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ABSTRACT

We propose a novel feature set for speaker recognition that is based
on the voice source signal. The feature extraction process uses
closed-phase LPC analysis to estimate the vocal tract transfer func-
tion. The LPC spectrum envelope is converted to cepstrum coef-
ficients which are used to derive the voice source features. Un-
like approaches based on inverse-filtering, our procedure is robust
to LPC analysis errors and low-frequency phase distortion. We
have performed text-independent closed-set speaker identification
experiments on the TIMIT and the YOHO databases using a stan-
dard Gaussian mixture model technique. Compared to using mel-
frequency cepstrum coefficients, the misclassification rate for the
TIMIT database reduced from 1.51% to 0.16% when combined with
the proposed voice source features. For the YOHO database the mis-
classification rate decreased from 13.79% to 10.07%. The new fea-
ture vector also compares favourably to other proposed voice source
feature sets.

Index Terms— Vocal Systems, Speech Analysis, Cepstral Anal-
ysis, Speaker Recognition

1. INTRODUCTION

This paper presents a procedure for speaker identification feature ex-
traction using voice source analysis. The voice source features are
compatible with mel-frequency cepstrum coefficients (MFCC) and,
when combined with them, achieve superior speaker identification
performance.

The preferred feature sets for speech and speaker recognition
are the MFCCs and perceptual linear predictive (PLP) coefficients
both of which are based on the magnitude spectrum of the speech
analysis window [1, 2]. In this paper we show how to derive the
magnitude spectrum of the voice source signal which describes the
air flow through the glottis in voiced speech. The voice source sig-
nal is a function of the shape and the movements of the vocal folds
and has been shown to give consistent variation between speaker
types [3]. Using the magnitude spectrum of the voice source allows
the derivation of voice source (mel-frequency) cepstrum coefficient
(VSCC). This gives us two sets of coefficients, MFCCs derived from
the magnitude spectrum of the speech and VSCCs derived from the
magnitude spectrum of the voice source signal.

The estimation of the voice source signal is essentially that of
blind system estimation. If we rely on linear prediction modelling
of the speech production then we are assuming that the voice source
has a flat spectrum and the source becomes encoded in the estimated
vocal-tract transfer function. To avoid this, we apply closed phase
LPC analysis to circumvent the problem and solve the blind nature
of the estimation process.

The shape and form of the voice source signal has been the sub-
ject of many studies in the past. An early study estimated the voice
source signal by using an inverse LCR circuit network analysis and
the vocal fold opening area, measured by video [4]. Further devel-
opments replaced the LCR circuit network with linear filters identi-
fied using covariance analysis [5, 6]. Other methods have been sug-
gested for voice source analysis such as the two channel analysis ap-
proach, using electroglottography [7]. Identifying the glottal closure
instant (GCI) in each larynx cycle [8, 9] makes it possible to perform
closed-phase analysis [10], so that the vocal tract filter is evaluated
separately from the source. We have recently developed the dynamic
programming projected phase-slope algorithm (DYPSA) [11], based
on the group delay function [9, 12], to detect GCIs for this purpose.

This paper is organized as follows. In Section 2, the VSCC fea-
ture extraction process is presented and Section 3 defines the speaker
identification task and describes how the MFCC and VSCC classi-
fiers are combined. The experimental results are given in Section 4
and the paper is concluded in Section 5.

2. VOICE SOURCE CEPSTRUM COEFFICIENTS

The voice source is represented by cepstrum parameters so as to
avoid difficulties associated with inverse-filtering including low-
frequency distortion. Fig. 1 shows how the voice source cepstrum
coefficients (VSCC) are extracted. The closed-phase portion of the
voiced speech is identified using the DYPSA algorithm. An autore-
gressive (AR) model of the vocal tract is estimated using multi-
cycle closed-phase analysis [10] and its spectral envelope evalu-
ated. The envelope is then passed through a mel-filter bank, the
logarithm taken, and the discrete cosine transform applied [13] to
produce vocal-tract cepstrum coefficients (VTCC). This is different
from LPC cepstrum since the mel-scale is applied in the frequency
domain. The VSCC are then computed by subtracting the VTCC
from the MFCC extracted from the same frame [1].

Following Fig. 1, detailed description of the feature extraction
is as follows. We detect if the frame is unvoiced or voiced. For
unvoiced frames (middle path), the AR spectral envelope covari-
ance LPC coefficients of the frame is extracted. For voiced frames
(left path), the closed phases in the frame are identified by using
the DYPSA algorithm [11]. The DYPSA algorithm provides an ac-
curate detection of glottal closure instants. The closed phase LPC
coefficients can be estimated in the interval following the glottal clo-
sure instants. We avoid including the glottal closure instants in this
analysis since the detection provided by of the DYPSA algorithm is
sufficiently accurate. We do not attempt to locate the glottal opening
instants, since they are less pronounced in the voice source signal,
but we assume the closed phase to be the first 33% of the larynx
cycle [14]. We have found that the LPC analysis is not sensitive to
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Fig. 1. Computation of voice source cepstrum coefficients using
closed-phase analysis.

this choice. Excluding a part of the closed phase only means that
we have less data to estimate the parameters and since the opening
is gradual (compared to the closure) the effect of including a small
portion of the start of the open phase is rarely serious.

The closed-phase covariance analysis is performed on a fixed
32 ms frame with a frame increment of 10 ms. The LPC parame-
ters ap are evaluated only for the closed-phase portion of the speech
where the voice source is assumed to be zero [10, 15]. For unvoiced
frames, we perform covariance analysis on the entire frame since this
is consistent with the modelling assumptions. For speech sampled at
16 kHz we use a prediction order P = 16 [16].

The spectral envelope of the speech signal is evaluated as,

S(k) =
σu

∑P
p=0 ape−j2πkp/Ns

, (1)

where σu is the magnitude of the closed-phase LPC residual and Ns

determines the frequency resolution of the envelope. We apply a
mel-filter bank to attain the filter outputs,

Y (r) =

Na−1∑

k=0

S(k)Mr(k), (2)

where Mr(k) is the r-th mel-filter and r ∈ {1, . . . , 26} [13]. The
vocal tract cepstrum coefficients are then computed as the cosine
transform of the logarithm of the filterbank output,

cvt(m) =

Nr−1∑

r=1

log(Y (r)) cos
( (2r + 1)mπ

2Nr

)
, (3)

where m = {1 . . . Nc} and Nc = 12 and we discard cvt(0). We
consider the VTCC to represent the vocal tract, since they are derived
during a period when there is no input from the voice source.

If we make the loss-less tube assumption then the cvt(m)-
coefficients represent the vocal tract for both voiced and unvoiced
frames. Parallel to the above processing we extract mel-frequency
cepstrum coefficients [13] (rightmost path in Fig. 1) from the same
frame of speech and denote as c(m). The inverse-filtering that is nor-
mally used to extract the voice source signal is equivalent to subtrac-
tion in the cepstrum domain so the voice source signal is represented
as

cvs(m) = c(m)− cvt(m). (4)

3. SPEAKER IDENTIFICATION

Each speaker is represented by a Gaussian Mixture Model (GMM),
ξ, formed from the training utterances using the EM-algorithm [17].
Each component in the GMM is represented by a weight, a mean
vector and a diagonal covariance matrix. We vary the number of
mixture components from 2 to 64 to assess how many components
are needed for each set of coefficients.

A score for each test-utterance, indexed as i, is evaluated as the
summed log-likelihood of the sequence of feature vectors from that
utterance. An identity is assigned to each utterance according to the
highest log-likelihood score.

ι̂ = arg max
ξ

L(i, ξ). (5)

where L is the summed log-likelihood.

We present results for the following three feature sets.

1. MFCC, Mel-Frequency Cepstrum Coefficients, c(m);

2. VSCC, Voice Source Cepstrum Coefficients, cvs(m);

3. VTCC, Vocal Tract Cepstrum Coefficients, cvt(m).

Results based on classifier combination of two coefficient sets
are also presented. Two classifiers are combined using a weighted
sum of likelihoods [18]. So, for example, instead of basing the deci-
sion on the likelihood of the MFCC or VSCC classifier only, the two
likelihoods are added together,

Lw(i, ξ) = θLmfcc(i, ξ) + (1− θ)Lvscc(i, ξ). (6)

where θ is an undetermined weight factor, i is the test utterance index
and ξ is the speaker model.

4. EXPERIMENTS

The evaluation of the proposed feature extraction method was done
by text-independent closed-set speaker identification experiments on
the TIMIT [19] and YOHO [20] databases. The TIMIT database
contains speech from 630 speakers. We defined the first 8 utterances
for each speaker as the training set and the remaining 2 sx utterances
as the test set. The 10 utterances were all recorded during the same
session at 16 kHz sampling frequency. The YOHO database con-
sists of 138 speakers each with 24 training utterances and 40 test
utterances recorded in different sessions. The data was recorded in
a normal office environment at 8 kHz sampling frequency with 16
bit per sample. We divided each utterance into 32 ms frames with
10 ms frame increment and derived 12 coefficients for each method
(MFCC, VSCC and VTCC) for each frame excluding the 0th coef-
ficient. No attempt was made to pre-recognize voice activity or to
enhance the speech before the feature extraction.
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4.1. Model size

Fig. 2 shows the misclassification rate experiments conducted on the
TIMIT database using 2, 4, 8, 16, 32, and 64 mixtures each classi-
fier depending only on the MFCC, VSCC, and VTCC feature sets.
The bars show the test set misclassification rates for each of the three
classifiers, the baseline classifier using the MFCC, VSCC and VTCC
features. We found that the performance did not increase when the
number of mixture components were increased beyond 32 but on
the contrary in many of our experiments the performance decreased
somewhat. This chart also displays the difference in performance
between the three feature sets. The results for the 32 mixture com-
ponent cases is shown in the upper half of Table 1 for the TIMIT
and YOHO databases. We can see that the MFCC feature set outper-
forms the VSCC and the VTCC feature sets when used on their own.
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Fig. 2. Speaker identification experiments for 630-speaker TIMIT
subset using MFCC, VSCC and VTCC feature sets and different
number of Gaussian mixture components.

4.2. Combination of classifiers

We combined the MFCC, VSCC and VTCC classifiers in pairs and
show the results in Fig. 3 and 4 for the TIMIT and YOHO databases
respectively. It can be seen from the traces that the combination of
the MFCC and VTCC classifiers does not improve the misclassifi-
cation rate of the MFCC classifier significantly, whereas combining
the VSCC classifier with the MFCC classifier results in a much lower
misclassification than that of the MFCC classifier.

The test-set misclassification rate γ is the ratio of all incorrectly
identified speakers to the total number of test utterances [21]. Error
rates are presented in the form γ ± e where e is an estimate of the
standard error.

For the TIMIT database the lowest misclassification rate was
0.16± 0.11%, achieved by combining the MFCC and VSCC classi-
fiers weighting the VSCC likelihood with θ = 0.4. The lowest mis-
classification rate achieved by the combination of VSCC and VTCC
was 0.48±0.19% also weighting the VSCC likelihood with θ = 0.4.

The YOHO database presents a more realistic challenge to
speaker identification than the TIMIT database. The speech is
recorded in a real office environment and the data is recorded for
each speaker in different sessions increasing the intra-speaker vari-
ability. The lowest misclassification rate was for the YOHO test was
10.07 ± 0.41%, also achieved by combining the MFCC and VSCC
classifiers with the VSCC likelihood weight θ = 0.4. The low-
est misclassification rate achieved by the combination of VSCC and
VTCC was 10.45± 0.41%.
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Fig. 3. Combinations of the VSCC, VTCC and MFCC classifiers for
the TIMIT database.
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Fig. 4. Combinations of the VSCC, VTCC and MFCC classifiers for
the YOHO database.

A summary of the results is presented in Table 1 where the test
set misclassification rate is given for each classifier. The combina-
tion results are given using the best possible combination weight,
but it should be noted that the values of these weights have not been
optimized using a specific training or a validation set.

Table 1. Misclassification rate using the three feature sets and com-
bined classifiers. Each classifier uses 32 mixture components ap-
plied to the TIMIT and YOHO databases

Misclassification rate, γ ± e [%]

Classifier TIMIT YOHO

MFCC 1.51± 0.34 13.79± 0.46
VSCC 12.94± 0.95 36.30± 0.65
VTCC 2.46± 0.44 15.58± 0.49
MFCC+VSCC 0.16± 0.11 10.07± 0.41
MFCC+VTCC 0.95± 0.27 11.45± 0.43
VTCC+VSCC 0.48± 0.19 10.45± 0.41

4.3. Comparison to other work

A time-domain voice source feature set was developed by
M.D. Plumpe et.al. [22]. The method uses twelve voice source coef-
ficients. Seven coefficients are derived from the coarse structure of
the voice source signal found using larynx synchronous, piecewise
continuous function fitting [23]. The remaining five coefficients are
based on the fine structure of voice source signal derived from the
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error between the fitted model and the measured signal. The experi-
ments were done using a 168 speaker subset of the TIMIT database
and cross gender tests were not performed. The average male and
female misclassification rate was reported as 28.64%. When com-
bined with 14 LPC cepstrum parameters the method achieved 6.85%
misclassification rate. The VSCC features achieve 5.06% misclassi-
fication rate on the same 168 speaker TIMIT subset. On the more
challenging full 630 speaker TIMIT set the result is 12.95% for
the VSCC classifier and combined with MFCC features the mis-
classification rate is 0.16%. Another promising approach to voice
source feature extraction for speaker recognition has been presented
by K.S.R. Murty and B. Yegnayaranana [24] but their results are
based on a different database so direct comparison is impossible.

5. CONCLUSIONS

This study has developed a novel feature set for speaker identifi-
cation and shown how a standard speaker identification system can
be significantly improved. The results are also better than other at-
tempts suggested in the literature. The voice source cepstrum coef-
ficients were presented and applied to a closed-set speaker identifi-
cation task. We used the segmentation provided by the techniques
developed in [11] and applied closed-set AR modelling to identify
the vocal tract response. We characterized the voice-source with cep-
strum features for speaker identification, by subtracting the cepstrum
representation of the AR spectral envelope from the mel-frequency
cepstrum of the speech frame. The results show that there is dis-
criminative power in the voice source and misclassification rate was
improved when combined with the over all mel-frequency cepstrum
representation of the speech.
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