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ABSTRACT
We present the DYPSA algorithm for automatic and
reliable estimation of glottal closure instants (GCIs) in
voiced speech. Reliable GCI estimation is essential for
closed-phase speech analysis, from which can be derived
features of the vocal tract and, separately, the voice
source. It has been shown that such features can be used
with significant advantages in applications such as speaker
recognition. DYPSA is automatic and operates using the
speech signal alone without the need for an EGG or
Laryngograph signal. It incorporates a new technique for
estimating GCI candidates and employs dynamic
programming to select the most likely candidates
according to a defined cost function. We review and
evaluate three existing methods and compare our new
algorithm to them. Results for DYPSA show GCI
detection accuracy to within ±0.25ms on 87% of the test
database and fewer than 1% false alarms and misses.

1. INTRODUCTION
Conventional speech analysis procedures use
autoregressive modeling in LPC-based approaches or
spectral/cepstral estimation in transform-based
approaches. These methods work well for cases where
only a spectral estimate is required but do not explicitly
deconvolve the transfer function of the vocal tract, which
is assumed quasi-stationary, from the excitation signal,
which can be modeled as a quasi-periodic signal in voiced
speech and a noise-like excitation in unvoiced speech.
Consequently, the features extracted by conventional
analysis methods represent the combined effects of source
and tract. However, in several important applications of
speech processing, including speaker recognition and
speech coding, it is advantageous to extract reliable
estimates of the vocal tract transfer function and,
separately, the properties of the voice source. The
algorithm described here for GCI estimation provides the
segmentation of the larynx cycle necessary for the solution
to this latter estimation problem.

It has been shown [1] that the voice source signal
can be deconvolved from the speech signal using
multicycle closed-phase inverse filtering (MCIF) [2] and
that the resulting signal can be successfully parameterized

and used, for example, to provide additional features in
text-dependent speaker verification. However, this blind
deconvolution relies on accurate segmentation of the
voiced speech larynx cycle into closed and open phases of
the glottis. To date, this has required the use of
contemporaneous laryngographic recordings [3, 4] (EGG)
from which to derive glottal closure instants. Because the
EGG signal is not normally available in practical
applications, there exists a strong motivation to develop
techniques for extracting GCIs from the speech signal
alone. In this paper we present such a technique for
estimating GCIs, known as the Dynamic Programming
Projected Phase-Slope Algorithm (DYPSA), that enables
the use of voice-source features and accurate vocal tract
transfer function estimates in the domain of practical
applications.

2. SEGMENTATION OF THE LARYNX CYCLE
Several algorithms have been proposed for determining
glottal closure instants from a speech waveform. One of
the earliest approaches [5] derived GCIs from the
autocovariance matrix of the speech signal and later work
[6] used the minimum energy in the LPC residual. As a
development of [5], the GCIs in [7] are identified as the
maxima of the Frobenius Norm of the signal matrix. The
authors reported significant improvements in performance,
computational complexity and noise robustness. The
method proposed in [8] estimates the location of the
excitation within an analysis frame as the average value of
the group delay. Recently, work on energy flow in the
lossless-tube model has been reported [10] and it was
suggested that the signal representing acoustic input power
at the glottis can be used to determine the instants of
glottal closure and opening.

In this paper, the APLAWD database [11] has
been used to perform comparative evaluations of three
methods for estimating GCIs in voiced speech using
Wong’s LPC residual (LPCR) [6], the Frobenius Norm
(FN) [7] and the Group Delay (GD) [8]. APLAWD
contains phonetically balanced speech from 5 male and 5
female talkers as well as EGG recordings from which,
after time-alignment, reference GCIs have been extracted
using the HQTx algorithm [9]. The alignment of estimated
GCIs to the reference GCIs used dynamic programming to
minimize total absolute detection error. For each method



we measure false alarm rate (FAR) and miss rate (MR).
We also assess accuracy of detection by first computing
the distribution ( )( ) ( )d reft i t iζ = −  where ( )dt i  and

( )reft i  are the instants of the detected and reference GCI
in cycle i  respectively, excluding misses and false alarms.
The mean value of ζ  represents a constant time offset that
can be easily taken into account and subsequently
corrected. We define accuracy as the percentage of the
distribution that lies within bT±  of the mean. We have
chosen to study accuracy to 0.25msbT =  as this
corresponds to the practical limit on accuracy required for
reliable closed-phase LPC analysis [12].

  Figure 1 shows distributions, ζ , measured in
ms for each of the methods studied and aggregated over all
talkers. Tables 1 and 2 shows comparative results for
FAR, MR and accuracy of the methods.
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Fig. 1.  Distribution ζ  of measured detection accuracy for
(a) Wong’s LPC residual method, (b) the Frobenius Norm
method and (c) the Group Delay method.

We observe from Fig. 1 and Table 1 that the GD method
outperforms the other methods in our tests. Its accuracy is
relatively good (75%) but it nevertheless exhibits a high
rate of false alarms and misses (>10%). From this position
we are motivated to improve FAR and MR, as described in
the following Section, so that the good accuracy in the
results of the GD method can be exploited reliably.

3. DYPSA – A DYNAMIC PROGRAMMING
APPROACH TO GCI SELECTION

DYPSA uses dynamic programming (DP) [13] to
determine the most likely combination of GCIs from a set
of GCI candidates. The candidates are obtained using a
new technique that operates on the phase-slope function of
the GD algorithm [8], which is defined as the slope of the
unwrapped phase of the short-time Fourier transform of
the linear prediction residual. In [8], instants of glottal
closure are identified as positive-going zero-crossings in
this phase-slope function. In this work, we have identified
and included additional candidates, the omission of which
would otherwise cause GCI misses arising from maxima or
minima that fail to cross zero. Whenever a minimum is
followed by a maximum without an intervening zero-
crossing, the midpoint between the two extrema is
identified and its position projected with unit slope onto
the time axis, under the assumption that the ideal phase-
slope at a zero-crossing is unity [8]. In this way, by
defining the set of GCI candidates to be the union of all
positive going zero-crossings and projected zero-
crossings, the number of detection misses has been
significantly reduced. This procedure is illustrated in
Fig. 2.

The problem of GCI estimation is now
considered as a minimization of a cost function using DP.
To reduce the storage and computation requirements of the
algorithm, we use a search strategy in which only the N-
best path segments are retained at each stage of the DP. A
reasonable trade-off between complexity and performance
was found when N=3.

The factors used in the construction of the cost
function are based on the attributes of the GD and FN
methods as well as the periodic behavior of the vocal
folds. The cost function is defined as

Fig. 2. The enhanced GD algorithm: (a) LPC prediction
residual and reference GCIs from EGG, (b) the phase-
slope function and reference GCIs from EGG (c) detail
showing the projection of “missed” zero-crossings.
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where r, q and p represent respectively the current and
previous two GCI candidates. We have empirically
determined the weights in the cost function as
[ , , , ] [0.5, 0.5, 0.5, 0.25]pitch FN h aw w w w = . Additionally,
we adjust the weights for voiced and unvoiced speech
using the adaptation factor,

0, voiced
0.25, unvoiceddA 

= 


for which we have employed a voiced/unvoiced detector
based on the ratio of short-time speech energy to zero-
crossing rate [14]. The ZCB term adds a penalty when the
GCI candidate arises from the projection of a turning point
onto the time-axis as described in Section 3.

0, current candidate is a positive zero-crossing
0.2, current candidate is a projection

ZCB


=


The individual components of the cost function are
defined as follows.

Pitch Deviation Cost is a function of adjacent GCI
candidates taken from the last three stages of the path
segment under consideration and is defined as
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jt  is the time of occurrence of candidate GCI(j).
This cost increases with pitch deviation between
successive larynx cycles as shown in Fig. 3 and is based
on the assumption of smooth variation in pitch over short
segments of voiced speech.

Frobenius Norm Amplitude Consistency Cost is
formulated as

,

min( , )
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where jFN  is the Frobenius Norm [7] of the speech data
matrix value estimated over a 3ms window centered on
GCI candidate j. This cost increases with variation in FN
between successive cycles. Since the FN of the speech
data matrix is normally much larger at instants of true
excitation than at false alarms, candidate GCIs for which
the FN is significantly different, usually smaller, than
neighboring GCIs are more likely to be false alarms and
are penalized accordingly.

Ideal Phase Slope Function Deviation Cost provides an
indication of the “goodness” of the phase-slope function
[8] and is defined as
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Our experiments have shown that it is quite common to
obtain two positive going zero-crossings per cycle in the
phase-slope function. It is interesting to consider, as
further work, whether the first corresponds to the glottal
closure and the second to opening. We define the ideal
phase-slope at a positive zero-crossing to be a straight line
of unit gradient, which corresponds to an impulsive
excitation at the GCI. Under this definition, we have found
that GCI candidates corresponding to true GCIs have a
phase-slope function significantly closer to the ideal than
other candidates. We therefore formulate the phase-slope
deviation cost by computing the sum square error, γ ,
between the measured phase-slope function and the ideal
phase-slope, calculated over a short (0.85ms) window
centered on the zero-crossing.

Speech Waveform Similarity Cost uses the normalized
cross-correlation, ,p rNCorr , estimated using 10ms speech
segments centered at the GCI candidates p and r

, , / 2
p ra p rC NCorr= − .

During voicing, it is common to find that the speech
waveform near an instant of excitation is well correlated to
the waveform at the previous excitation. We therefore
apply a high cost to any candidate GCIs that occur when
the speech signal is significantly uncorrelated with the
signal at the previous GCI. This serves effectively to
penalize any candidates that occur, for example, part way
through a larynx cycle.

Fig. 3. Pitch Deviation Cost as a function of
pitch ratio between successive cycles.
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4. SIMULATION RESULTS
The tests described in Section 2 using the APLAWD
database have been repeated on the DYPSA algorithm.
Fig. 4 shows the corresponding results. Tables 1 and 2
show comparisons of the performance criteria of FAR,
MR and accuracy, defined as the percentage of GCIs
detected within 0.25 ms of the reference.

We have additionally tested the proposed method
in the presence of noise and find that, for an SNR of 30dB,
the accuracy drops by about 5% and the FAR and MR
both increase to around 2%. This shows substantially more
robustness than the existing methods that degrade badly in
noise [8].

Performance
(all phonemes)

LPCR
(%)

FN
(%)

GD
(%)

DYPSA
(%)

Males 28.2 25.1 10.7 0.9FAR
Females 42.7 21.6 9.1 0.8
Males 1.0 0.9 1.5 0.1MR
Females 7.4 3.8 3.8 0.1
Males 57.3 69.4 77.0 90.4Percent

Accuracy
±0.25 ms Females 32.3 52.0 73.2 85.1

Table 1. Performance averaged across all phonemes.

Accuracy to
±0.25 ms

(all talkers)

LPCR
(%)

FN
(%)

GD
(%)

DYPSA
(%)

/a/ 47.3 62.2 73.4 91.5
/e/ 40.8 58.8 69.7 82.1
/i/ 47.9 65.7 77.6 90.7
/o/ 42.3 58.7 77.5 89.3
/u/ 35.1 51.1 70.8 83.6

Table 2. Accuracy as percentage of GCIs detected within
0.25ms of the reference, averaged across all talkers.

5. DISCUSSION AND CONCLUSIONS
The DYPSA algorithm for extracting instants of voiced
speech excitation, GCIs, is based on an enhancement of
the GD algorithm and uses DP to minimize a cost function
so as to eliminate almost all false alarms and misses in the
detection. It has been shown that the new method gives
significantly better overall accuracy. The FAR obtained is
typically less than 1% and MR less than 0.1% compared
with around 10% and 2% respectively for the original GD
method. Accuracy of the new method is 80-90%
depending on talker and phoneme compared to 70-80% for
the GD method. Using segmentation based on DYPSA,
features of the voice source can now be extracted and used
to good effect in high quality speech analysis, speaker
recognition and other related applications.
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Fig. 4. Distribution ζ  of measured detection accuracy
for the proposed algorithm.
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