using image segmentation. 

The final dataset, crowded scene, is a more 

complex version of the second, as they 

contain moving objects along with the 

clutter. Hence they are dynamic not static 

scenes. In this case the best approach 

would be a robust sparse point algorithm 

as it would focus on key features only, 

however the reconstruction might be 

incomplete. 

It is worth noting that a mixture of 

reconstruction strategies could be applied 

to complex scenes, hence different styles 

of algorithms could be used for different 

areas of the scene. This approach is used in 

[11], where the images are split into 

regions and different reconstruction 

strategies are applied depending on the 

characteristics of the region. 

3.2 Prior Information 

The most common prior information used 

in IBM is the assumption that the cameras 

have been calibrated and all the camera 

poses are known [7,8,10,11]. This enables 

the user to project the image points into 

the scene space and then re-project them 

into another image [8,10] or to calculate 

the fundamental matrix between two 

images allowing epipolar line searching 

[7]. A down side of this approach is that 

the camera parameters can not change and 

that the camera positions must be 

accurately known beforehand. 

There are some algorithms that do not 

assume camera calibration or position; in 

fact they start by calibrating the cameras 

and determining the camera poses. Such 

algorithms use a self-calibration step 

[9,13]. This extra step increases the 

computation of the algorithm but does 

allow more freedom in the initial images 

used. 

Other common prior information required, 

in particular for surface reduction 

algorithms, is an estimate of the bounding 

volume that contains the target object or 

objects.   

3.3 Features 

Extracting features from the image set is a 

common stage in nearly all IBM 

algorithms, in particular algorithms that 

aim to calibrate the cameras and calculate 

their position. The reason for this is that 

treating all the pixels in the image set [10] 

can lead to increased computation and 

possible indecision as some pixels are not 

unique. 

Consequently, as indicated in [11], a good 

feature should be distinct, invariant to 

certain transformations and robust to 

noise, i.e. it should be possible to relate a 

good feature across the image set. 

Bearing this in mind, [11] defines three 

types of features. The first type are interest 

points, these are single points within the 

image, which are determined by some 

criterion to be distinct or unique. For 

instance Harris corner points, used in [7,9], 

are determined by looking for the 

maximum gradient in both the x and y 

direction. Another type of interest point 

are those determined by Scale Invariant 

Feature Transform (SIFT) [14].  
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The second type of feature is an edge 

within the image. The most common edge 

detector is the Canny detector. The basic 

method is to smooth the image and then 

look for changes in gradients that signify 

edges. The downside to this type of feature 

is that it is not very affine invariant, hence 

large changes in viewpoint lead to the edge 

looking very different. 

The final feature, defined by [11], is 

regions. These are regions within the 

image that are invariant under certain 

transformations [11]. The algorithm 

proposed in [7] uses Difference of 

Gaussian (DoG) operators along with 

Harris corners as key features, hence 

mixing regions and interest points. 

Likewise, [13] extracts affine invariant 

regions across the image set. 

Ideally, like [7], extracting a mix of 

features seems the optimum strategy for 

matching and relating images, however 

there is a trade off with computation time. 

3.4 Matching Similarity Measures 

Once the feature points or regions are 

extracted from all the images in the set, the 

corresponding features occurring in each 

image need to be determined. This process 

involves matching the features to each 

other and comparing the result. In general 

this is done by using a similarity or 

dissimilarity measure calculated between 

the features followed by a threshold to 

decide if the match is good.  

There are two types of similarity measures 

used to compare a feature p in image i to a 

feature q in image j; the first is a window 

based strategy. In this strategy a square (or 

rectangular) window is centred on feature 

p in image i and the same size window is 

positioned on feature q in image j. Then 

one of the following characteristics is 

calculated over the window, sum of the 

squared difference (SSD), sum of the 

absolute difference (SAD) or normalised 

cross-correlation (NCC) [5]. NCC is a 

popular measure as it normalises the result 

making it robust to varying illumination, it 

is used in [7,9,10,11]. 

The second type of similarity measure 

involves assigning a description vector to 

the feature. Consequently two features are 

compared by calculating the Euclidean or 

Mahalanobis distance between the vectors 

[11] (i.e. the shorter the distance the better 

the match). An example of this would be 

the SIFT feature which is assigned a vector 

of 128 components [14]. 

As with the decision on what type of 

feature to use, the decision on the 

similarity measure is a trade off between 

more accurate matching and complexity. 

4. Implementation and Results 

Based on the previous discussion we 

implemented an IBM algorithm in 

MATLAB using freely available code 

from the internet, including: Torr’s 

Structure and Motion Toolkit [15], 

Corke’s Machine Vision Toolbox [16], 

Ogale’s Stereo Matching Code [17] and 

Dey’s Cocone mesh generation software 

[18]. 

The algorithm is designed to be as broad 

as possible, in terms of the type of scene to 

be reconstructed, and to use limited prior 

information. As a result the algorithm is a 

mixture of the sparse point and depth map 

approaches. It extracts and matches a set 

of sparse points and uses them to 

determine the fundamental matrix relating 

the images. Once this is done it performs a 

dense stereo matching on the image pairs 

and fuses the result. Although the current 

algorithm uses calibrated images with 

known camera pose, a self-calibration step 

can be added to the algorithm in the future. 

The following sections describe the 

different parts of the algorithm in greater 

detail. Note that the structure of the 

algorithm is shown in Figure 3. 
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4.1 Feature Extraction and Matching 

The first step in the algorithm is to extract 

features from the image set. It was decided 

that the features in question should be 

Harris corner points as they are not too 

computational expensive and commonly 

used in IBM algorithms. 

The Harris detector code from [16] was 

used as it allowed greater control of the 

number of Harris points detected and their 

position.  

Once all the features have been detected 

the next step is an initial feature matching, 

between adjacent viewpoints, using a NCC 

similarity measure with a window size of 

µ×µpixel
2
 (where µ varies from 11 to 15). 

The threshold level for this matcher is set 

to 0.6. At this level a certain number of 

incorrect matches are expected, however 

they are dealt with in the next section. 

4.2 Refined Matching 

For each adjacent pair the following 

refined matching occurs, the initial 

matches are used to calculate a robust 

estimation of the fundamental matrix. The 

robust estimation uses a RANSAC method 

to determine a set of inliers and outliers, 

and then calculates the fundamental matrix 

from the inliers. 

Once an estimate of the fundamental 

matrix is calculated a refined matching 

process can take place. This refined 

matching takes the outliers from one 

image and searches along the epipolar 

lines in the opposite image for matches 

(again using NCC), and then vice versa in 

the other image. In this search the 

threshold is raised to 0.9 to ensure that 

these matches are more reliable. The new 

epipolar line matches are then combined 

with the inliers and the fundamental matrix 

is re-estimated. 

4.3 Dense Stereo Matching 

The aim of the previous steps was to 

calculate an accurate estimate of the 

fundamental matrix between the adjacent 

viewpoints. This accurate estimate is now 

used to rectify the images so that the 

epipolar lines coincide with the image 

scan-lines. 

Once this has been achieved a dense stereo 

matching algorithm [17] is used to 

generate a depth map for each image. The 

resultant depth maps are then fused and the 

matches projected into the scene space to 

give a 3D point cloud. 

4.4 Region Expansion and Meshing 

The 3D point cloud still contains some 

errors due to the dense stereo matching 

algorithm, for instance in areas where 

there is little or no texture. Consequently 

to remove these errors a region or plane 

expansion process is implemented. It 

currently assumes a frontal parallel plane, 

in the direction of the nearest image pair, 

however in the future the process will be 

expanded to allow any type of plane as 

long as the direction of the normal to the 

plane faces outwards. Therefore the region 

Figure 3: Diagram showing the structure 

of our IBM algorithm implementation. 

Currently the camera calibration step is 

not present, however it position in the 

algorithm is highlighted. As a result the 

algorithm relies on calibrated images with 

known camera pose 
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expansion fits frontal parallel planes to the 

points and removes points that are outliers, 

i.e. either no plane fits or it is very small. 

The last step is to take the refined 3D point 

cloud and turn it into a mesh using the 

cocone algorithm [18]. 

 

Figure 4a:  Left image with the matches 

found after the refined matching stage. The 

number of matches was 6111 

Figure 4b: Right image with the matches 

found after the refined matching stage. The 

number of matches was 6111 

Figure 4c:  3D point cloud generated after the 

dense stereo matching stage of the algorithm. The 

noise appearance of the point cloud is due to 

incorrect matches occurring in the dense stereo 

matcher 

Figure 4d: 3D point cloud generated after 

the region expansion stage of the algorithm. 

The ‘noise’ present in figure 4c has been 

reduced 

Figure 4f: Diagram showing the ground truth 

mesh generated from the ground truth 3D 

point cloud. Note, again, that the number of 

points in the cloud was reduced in order for 

the mesh generation software to work 

Figure 4e: Diagram showing the resultant 

mesh generated from the 3D point cloud 

shown in figure 4d. Note that the number of 

points in the cloud was reduced in order for 

the mesh generation software to work, hence 

the patch appearance 
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4.5 Simulations 

The algorithm was applied to a stereo pair 

of images from the Middlebury website, 

www.middlebury.edu/stereo. These 

simulation results are shown in Figure 4: 

part a and b) show the left and right image, 

respectively, with the refined matches, c) 

shows the 3D point cloud after the dense 

stereo matching, d) shows the refined 3D 

point cloud after the region expansion, e) 

shows the mesh generated from the refined 

3D point cloud and f) shows the Ground 

true mesh. Note that the 3D point cloud 

given to the mesh generating software was 

down-sampled uniformly as the software 

can not handle very large point clouds. As a 

result the mesh in e) looks patchy 

compared to the point cloud in d). 

5. Conclusion 

IBM algorithms can be grouped into three 

categories based on their approach to the 

IBM problem. The first category refines an 

initial estimate of the surface until it 

matches the scene, hence a surface 

reduction approach. The next category 

generates a dense depth map for each 

image and fuses the results, hence the depth 

map approach. The final category 

reconstructs key features and fits a surface 

to them, hence the sparse point approach. 

Along with this categorisation, there are 

two key considerations when choosing an 

algorithm. The first consideration is the 

type of scene that is being modelled. For 

instance a single object on its own, which is 

ideal for surface reduction algorithms, or 

several objects embedded in a complex 

scene, which suits depth map algorithms. 

The second consideration is the availability 

of prior information, such as a bounding 

volume for surface reduction algorithms or 

calibrated cameras and poses to avoid a 

self-calibration step. 

Once the algorithm has been chosen there 

are another two aspects to consider. The 

first aspect is the type of features to be 

extracted for the purpose of image 

matching. This is a trade off between the 

complexity of extracting the feature and its 

uniqueness. There are three types of 

features, a single interest point, an edge or a 

region. The other aspect is the similarity 

measure used to find matched 

correspondence between two features. This 

splits into two groups, window based 

measures using a characteristic like NCC or 

comparing feature descriptor vectors by 

calculating a distance (e.g. Euclidean 

distance). 

Bearing this in mind this paper presents an 

implementation of an IBM algorithm 

designed to cover any type of scene and use 

limited prior information. The algorithm 

initially uses a sparse point approach to the 

problem by extracting a set of interest 

points (Harris corners) and matching them 

across the image set. It then switches to a 

depth map approach by determining the 

fundamental matrix relating the images and 

performing a dense stereo matching on the 

image pairs. Lastly it fuses the depth maps 

and generates a mesh. The software used in 

the algorithm is all freely available on the 

internet; see [15,16,17,18].  

The simulation results show that the 

presented algorithm is capable of 

reconstructing the scene. However they 

also highlight some limitations of the 

algorithm. The first is that the dense stereo 

matcher results in a noisy 3D point cloud, 

hence requiring an extra processing step 

(the region expander) to reduce this noise. 

The other major limitation is that the mesh 

generation software is limited to a certain 

size of 3D point cloud. Consequently the 

3D point cloud is down-sampled in order 

for the mesh to be generated, leading to a 

patchy output. 

Currently the algorithm is limited to 

generating a patchy 3D model (or mesh), 

therefore future expansion to the algorithm 

would be to improve the completeness of 

the output. One way to do this would be to 

improve the region expansion step to use 
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planes with varying orientation, i.e. not just 

frontal parallel planes.  
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