

 4
th
 SEAS DTC Technical Conference - Edinburgh 2009 A9

A Review of Image-Based Modelling Techniques

Pier Luigi Dragotti and Mike Brookes

Electrical and Electronic Engineering Department, Imperial College London, Exhibition

Road, London, SW7 2BT

Abstract

This paper presents a categorisation of image-based modelling (IBM) algorithms based on

their approach to the IBM problem. This categorisation groups the algorithms into three

classes, surface reduction, depth map and sparse point algorithms. We then cover a further

four key considerations or aspects related to choosing and designing an IBM algorithm,

scene type, prior information, type of features and similarity measures. Finally the paper

presents an implementation of an IBM algorithm based on the previous discussion and shows

some simulation results using data from the Middlebury website www.middlebury.edu/stereo.

Keywords : Image-based modelling, Multi-view stereo

1. Introduction

Visual media is currently undergoing the

biggest change in decades, the move from

2D to 3D scene representation. For

instance broadening the user’s experience

to that of the real world with 3DTV or free

viewpoint TV (where the user decides

upon the viewpoint). Moving away from

media entertainment, 3D scene

representation, such as virtual viewpoint

synthesis or 3D modelling, is also used in

object tracking and recognition. These

applications are a product of the expanding

research into multi-view imaging, in

particular the fields of Image-Based

Rendering (IBR) and Image-Based

Modelling (IBM). IBR and IBM form the

two extremes of 3D scene representation

[1].

In IBR arbitrary new virtual views of a

scene are interpolated from a finite set of

multi-view images without the need to

generate a 3D model, hence giving the

impression of a 3D scene. This is achieved

by considering each image as capturing a

set of light rays travelling from an object

or scene to the camera [1]. Under this

model the virtual view is simply

determined by selecting the correct light

rays from the image set. The interpolation

is required as the image set is finite, hence

it does not contain all possible light rays.

As a result the intensity values of the

arbitrary new views are found by

interpolation of nearby light rays [2].

The light rays in question are described

using the following seven dimensional

function proposed by Adelson and Bergen

[3], known as the plenoptic function

()
zyx vvvtII ,,,,,,7 λφθ= (1)

where ()
zyx vvv ,, is the viewing position,

()φθ , is the viewing direction, λ is the

wavelength and t is the time. In practice,

as images are used, the viewing direction

is parameterised in terms of ()yx,

coordinates [3]. Figure 1 illustrates the

plenoptic function parameters.

Bearing this in mind, IBR can be viewed

in terms of sampling and reconstruction of

the plenoptic function. The finite set of

images with finite resolution, samples the

continuous plenoptic function and the

virtual view is the reconstruction of the

samples [1].

At the other extreme, the goal of IBM is to

reconstruct a 3D model of a scene or

 4
th
 SEAS DTC Technical Conference - Edinburgh 2009 A9

object given a set of 2D images from

multiple viewpoints [4]. Therefore the 3D

information (i.e. geometry) of the scene is

recovered and stored from the multi-view

images. This means that the scene or

object is represented directly as a 3D

model, although virtual views can be

formed via projection of the 3D model into

the image plane.

Figure 1: Diagram showing the seven

parameters of the plenoptic function, where (vx,

vy, vz) is the viewing position, (x,y) is the viewing

direction, λλλλ is the wavelength and t is the time

[2]

This process is a generalisation of the

classic stereo reconstruction problem,

hence also being known as multi-view

stereo reconstruction. For an overview of

stereo reconstruction algorithms see [5].

Consequently both approaches require a

set of multi-view images of a scene; they

differ, however, in the size of that set, the

type of data that is stored and the type of

3D representation they provide.

Focusing on the size of the image set first,

high quality view synthesis in IBR can

only be achieved with a very large image

set, whereas in IBM a much smaller set

can be used to generate a 3D model.

Consequently IBR requires that the large

image set be stored, compared to a

considerably smaller image set plus 3D

model in the case of IBM. Lastly IBR, by

definition, provides renderings from any

angle of the scene, whereas IBM provides

the 3D model directly. Hence IBR gives

the impression of 3D compared to the

actual 3D model generated by IBM.

Bearing this in mind, the remainder of this

paper will focus on IBM algorithms. The

paper is organised as follows, section 2

provides an overview of IBM algorithms,

dividing them into three main classes

based on their approach to the problem. In

general no one algorithm works best for all

scenes and certain aspects of an algorithm

can be varied to achieve different results,

such as feature points or similarity

measures. As a result section 3 will

examine key considerations when

constructing an IBM algorithm. Lastly

section 4 describes our implementation of

an IBM algorithm based on the previous

discussion with some simulations results

and section 5 concludes the paper.

2. IBM Algorithms Classification

A recent survey of multi-view stereo

reconstruction by Seitz et al. [6] classifies

the algorithms according to six

fundamental properties: scene

representation, photo-consistency measure,

visibility model, shape prior,

reconstruction algorithm and initialisation

requirements. However in this paper we

consider a coarser and looser classification

scheme, in which algorithms are classified

based on their approach to the problem. As

such there are three classifications, surface

reduction approach, depth map based

approach and sparse point approach. Note

that details such as feature points and

similarity measures are explained in

section 3.

2.1 Surface Reduction Algorithms

Algorithms in this category use the

assumption that the scene (or more

precisely the object as discussed later) can

be modelled by a surface. Hence they

approach IBM from the end product point

of view, i.e. the result of the algorithm

should be a surface that represents the

scene. Note that in general the surface is

 4
th
 SEAS DTC Technical Conference - Edinburgh 2009 A9

complete, so some algorithms consider the

volume enclosed by the surface.

The high level approach is to start with a

rough initial surface containing the scene

and refine it until it is equivalent to the

scene. This refinement process means that

the initial surface is reduced to fit the

scene, hence it can be considered as the

minimisation of the surface given some

constraints. For example common

constraints would be to impose

smoothness on the surface, use a photo-

consistency measure, such as colour

consistency or a similarity measure, or to

impose geometric consistency [6]. Other

than that, as [7] highlights, the competing

algorithms mostly differ in the type of

optimisation technique used, level set

method, gradient descent or graph cut.

An example of this class of algorithm is

the one proposed by Pons, Keriven and

Faugeras [8]. The algorithm works by

using the level set technique to minimise

the surface defined by a prediction error.

The prediction error is generated by

measuring the similarity between a point

in on image and the related point projected

via the scene space into another image.

2.2 Depth Map Algorithms

This class of algorithm approaches IBM

from the stereo reconstruction point of

view, hence treating it as a number of

stereo reconstruction problems linked

together. The first step is to generate the

depth map of each image; hence the depth

of each pixel is computed. Once computed

the depth maps are then merged to form a

3D representation of the scene, either as a

3D point cloud or a surface. Figure 2

shows the basic principle of computing the

depth of a point given its position in two

images.

Similar to the previous category, the

method of computing the depth maps per

image varies depending on the algorithm.

For instance the depth map can be

calculated using the image space [9] or by

projection from the scene space [10,11],

between two images [9] or over all the

images [10,11].

The algorithm proposed in [9] is an

example of calculating the depth maps

between two images in the image space. In

this algorithm, once the camera positions

are determined, a dense stereo matching is

performed on adjacent views. This process

tries to match each pixel in one image to a

pixel in another image by pair wise

disparity estimation using a dynamic

programming scheme, see [12]. The

dynamic programming is performed

between two corresponding epipolar lines.

The computation is reduced by rectifying

the images beforehand so that the epipolar

lines coincide with the scan-lines of the

images. The depth maps are then fused by

a controlled correspondence linking. Each

pixel in the reference image is transferred

to another view and if the resultant depth

estimate is within a confidence interval the

link is considered good and it carries on to

the next image. If this is not the case the

linking is stopped.

Whereas the algorithm in [10] calculates

the depth maps for each image using all

the other images and the scene space. The

algorithm works by assuming that the

scene is bounded within a volume and that

 ′−
=−′

Z

vv
fxx xx

Figure 2: Diagram shows the basic

principle of depth estimation of a point

using frontal parallel images. Z is the

depth, v’x and vx the positions of the

cameras, f is the focal length and (x’–x)

the disparity [2]

 4
th
 SEAS DTC Technical Conference - Edinburgh 2009 A9

for the reference image each pixel

corresponds to a light ray passing through

the volume. Then at each depth value

along the ray the corresponding point is

projected into the neighbouring images as

possible matches. The match is evaluated

using a similarity measure and the average

value of the measure is taken across all the

neighbouring images. Once this has been

done for all the depth values along the ray,

the one with the highest average similarity

measure, above a certain threshold, is

chosen, i.e. a depth is assigned to a pixel.

This process is repeated for all the pixels

in all the images. The thresholding

imposed when choosing a depth value

means that it is possible to have gaps in a

depth map, however depth maps are

calculated for all the images hence the

gaps are likely to be filled.

2.3 Sparse Point Algorithms

The final class of algorithm approaches

IBM from yet another view point, image

matching and correspondence. In this

category a set of feature points are

extracted from all the images and then

matched. The resultant sparse or patchy

3D point cloud is then turned into 3D

model by fitting a surface to the points.

Although these algorithms may seem to be

similar to the depth map algorithms there

is a distinct difference in their aim. The

aim of the depth map algorithms is to

relate each pixel in the image to a depth

value by determining correspondence

between other view points. Hence each

image should have a depth map that is as

complete as possible allowing for a

complete 3D reconstruction. Whereas the

aim of the sparse point algorithms is to

match and reconstruct key features.

An example of this class is proposed in

[7]. The algorithm works by dividing each

image into smaller sections and extracting

a set number of features from each section.

Two types of features are extracted from

the image, corner features and blobs

(explained in more detail in section 3). The

features are then matched with features

along the corresponding epipolar lines in

other images. The matching process in this

algorithm results in a patch being created,

hence after the matching a sparse set of

patches is returned. The second step is to

expand these patches to nearby patches

and then the final step is to filter the

patches to remove outliers. The second and

final steps are repeated three times to

increase the patch density. The sparse

patch cloud is then turned into a surface

mesh.

3. Key IBM Considerations

Having defined three categories of

algorithms this section looks at key

considerations and aspects that are relevant

to all algorithms. These are split into four

groups, the types of scenes being

modelled, the effect of prior information

on the choice of algorithm, the choice of

feature to be extracted and the type of

similarity measures used for matching

images. The first two groups are

considerations when choosing an

algorithm, whereas the last two cover

interchangeable aspects related to all

algorithms.

3.1 Types of Scenes

When choosing an algorithm it is

important to consider the type of 3D scene

that it should model. For instance some

algorithms require the scene to be bounded

in a volume [10] or to have images from

all around the scene (surface reduction

algorithms). Furukawa and Ponce, [7],

define three types of scene datasets:

objects, scenes and crowed scenes.

The first type of dataset consists of a

single target object that is fully visible

from all angles [7], hence the object is the

sole focus of the image set. This means

that there is almost no background

information or occlusion to consider

within the images. Algorithms using

 4
th
 SEAS DTC Technical Conference - Edinburgh 2009 A9

surface reduction are ideal for this type of

dataset as the target object is bounded

within a volume making an initial estimate

of the surface easy, and the image set can

cover a wide set of viewpoints [7].

The second dataset, scenes, consists of one

or more targets that are embedded with

other non-basic objects or clutter [7].

Consequently the targets could be partially

occluded or the number of viewpoints

constrained. An example of this dataset

would be outdoor urban scenes. These

more complex scenes are better suited to

depth map or sparse algorithms as an

estimate of the bounding volume is

difficult and they deal with occlusion

better. Note that if the scene is not too

complex the target objects can be

separated from the clutter or background

using image segmentation.

The final dataset, crowded scene, is a more

complex version of the second, as they

contain moving objects along with the

clutter. Hence they are dynamic not static

scenes. In this case the best approach

would be a robust sparse point algorithm

as it would focus on key features only,

however the reconstruction might be

incomplete.

It is worth noting that a mixture of

reconstruction strategies could be applied

to complex scenes, hence different styles

of algorithms could be used for different

areas of the scene. This approach is used in

[11], where the images are split into

regions and different reconstruction

strategies are applied depending on the

characteristics of the region.

3.2 Prior Information

The most common prior information used

in IBM is the assumption that the cameras

have been calibrated and all the camera

poses are known [7,8,10,11]. This enables

the user to project the image points into

the scene space and then re-project them

into another image [8,10] or to calculate

the fundamental matrix between two

images allowing epipolar line searching

[7]. A down side of this approach is that

the camera parameters can not change and

that the camera positions must be

accurately known beforehand.

There are some algorithms that do not

assume camera calibration or position; in

fact they start by calibrating the cameras

and determining the camera poses. Such

algorithms use a self-calibration step

[9,13]. This extra step increases the

computation of the algorithm but does

allow more freedom in the initial images

used.

Other common prior information required,

in particular for surface reduction

algorithms, is an estimate of the bounding

volume that contains the target object or

objects.

3.3 Features

Extracting features from the image set is a

common stage in nearly all IBM

algorithms, in particular algorithms that

aim to calibrate the cameras and calculate

their position. The reason for this is that

treating all the pixels in the image set [10]

can lead to increased computation and

possible indecision as some pixels are not

unique.

Consequently, as indicated in [11], a good

feature should be distinct, invariant to

certain transformations and robust to

noise, i.e. it should be possible to relate a

good feature across the image set.

Bearing this in mind, [11] defines three

types of features. The first type are interest

points, these are single points within the

image, which are determined by some

criterion to be distinct or unique. For

instance Harris corner points, used in [7,9],

are determined by looking for the

maximum gradient in both the x and y

direction. Another type of interest point

are those determined by Scale Invariant

Feature Transform (SIFT) [14].

 4
th
 SEAS DTC Technical Conference - Edinburgh 2009 A9

The second type of feature is an edge

within the image. The most common edge

detector is the Canny detector. The basic

method is to smooth the image and then

look for changes in gradients that signify

edges. The downside to this type of feature

is that it is not very affine invariant, hence

large changes in viewpoint lead to the edge

looking very different.

The final feature, defined by [11], is

regions. These are regions within the

image that are invariant under certain

transformations [11]. The algorithm

proposed in [7] uses Difference of

Gaussian (DoG) operators along with

Harris corners as key features, hence

mixing regions and interest points.

Likewise, [13] extracts affine invariant

regions across the image set.

Ideally, like [7], extracting a mix of

features seems the optimum strategy for

matching and relating images, however

there is a trade off with computation time.

3.4 Matching Similarity Measures

Once the feature points or regions are

extracted from all the images in the set, the

corresponding features occurring in each

image need to be determined. This process

involves matching the features to each

other and comparing the result. In general

this is done by using a similarity or

dissimilarity measure calculated between

the features followed by a threshold to

decide if the match is good.

There are two types of similarity measures

used to compare a feature p in image i to a

feature q in image j; the first is a window

based strategy. In this strategy a square (or

rectangular) window is centred on feature

p in image i and the same size window is

positioned on feature q in image j. Then

one of the following characteristics is

calculated over the window, sum of the

squared difference (SSD), sum of the

absolute difference (SAD) or normalised

cross-correlation (NCC) [5]. NCC is a

popular measure as it normalises the result

making it robust to varying illumination, it

is used in [7,9,10,11].

The second type of similarity measure

involves assigning a description vector to

the feature. Consequently two features are

compared by calculating the Euclidean or

Mahalanobis distance between the vectors

[11] (i.e. the shorter the distance the better

the match). An example of this would be

the SIFT feature which is assigned a vector

of 128 components [14].

As with the decision on what type of

feature to use, the decision on the

similarity measure is a trade off between

more accurate matching and complexity.

4. Implementation and Results

Based on the previous discussion we

implemented an IBM algorithm in

MATLAB using freely available code

from the internet, including: Torr’s

Structure and Motion Toolkit [15],

Corke’s Machine Vision Toolbox [16],

Ogale’s Stereo Matching Code [17] and

Dey’s Cocone mesh generation software

[18].

The algorithm is designed to be as broad

as possible, in terms of the type of scene to

be reconstructed, and to use limited prior

information. As a result the algorithm is a

mixture of the sparse point and depth map

approaches. It extracts and matches a set

of sparse points and uses them to

determine the fundamental matrix relating

the images. Once this is done it performs a

dense stereo matching on the image pairs

and fuses the result. Although the current

algorithm uses calibrated images with

known camera pose, a self-calibration step

can be added to the algorithm in the future.

The following sections describe the

different parts of the algorithm in greater

detail. Note that the structure of the

algorithm is shown in Figure 3.

 4
th
 SEAS DTC Technical Conference - Edinburgh 2009 A9

4.1 Feature Extraction and Matching

The first step in the algorithm is to extract

features from the image set. It was decided

that the features in question should be

Harris corner points as they are not too

computational expensive and commonly

used in IBM algorithms.

The Harris detector code from [16] was

used as it allowed greater control of the

number of Harris points detected and their

position.

Once all the features have been detected

the next step is an initial feature matching,

between adjacent viewpoints, using a NCC

similarity measure with a window size of

µ×µpixel
2
 (where µ varies from 11 to 15).

The threshold level for this matcher is set

to 0.6. At this level a certain number of

incorrect matches are expected, however

they are dealt with in the next section.

4.2 Refined Matching

For each adjacent pair the following

refined matching occurs, the initial

matches are used to calculate a robust

estimation of the fundamental matrix. The

robust estimation uses a RANSAC method

to determine a set of inliers and outliers,

and then calculates the fundamental matrix

from the inliers.

Once an estimate of the fundamental

matrix is calculated a refined matching

process can take place. This refined

matching takes the outliers from one

image and searches along the epipolar

lines in the opposite image for matches

(again using NCC), and then vice versa in

the other image. In this search the

threshold is raised to 0.9 to ensure that

these matches are more reliable. The new

epipolar line matches are then combined

with the inliers and the fundamental matrix

is re-estimated.

4.3 Dense Stereo Matching

The aim of the previous steps was to

calculate an accurate estimate of the

fundamental matrix between the adjacent

viewpoints. This accurate estimate is now

used to rectify the images so that the

epipolar lines coincide with the image

scan-lines.

Once this has been achieved a dense stereo

matching algorithm [17] is used to

generate a depth map for each image. The

resultant depth maps are then fused and the

matches projected into the scene space to

give a 3D point cloud.

4.4 Region Expansion and Meshing

The 3D point cloud still contains some

errors due to the dense stereo matching

algorithm, for instance in areas where

there is little or no texture. Consequently

to remove these errors a region or plane

expansion process is implemented. It

currently assumes a frontal parallel plane,

in the direction of the nearest image pair,

however in the future the process will be

expanded to allow any type of plane as

long as the direction of the normal to the

plane faces outwards. Therefore the region

Figure 3: Diagram showing the structure

of our IBM algorithm implementation.

Currently the camera calibration step is

not present, however it position in the

algorithm is highlighted. As a result the

algorithm relies on calibrated images with

known camera pose

Feature
Extraction

Matching

Refined
Matching

Camera
Calibration

Dense
Stereo

Region
Expansion

Mesh
Generation

 4
th
 SEAS DTC Technical Conference - Edinburgh 2009 A9

expansion fits frontal parallel planes to the

points and removes points that are outliers,

i.e. either no plane fits or it is very small.

The last step is to take the refined 3D point

cloud and turn it into a mesh using the

cocone algorithm [18].

Figure 4a: Left image with the matches

found after the refined matching stage. The

number of matches was 6111

Figure 4b: Right image with the matches

found after the refined matching stage. The

number of matches was 6111

Figure 4c: 3D point cloud generated after the

dense stereo matching stage of the algorithm. The

noise appearance of the point cloud is due to

incorrect matches occurring in the dense stereo

matcher

Figure 4d: 3D point cloud generated after

the region expansion stage of the algorithm.

The ‘noise’ present in figure 4c has been

reduced

Figure 4f: Diagram showing the ground truth

mesh generated from the ground truth 3D

point cloud. Note, again, that the number of

points in the cloud was reduced in order for

the mesh generation software to work

Figure 4e: Diagram showing the resultant

mesh generated from the 3D point cloud

shown in figure 4d. Note that the number of

points in the cloud was reduced in order for

the mesh generation software to work, hence

the patch appearance

 4
th
 SEAS DTC Technical Conference - Edinburgh 2009 A9

4.5 Simulations

The algorithm was applied to a stereo pair

of images from the Middlebury website,

www.middlebury.edu/stereo. These

simulation results are shown in Figure 4:

part a and b) show the left and right image,

respectively, with the refined matches, c)

shows the 3D point cloud after the dense

stereo matching, d) shows the refined 3D

point cloud after the region expansion, e)

shows the mesh generated from the refined

3D point cloud and f) shows the Ground

true mesh. Note that the 3D point cloud

given to the mesh generating software was

down-sampled uniformly as the software

can not handle very large point clouds. As a

result the mesh in e) looks patchy

compared to the point cloud in d).

5. Conclusion

IBM algorithms can be grouped into three

categories based on their approach to the

IBM problem. The first category refines an

initial estimate of the surface until it

matches the scene, hence a surface

reduction approach. The next category

generates a dense depth map for each

image and fuses the results, hence the depth

map approach. The final category

reconstructs key features and fits a surface

to them, hence the sparse point approach.

Along with this categorisation, there are

two key considerations when choosing an

algorithm. The first consideration is the

type of scene that is being modelled. For

instance a single object on its own, which is

ideal for surface reduction algorithms, or

several objects embedded in a complex

scene, which suits depth map algorithms.

The second consideration is the availability

of prior information, such as a bounding

volume for surface reduction algorithms or

calibrated cameras and poses to avoid a

self-calibration step.

Once the algorithm has been chosen there

are another two aspects to consider. The

first aspect is the type of features to be

extracted for the purpose of image

matching. This is a trade off between the

complexity of extracting the feature and its

uniqueness. There are three types of

features, a single interest point, an edge or a

region. The other aspect is the similarity

measure used to find matched

correspondence between two features. This

splits into two groups, window based

measures using a characteristic like NCC or

comparing feature descriptor vectors by

calculating a distance (e.g. Euclidean

distance).

Bearing this in mind this paper presents an

implementation of an IBM algorithm

designed to cover any type of scene and use

limited prior information. The algorithm

initially uses a sparse point approach to the

problem by extracting a set of interest

points (Harris corners) and matching them

across the image set. It then switches to a

depth map approach by determining the

fundamental matrix relating the images and

performing a dense stereo matching on the

image pairs. Lastly it fuses the depth maps

and generates a mesh. The software used in

the algorithm is all freely available on the

internet; see [15,16,17,18].

The simulation results show that the

presented algorithm is capable of

reconstructing the scene. However they

also highlight some limitations of the

algorithm. The first is that the dense stereo

matcher results in a noisy 3D point cloud,

hence requiring an extra processing step

(the region expander) to reduce this noise.

The other major limitation is that the mesh

generation software is limited to a certain

size of 3D point cloud. Consequently the

3D point cloud is down-sampled in order

for the mesh to be generated, leading to a

patchy output.

Currently the algorithm is limited to

generating a patchy 3D model (or mesh),

therefore future expansion to the algorithm

would be to improve the completeness of

the output. One way to do this would be to

improve the region expansion step to use

 4
th
 SEAS DTC Technical Conference - Edinburgh 2009 A9

planes with varying orientation, i.e. not just

frontal parallel planes.

References

[1] A. Kubota, A. Smolic, M. Magnor, M.

Tanimoto, T. Chen, and C. Zhang, Multiview

imaging and 3DTV, IEEE Signal Processing

Magazine, vol. 24, no. 6, pp. 10–21, 2007.

[2] J. Berent. Coherent multi-dimensional

segmentation of multiview images using a

variational framework and applications to

image based rendering. PhD thesis, Imperial

College London, 2008.

[3] E.H. Adelson and J.R. Bergen, The plenoptic

function and the elements of early vision, in

Computational Models of Visual Processing,

pp. 3-20. MIT Press, Cambridge, MA, 1991.

[4] G. Slabaugh, B. Culbertson, T. Malzbender,

and R. Schafer, A survey of methods for

volumetric scene reconstruction from

photographs, in International Workshop on

Volume Graphics, 2001, pp. 81–100.

[5] D. Scharstein and R. Szeliski, A taxonomy

and evaluation of dense two-frame stereo

correspondence algorithms, International

Journal of Computer Vision, vol. 47, no. 1–3,

pp. 7–42, 2002.

[6] S.M. Seitz, B. Curless, J. Diebel, D.

Scharstein, and R. Szeliski, A comparison

and evaluation of multi-view stereo

reconstruction algorithms, in IEEE

Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR’06),

2006, vol. 1, pp. 519–528.

[7] Y. Furukawa and J. Ponce, Accurate, dense,

and robust multi-view stereopsis, in IEEE

Conference on Computer Vision and Pattern

Recognition (CVPR’07), 2007, pp. 1–8.

[8] J.-P. Pons, R. Keriven, and O. Faugeras,

Modelling dynamic scenes by registering

multi-view image sequences, in IEEE

Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR’05),

2005, vol. 2, pp. 822–827.

[9] M. Pollefeys, L. Van Gool, M. Vergauwen,

F. Verbiest, K. Cornelis, and J. Tops, Visual

modeling with a hand-held camera,

International Journal of Computer Vision,

vol. 59, no. 3, pp. 207–232, 2004

[10] M. Goesele, B. Curless, and S.M. Seitz,

Multi-view stereo revisited, in IEEE

Computer Society Conference on Computer

Vision and Pattern Recognition, 2006, vol. 2,

pp. 2402–2409.

[11] F. Remondino, S.F. El-Hakim, A. Gruen, and

L. Zhang, Turning images into 3-D models,

IEEE Signal Processing Magazine, vol. 25,

no. 4, pp. 55–65, 2008.

[12] I.J. Cox, S.L. Hingorani, and S.B. Rao, A

maximum likelihood stereo algorithm,

Computer Vision and Image Understanding,

vol. 63, no. 6, pp. 542–567, 1996.

[13] C. Strecha, T. Tuytelaars, and L. Van Gool,

Dense matching of multiple wide-baseline

views, in Proceedings of the Ninth IEEE

International Conference on Computer

Vision (ICCV’03), 2003, pp. 1194–1201.

[14] D. Lowe, Distinctive image features from

scale-invariant keypoints, International

Journal of Computer Vision, vol. 60, no.2,

pp. 91-110, 2003.

[15] P. H. S. Torr, A Structure and Motion Toolkit

in Matlab. Technical report, Microsoft

Research, 2001. Website:

http://cms.brookes.ac.uk/staff/PhilipTorr/

[16] P. I. Corke, Machine Vision Toolbox, IEEE

Robotics and Automation Magazine, vol. 12

no. 4, pp 16-25, 2005. Website:

http://petercorke.com/Machine%20Vision%2

0Toolbox.html

[17] A. S. Ogale, Shape and the stereo

correspondence problem, International

Journal of Computer Vision, vol. 65, no. 3,

147-162, 2005. Website:

http://www.cs.umd.edu/~ogale/download/cod

e.html

[18] T. K. Dey and J Giesen, Detecting

Undersampling in Surface Reconstruction, in

Proceedings 17th ACM Symposium

Computer Geometry, 2001, pp. 257-263.

Website: http://www.cse.ohio-

state.edu/~tamaldey/cocone.html

Acknowledgements

The work reported in this paper was funded by

the Systems Engineering for Autonomous

Systems (SEAS) Defence Technology Centre

established by the UK Ministry of Defence.

