v_filtbankm

PURPOSE ^

V_FILTBANKM determine matrix for a linear/mel/erb/bark-spaced v_filterbank [X,IL,IH]=(P,N,FS,FL,FH,W)

SYNOPSIS ^

function [x,cf,xi,il,ih]=v_filtbankm(p,n,fs,fl,fh,w)

DESCRIPTION ^

V_FILTBANKM determine matrix for a linear/mel/erb/bark-spaced v_filterbank [X,IL,IH]=(P,N,FS,FL,FH,W)

 Usage:
 (1) Calcuate the Mel-frequency Cepstral Coefficients

        f=v_rfft(s);                                    % v_rfft() returns only 1+floor(n/2) coefficients
         x=v_filtbankm(p,n,fs,0,fs/2,'m');              % n is the fft length, p is the number of filters wanted
         z=log(x*abs(f).^2);                            % multiply the power spectrum by x to get log mel-spectrum
         c=dct(z);                                      % take the DCT to get the mel-cepstrum

 (2) Calcuate the Mel-frequency Cepstral Coefficients efficiently

        f=fft(s);                                      % n is the fft length, p is the number of filters wanted
        [x,cf,na,nb]=v_filtbankm(p,n,fs,0,fs/2,'m');   % na:nb gives the fft bins that are needed
        z=log(x*(f(na:nb)).*conj(f(na:nb)));           % multiply x by the power spectrum
         c=dct(z);                                      % take the DCT

 (3) Plot the calculated filterbanks as a graph or spectrogram

        v_filtbankm(p,n,fs,0,fs/2,'mg');               % use option 'mg' for a graph or 'mG' for a spectrogram

 (4) Convert to mel-spectrum and back again

        [x,cf,xi]=v_filtbankm(p,n,fs,0,fs/2,'mxXzq');  % n is the fft length, p is the number of filters wanted
        f=v_rfft(s);                                    % v_rfft() returns only 1+floor(n/2) coefficients        
         z=x*abs(f).^2;                                 % multiply the power spectrum by x to get mel-spectrum
        gp=xi*z;                                       % multiply by xi to recover the approximate power spectrum
         g=v_irfft(sqrt(gp).*exp(1i*angle(f)));         % take the inverse DFT using the original phase to recover the time domain signal 

 Inputs:
       p   number of filters in filterbank or the filter spacing in k-mel/bark/erb (see 'p' and 'P' options) [ceil(4.6*log10(fs))]
        n   length of dft
        fs  sample rate in Hz
        fl  low end of the lowest filter in Hz (or in mel/erb/bark/log10 with 'h' option) [default = 0Hz or, if 'l' option given, 30Hz]
        fh  high end of highest filter in Hz (or in mel/erb/bark/log10 with 'h' option) [default = fs/2]
        w   any sensible combination of the following:

             'b' = bark scale
             'e' = erb-rate scale
             'l' = log10 Hz frequency scale
             'f' = linear frequency scale [default]
             'm' = mel frequency scale

             'n' = round to the nearest FFT bin so each row of x contains only one non-zero entry

             'c' = fl specifies centre of low filters instead of low edge
             'C' = fh specifies centre of high filter instead of high edge
             'h' = fl & fh are in mel/erb/bark/log10 instead of Hz
             'H' = give cf outputs in mel/erb/bark/log10 instead of Hz

              'x' = lowest filter remains at 1 down to 0 frequency
             'X' = highest filter remains at 1 up to nyquist freqency

             'p' = input p specifies the number of filters [default if p>=1]
             'P' = input p specifies the approximate filter spacing in kHz/kmel/... [default if p<1]

             'z' = Treat input power spectrum at 0Hz as an impulse rather than being diffuse
             'Z' = Treat input power spectrum at 0Hz as the sum of an impulse and a continuous component with the same amlitude as the adjacent bin
             'q' = The first output filter gives the power of the impulse at 0Hz (regardless of the 'D' option). 'zq' ensures exact retention of DC component by xi*x

             'd' = input is power spectral density (power per Hz) instead of power
             'D' = output is power spectral density (power per Hz) instead of power (option 'dD' makes the rows of x sum to approximately 1)

             's' = single-sided input: do not add power from symmetric negative frequencies (i.e. non-DC/Nyquist inputs have already been doubled)
             'S' = single-sided output: include power from both positive and negative frequencies (this doubles the non-DC/Nyquist outputs)
             'w' = size(x,2)=size(xi,1)=n rather than 1+floor(n/2) although the rightmost half of x is all zeros

             'g' = plot filter coefficients as graph
             'G' = plot filter coefficients as spectrogram image [default if no output arguments present]

           Legacy options, 'yYuU' are mapped as follows: 'y'='xX', 'Y'='x', 'yY'='X', 'u'='dD', 'U'='D'

 Outputs:    x(p,k)  a sparse matrix containing the v_filterbank amplitudes
                    If the il and ih output arguments are included then k=ih-il+1 otherwise k=1+floor(n/2)
                   Note that, with the 'S' option, the peak filter values equal 2 to account for the energy in the negative FFT frequencies.
           cf(p)   the v_filterbank centre frequencies in Hz (or in mel/erb/bark/log10 with 'H' option)
           xi(k,p) [optional] sparse matrix that is an approximate inverse of x
            il,ih   the lowest and highest fft bins with non-zero coefficient 1<=il,ih<=1+n/2 (Note: you must specify *both* il and ih or neither)

 The input power will be preserved if the options 'xXS' are given

 The output of the routine is a sparse filterbank matrix. The vector output of the filterbank can then be obtained
 by pre-multiplying an input power spectrum vector (as a column vector) by the filterbank matrix. The input and
 output vectors can optionally be in either the power domain or the power spectral density domain.
 The routine implements the filterbank in two conceptual stages (which are merged in the practical implementation):

 Stage 1:
 The discrete input spectrum is converted to a continuous power spectral density using linear interpolation in frequency.
 Each element of the input spectrum influences a frequency interval of width 2d where d is the input frequency bin width.
 The DC component of the input is treated specially in one of three ways: (a) it can be treated as a normal element that
 influences an interval (-d,+d) like the other elements [default]; (b) it can be treated as an impulse at DC ['z' option];
 (c) it can be treated as a mixture of an impulse and a normal component whose value equals that of the adjacent frequency
 bin ['Z' option].

 Stage 2:
 The filterbank outputs are calculated by integrating the product of the continuous spectrum and a filter weight that is
 triangular in the frequency domain. Optionally, the first filterbank preserves the DC impulse component of the continuous
 spectrum ['q' option].

 References:

 [1] S. S. Stevens, J. Volkman, and E. B. Newman. A scale for the measurement
     of the psychological magnitude of pitch. J. Acoust Soc Amer, 8: 185-190, 1937.
 [2] S. Davis and P. Mermelstein. Comparison of parametric representations for
     monosyllabic word recognition in continuously spoken sentences.
     IEEE Trans Acoustics Speech and Signal Processing, 28 (4): 357-366, Aug. 1980.

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SOURCE CODE ^

0001 function [x,cf,xi,il,ih]=v_filtbankm(p,n,fs,fl,fh,w)
0002 %V_FILTBANKM determine matrix for a linear/mel/erb/bark-spaced v_filterbank [X,IL,IH]=(P,N,FS,FL,FH,W)
0003 %
0004 % Usage:
0005 % (1) Calcuate the Mel-frequency Cepstral Coefficients
0006 %
0007 %        f=v_rfft(s);                                    % v_rfft() returns only 1+floor(n/2) coefficients
0008 %         x=v_filtbankm(p,n,fs,0,fs/2,'m');              % n is the fft length, p is the number of filters wanted
0009 %         z=log(x*abs(f).^2);                            % multiply the power spectrum by x to get log mel-spectrum
0010 %         c=dct(z);                                      % take the DCT to get the mel-cepstrum
0011 %
0012 % (2) Calcuate the Mel-frequency Cepstral Coefficients efficiently
0013 %
0014 %        f=fft(s);                                      % n is the fft length, p is the number of filters wanted
0015 %        [x,cf,na,nb]=v_filtbankm(p,n,fs,0,fs/2,'m');   % na:nb gives the fft bins that are needed
0016 %        z=log(x*(f(na:nb)).*conj(f(na:nb)));           % multiply x by the power spectrum
0017 %         c=dct(z);                                      % take the DCT
0018 %
0019 % (3) Plot the calculated filterbanks as a graph or spectrogram
0020 %
0021 %        v_filtbankm(p,n,fs,0,fs/2,'mg');               % use option 'mg' for a graph or 'mG' for a spectrogram
0022 %
0023 % (4) Convert to mel-spectrum and back again
0024 %
0025 %        [x,cf,xi]=v_filtbankm(p,n,fs,0,fs/2,'mxXzq');  % n is the fft length, p is the number of filters wanted
0026 %        f=v_rfft(s);                                    % v_rfft() returns only 1+floor(n/2) coefficients
0027 %         z=x*abs(f).^2;                                 % multiply the power spectrum by x to get mel-spectrum
0028 %        gp=xi*z;                                       % multiply by xi to recover the approximate power spectrum
0029 %         g=v_irfft(sqrt(gp).*exp(1i*angle(f)));         % take the inverse DFT using the original phase to recover the time domain signal
0030 %
0031 % Inputs:
0032 %       p   number of filters in filterbank or the filter spacing in k-mel/bark/erb (see 'p' and 'P' options) [ceil(4.6*log10(fs))]
0033 %        n   length of dft
0034 %        fs  sample rate in Hz
0035 %        fl  low end of the lowest filter in Hz (or in mel/erb/bark/log10 with 'h' option) [default = 0Hz or, if 'l' option given, 30Hz]
0036 %        fh  high end of highest filter in Hz (or in mel/erb/bark/log10 with 'h' option) [default = fs/2]
0037 %        w   any sensible combination of the following:
0038 %
0039 %             'b' = bark scale
0040 %             'e' = erb-rate scale
0041 %             'l' = log10 Hz frequency scale
0042 %             'f' = linear frequency scale [default]
0043 %             'm' = mel frequency scale
0044 %
0045 %             'n' = round to the nearest FFT bin so each row of x contains only one non-zero entry
0046 %
0047 %             'c' = fl specifies centre of low filters instead of low edge
0048 %             'C' = fh specifies centre of high filter instead of high edge
0049 %             'h' = fl & fh are in mel/erb/bark/log10 instead of Hz
0050 %             'H' = give cf outputs in mel/erb/bark/log10 instead of Hz
0051 %
0052 %              'x' = lowest filter remains at 1 down to 0 frequency
0053 %             'X' = highest filter remains at 1 up to nyquist freqency
0054 %
0055 %             'p' = input p specifies the number of filters [default if p>=1]
0056 %             'P' = input p specifies the approximate filter spacing in kHz/kmel/... [default if p<1]
0057 %
0058 %             'z' = Treat input power spectrum at 0Hz as an impulse rather than being diffuse
0059 %             'Z' = Treat input power spectrum at 0Hz as the sum of an impulse and a continuous component with the same amlitude as the adjacent bin
0060 %             'q' = The first output filter gives the power of the impulse at 0Hz (regardless of the 'D' option). 'zq' ensures exact retention of DC component by xi*x
0061 %
0062 %             'd' = input is power spectral density (power per Hz) instead of power
0063 %             'D' = output is power spectral density (power per Hz) instead of power (option 'dD' makes the rows of x sum to approximately 1)
0064 %
0065 %             's' = single-sided input: do not add power from symmetric negative frequencies (i.e. non-DC/Nyquist inputs have already been doubled)
0066 %             'S' = single-sided output: include power from both positive and negative frequencies (this doubles the non-DC/Nyquist outputs)
0067 %             'w' = size(x,2)=size(xi,1)=n rather than 1+floor(n/2) although the rightmost half of x is all zeros
0068 %
0069 %             'g' = plot filter coefficients as graph
0070 %             'G' = plot filter coefficients as spectrogram image [default if no output arguments present]
0071 %
0072 %           Legacy options, 'yYuU' are mapped as follows: 'y'='xX', 'Y'='x', 'yY'='X', 'u'='dD', 'U'='D'
0073 %
0074 % Outputs:    x(p,k)  a sparse matrix containing the v_filterbank amplitudes
0075 %                    If the il and ih output arguments are included then k=ih-il+1 otherwise k=1+floor(n/2)
0076 %                   Note that, with the 'S' option, the peak filter values equal 2 to account for the energy in the negative FFT frequencies.
0077 %           cf(p)   the v_filterbank centre frequencies in Hz (or in mel/erb/bark/log10 with 'H' option)
0078 %           xi(k,p) [optional] sparse matrix that is an approximate inverse of x
0079 %            il,ih   the lowest and highest fft bins with non-zero coefficient 1<=il,ih<=1+n/2 (Note: you must specify *both* il and ih or neither)
0080 %
0081 % The input power will be preserved if the options 'xXS' are given
0082 %
0083 % The output of the routine is a sparse filterbank matrix. The vector output of the filterbank can then be obtained
0084 % by pre-multiplying an input power spectrum vector (as a column vector) by the filterbank matrix. The input and
0085 % output vectors can optionally be in either the power domain or the power spectral density domain.
0086 % The routine implements the filterbank in two conceptual stages (which are merged in the practical implementation):
0087 %
0088 % Stage 1:
0089 % The discrete input spectrum is converted to a continuous power spectral density using linear interpolation in frequency.
0090 % Each element of the input spectrum influences a frequency interval of width 2d where d is the input frequency bin width.
0091 % The DC component of the input is treated specially in one of three ways: (a) it can be treated as a normal element that
0092 % influences an interval (-d,+d) like the other elements [default]; (b) it can be treated as an impulse at DC ['z' option];
0093 % (c) it can be treated as a mixture of an impulse and a normal component whose value equals that of the adjacent frequency
0094 % bin ['Z' option].
0095 %
0096 % Stage 2:
0097 % The filterbank outputs are calculated by integrating the product of the continuous spectrum and a filter weight that is
0098 % triangular in the frequency domain. Optionally, the first filterbank preserves the DC impulse component of the continuous
0099 % spectrum ['q' option].
0100 %
0101 % References:
0102 %
0103 % [1] S. S. Stevens, J. Volkman, and E. B. Newman. A scale for the measurement
0104 %     of the psychological magnitude of pitch. J. Acoust Soc Amer, 8: 185-190, 1937.
0105 % [2] S. Davis and P. Mermelstein. Comparison of parametric representations for
0106 %     monosyllabic word recognition in continuously spoken sentences.
0107 %     IEEE Trans Acoustics Speech and Signal Processing, 28 (4): 357-366, Aug. 1980.
0108 
0109 % Bugs/Suggestions
0110 % (1) default frequencies won't work if the h option is specified
0111 % (2) low default frequency is invalid if the 'l' option is specified
0112 % (3) Add option to choose the domain in which linear interpolation is performed
0113 
0114 %      Copyright (C) Mike Brookes 1997-2024
0115 %      Version: $Id: v_filtbankm.m $
0116 %
0117 %   VOICEBOX is a MATLAB toolbox for speech processing.
0118 %   Home page: http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
0119 %
0120 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0121 %   This program is free software; you can redistribute it and/or modify
0122 %   it under the terms of the GNU General Public License as published by
0123 %   the Free Software Foundation; either version 2 of the License, or
0124 %   (at your option) any later version.
0125 %
0126 %   This program is distributed in the hope that it will be useful,
0127 %   but WITHOUT ANY WARRANTY; without even the implied warranty of
0128 %   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
0129 %   GNU General Public License for more details.
0130 %
0131 %   You can obtain a copy of the GNU General Public License from
0132 %   http://www.gnu.org/copyleft/gpl.html or by writing to
0133 %   Free Software Foundation, Inc.,675 Mass Ave, Cambridge, MA 02139, USA.
0134 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0135 
0136 % Notes:
0137 % (1) In the comments, "FFT bin_0" assumes DC = bin 0 whereas "FFT bin_1" means DC = bin 1nfout
0138 % (2) "input" and "output" need to be interchanged if the 'i' option is given
0139 
0140 if nargin<6 || isempty(w)               % if no mode option, w, is specified
0141     w='f';                              % default mode option: 'f' = linear output frequency scale
0142 end
0143 wr=max(any(repmat('lebm',length(w),1)==repmat(w',1,4),1).*(1:4));           % output warping: 0=linear,1=log,2=erbrate,3=bark,4=mel
0144 ww=any(repmat('ncChHxXyYpPzZqdDuUsSgGw',length(w),1)==repmat(w',1,23),1);    % decode all other options
0145 % ww elements: 1=n,2=c,3=C,4=h,5=H,6=x,7=X,8=y,9=Y,10=p,11=P,12=z,13=Z,14=q,15=d,16=D,17=u,18=U,19=s,20=S,21=g,22=G,23=w
0146 % Convert legacy option codes: 'y'='xX', 'Y'='x', 'yY'='X', 'u'='dD', 'U'='D'
0147 ww(6)=ww(6) || (ww(8) ~= ww(9));        % convert 'y' or 'Y' (but not both) to 'x'; extend low frequencies
0148 ww(7)=ww(7) || ww(8);                   % convert 'y' to 'X'; extend high frequencies
0149 ww(15)=ww(15) || ww(17);                % convert 'u' to 'd'; input is also in power spectral density
0150 ww(16)=ww(16) || ww(17) || ww(18);      % convert 'u' or 'U' to 'd'; output is in power spectral density
0151 flhconv=repmat(wr>0 && ~ww(4),1,2);     % flag indicating need to convert filterbank limits from Hz to mel/erb/bark/log10
0152 if nargin < 4 || isempty(fl)
0153     fl=30*(wr==1);                      % lower limit is 0 Hz unless 'l' option specified, in which case it is 30 Hz
0154     flhconv(1)=wr>0;
0155 end
0156 if nargin < 5 || isempty(fh)
0157     fh=0.5*fs;                          % max freq is the nyquist frequency
0158     flhconv(2)=wr>0;
0159 end
0160 %
0161 % Sort out input frequency bins
0162 %
0163 if numel(n)>1
0164     error('non-standard input frequency spacing no longer supported');
0165 else                                % n gives dft length
0166     nf=1+floor(n/2);                % number of input positive-frequency bins from DFT
0167     df=fs/n;                        % input frequency bin spacing
0168 end
0169 %
0170 % Sort out output frequency bins
0171 %
0172 mflh=[fl fh];                       % low and high limits of filterbank triangular filters
0173 if any(flhconv)                     % convert mflh from Hz to mel/erb/... unless already converted via 'h' option
0174     switch wr
0175         case 1                      % 'l' = log scaled
0176             if fl<=0
0177                 error('Low frequency limit must be >0 for ''l'' log10-frequency option');
0178             end
0179             mflh(flhconv)=log10(mflh(flhconv));         % convert frequency limits into log10 Hz
0180         case 2                                          % 'e' = erb-rate scaled
0181             mflh(flhconv)=v_frq2erb(mflh(flhconv));     % convert frequency limits into erb-rate
0182         case 3                                          % 'b' = bark scaled
0183             mflh(flhconv)=v_frq2bark(mflh(flhconv));    % convert frequency limits into bark
0184         case 4                                          % 'm' = mel scaled
0185             mflh(flhconv)=v_frq2mel(mflh(flhconv));     % convert frequency limits into mel
0186     end
0187 end
0188 melrng=mflh(2)-mflh(1);                                 % filterbank range in Hz/mel/erb/...
0189 if isempty(p)
0190     p=ceil(4.6*log10(2*(nf-1)*df));                     % default number of output filters
0191 end
0192 puc=ww(11) || (p<1) && ~ww(10);                         % input p specifies the filter spacing rather than the number of filters
0193 if puc
0194     p=round(melrng/(p*1000))+ww(2)+ww(3)-1+ww(14);      % p now gives the number of filters (excluding DC impulse)
0195 end
0196 melinc=melrng/(p+ww(2)+ww(3)+1-ww(14));                 % inter-filter increment in mel
0197 mflh=mflh+[-ww(2) ww(3)]*melinc;                        % update mflh to include the full width of all filters
0198 %
0199 % Calculate the output centre frequencies in Hz including dummy end points
0200 %
0201 pmq=p-ww(14);                                       % number of filters excluding the one for the DC impulse
0202 cf=mflh(1)+(0:pmq+1)*melinc;                        % centre frequencies in mel/erb/... including dummy ends
0203 cf(2:end)=max(cf(2:end),0);                         % only the first point can be negative [*** doesn't make sense for log scale ***]
0204 switch wr                                           % convert centre frequencies to Hz from mel/erb/...
0205     case 1                                          % 'l' = log scaled
0206         mb=10.^(cf);
0207     case 2                                          % 'e' = erb-rate scaled
0208         mb=v_erb2frq(cf);
0209     case 3                                          % 'b' = bark scaled
0210         mb=v_bark2frq(cf);
0211     case 4                                          % 'm' = mel scaled
0212         mb=v_mel2frq(cf);
0213     otherwise                                       % [default] = linear scaled; no conversion needed
0214         mb=cf;
0215 end
0216 %
0217 % sort out 2-sided input frequencies
0218 %
0219 fin=(-nf:nf)*df;                                    % reflect negative frequencies excluding DC
0220 nfin=length(fin);                                   % length of extended input frequency list         [nfin=2*nf+1]
0221 %
0222 % now sort out the list of output frequencies
0223 %
0224 fout=mb;                                            % output centre frequencies in Hz including dummy values at each end
0225 highex=ww(7) && (fout(end-1)<fin(end));             % extend at high end if 'X' specified and final centre frequency < Nyquist
0226 if ww(6)                                            % ww(6)='x': extend first filter at low end to DC
0227     fout=[0 0 fout(2:end)];                         % ... add two dummy values at DC instead of previous single dummy value
0228 end
0229 if highex                                           % extend last filter at high end to Nyquist
0230     fout=[fout(1:end-1) fin(end) fin(end)];         % ... add two dummy values at Nyquist instead of previous single dummy value
0231 end
0232 fout=min(fout,fs/2);                                % limit output filters to Nyquist frequency
0233 nfout=length(fout);                                 % number of output filters including one or two dummy points at each end
0234 foutin=[fout fin];
0235 nfall=length(foutin);                               % = nfout + nfin
0236 wleft=[0 fout(2:nfout)-fout(1:nfout-1) 0 fin(2:nfin)-fin(1:nfin-1)]; % width of lower triangle attached to each node
0237 wright=[wleft(2:end) 0];                            % width of upper triangle attached to each node
0238 ffact=[0 ones(1,nfout-2) 0 0 ones(1,2*nf-1) 0];     % valid triangle posts
0239 ffact(wleft+wright==0)=0;                           % disable null width triangles (*** probably unnecessary if all frequencies are distinct ***)
0240 [fall,ifall]=sort(foutin);                          % fall is sorted frequencies with fall=foutin(ifall)
0241 jfall=zeros(1,nfall);                               % create inverse index ...
0242 infall=1:nfall;                                     % ...
0243 jfall(ifall)=infall;                                % ... inverse-index satisfying foutin=fall(jfall)
0244 ffact(ifall([1:max(jfall(1),jfall(nfout+1))-2 min(jfall(nfout),jfall(nfall))+2:nfall]))=0;  % zap input nodes that lie outside the output filters
0245 nxto=cumsum(ifall<=nfout);                          % next output node to the right (or equal) to each node
0246 nxti=cumsum(ifall>nfout);                           % number of input nodes to the left (or equal) to each node
0247 nxtr=min(nxti+1+nfout,nfall);                       % next input node to the right of each value (or nfall if none)
0248 nxtr(ifall>nfout)=1+nxto(ifall>nfout);              % next post to the right of opposite input/output type (using sorted indexes)
0249 nxtr=nxtr(jfall);                                   % next post to the right of opposite input/output type (converted to unsorted indices) or if none: nfall or (nfout+1)
0250 %
0251 % The interpolated spectrum at any frequency can be expressed as the sum of the values at the adjacent input bins
0252 % multiplied by triangular weights that decreases from 1 to 0 between the two bins. The value at an output bin
0253 % is equal to the integral of the interpolated spectrum multiplied by a triangular weight that decreases from
0254 % 1 to 0 either side of the output bin. Thus, if all input/output bins are sorted into ascending order, the
0255 % interval between two adjacent bins contains four partial triangles (a.k.a. trapeziums): two "lower" triangles
0256 % that increase with frequency and two "upper" triangles that decrease with frequency. We need to integrate the
0257 % resultant four input-output trapezium products and add the integrals onto the sum for the appropriate output bins.
0258 % Each triangle has a "post" at one end and is zero at the other end; we enumerate the triangle pairs by pairing
0259 % all input and output triangles with the first available triangle of the other type (i.e. output or input) whose
0260 % rightmost node is to the right of the entire first triangle.
0261 %
0262 % The general result for integrating the product of two trapesiums with
0263 % heights (a,b) and (c,d) over a width x is (ad+bc+2bd+2ac)*x/6
0264 %
0265 % integrate product of lower triangles whose posts (and rightmost nodes) are ix1 and jx1
0266 %
0267 msk0=(ffact>0);                                     % posts with a non-zero magnitude
0268 msk=msk0 & (ffact(nxtr)>0);                         % select triangle pairs with both posts having non-zero magnitudes
0269 ix1=infall(msk);                                    % unsorted indices of leftmost post of pair
0270 jx1=nxtr(msk);                                      % unsorted indices of rightmost post of pair
0271 vfgx=foutin(ix1)-foutin(jx1-1);                     % portion of triangle attached to rightmost post that lies to the left of the leftmost post
0272 yx=min(wleft(ix1),vfgx);                            % integration length. Maybe more efficient: dfall=diff(fall); yx=dfall(jfall(ix1)-1)
0273 wx1=ffact(ix1).*ffact(jx1).*yx.*(wleft(ix1).*vfgx-yx.*(0.5*(wleft(ix1)+vfgx)-yx/3))./(wleft(ix1).*wleft(jx1)+(yx==0));
0274 
0275 % integrate product of upper triangles whose posts are ix2 and jx2 and whose rightmost nodes are ix2+1 and jx2+1
0276 
0277 nxtu=max([nxtr(2:end)-1 0],1);                      % post of the upper triangle of opposite type whose rightmost end is to the right of this triangle's rightmost end
0278 msk=msk0 & (ffact(nxtu)>0);                         % select triangle pairs with both posts having non-zero magnitudes
0279 ix2=infall(msk);                                    % unsorted indices of leftmost post of pair
0280 jx2=nxtu(msk);                                      % unsorted indices of rightmost post of pair
0281 vfgx=foutin(ix2+1)-foutin(jx2);                     % length of left triangle to the right of the right post
0282 yx=min(wright(ix2),vfgx);                           % integration length
0283 yx(foutin(jx2+1)<foutin(ix2+1))=0;                  % zap invalid triangles where the rightmost ends are in the wrong order
0284 wx2=ffact(ix2).*ffact(jx2).*yx.^2.*((0.5*(wright(jx2)-vfgx)+yx/3))./(wright(ix2).*wright(jx2)+(yx==0));
0285 
0286 % integrate lower triangle and upper triangle that ends to its right
0287 
0288 nxtu=max(nxtr-1,1);                                 % post of the upper triangle of opposite type whose rightmost end is to the right of this triangle's post
0289 msk=msk0 & (ffact(nxtu)>0);                         % select triangle pairs with both posts having non-zero magnitudes
0290 ix3=infall(msk);                                    % unsorted indices of lower triangle
0291 jx3=nxtu(msk);                                      % unsorted indices of upper triangle
0292 vfgx=foutin(ix3)-foutin(jx3);                       % length of upper triangle to the left of the lower post
0293 yx=min(wleft(ix3),vfgx);                            % integration length
0294 yx(foutin(jx3+1)<foutin(ix3))=0;                    % zap invalid triangles where the rightmost ends are in the wrong order
0295 wx3=ffact(ix3).*ffact(jx3).*yx.*(wleft(ix3).*(wright(jx3)-vfgx)+yx.*(0.5*(wleft(ix3)-wright(jx3)+vfgx)-yx/3))./(wleft(ix3).*wright(jx3)+(yx==0));
0296 
0297 % integrate upper triangle and lower triangle that starts to its right
0298 
0299 nxtu=[nxtr(2:end) 1];
0300 msk=msk0 & (ffact(nxtu)>0);                         % select triangle pairs with both posts having non-zero magnitudes
0301 ix4=infall(msk);                                    % unsorted indices of upper triangle
0302 jx4=nxtu(msk);                                      % unsorted indices of lower triangle
0303 vfgx=foutin(ix4+1)-foutin(jx4-1);                   % length of upper triangle to the left of the lower post
0304 yx=min(wright(ix4),vfgx);                           % integration length
0305 wx4=ffact(ix4).*ffact(jx4).*yx.^2.*(0.5*vfgx-yx/3)./(wright(ix4).*wleft(jx4)+(yx==0));
0306 %
0307 % now assemble the matrix
0308 %
0309 iox=sort([ix1 ix2 ix3 ix4;jx1 jx2 jx3 jx4]);        % iox(1,:) are output posts, iox(2,:) are input posts
0310 msk=iox(2,:)<=(nfall+nfout)/2;                      % find references to negative input frequencies
0311 iox(2,msk)=(nfall+nfout+1)-iox(2,msk);              % convert negative frequencies to positive
0312 %
0313 % Sort out output gains:
0314 % If output is power then output gain is 1; if output is power/Hz then output gain is 1/area of output filter
0315 %
0316 if ww(6)                                            % ww(6)='x': if lowest filter extended to DC, we added a dummy point at 0Hz, so
0317     iox(1,iox(1,:)==2)=3;                           % merge lowest two output nodes
0318 end
0319 if highex                                           % if highest filter extended, we added a dummy point at Nyquist, so
0320     iox(1,iox(1,:)==nfout-1)=nfout-2;               % merge highest two output nodes
0321 end
0322 x=sparse(iox(1,:)-1-ww(6),max(iox(2,:)-nfout-nf,1),[wx1 wx2 wx3 wx4],pmq,nf);   % forward transformation matrix without input/output gains
0323 gout=full(sum(x,2));                                % area of each output integral
0324 goutd=sparse(1:pmq,1:pmq,(gout+(gout==0)).^(-1));   % create sparse diagonal matrix of output gains
0325 gouti=full(sum(x(:,1+ww(12):end),2));                                % area of each output integral excluding DC if 'z' option given
0326     goutid=sparse(1:pmq,1:pmq,(gouti+(gouti==0)).^(-1));   % create sparse diagonal matrix of output gains
0327 %
0328 % Sort out input gains:
0329 % If input is power then input gain is 1/area; if input is power/Hz then input gain is 1
0330 %
0331 gin=fin(3:nfin)-fin(1:nfin-2);                              % full width of input interpolation filters
0332 gin=2*(gin+(gin==0)).^(-1);                                 % input gain equals 1/area
0333 ginsi=repmat(1+ww(19),1,nf-2);                              % 's' option means all inputs except DC and Nyquist have been doubled
0334 ginsd=sparse(1:nf,1:nf,[1-ww(12) ginsi.^(-1) 1]);           % ... cancel this out with additional input scaling for forward transform
0335 ginsid=sparse(1:nf,1:nf,[2*(1-ww(12)) ginsi 2]);            % and back again for inverse transform
0336 gind=sparse(1:nf,1:nf,gin(end-nf+1:end));                   % input gains
0337 %
0338 % Now create the x and xi matrices
0339 %
0340 switch 2*ww(16)+ww(15)
0341     case 0                                                  % '': input and output are both power
0342         xi=ginsid*x'*goutid;
0343         x=x*(gind*ginsd);
0344     case 1                                                  % 'd': input is power/Hz, output is power
0345         xi=(ginsid*gind)*x'*goutid;
0346         x=x*ginsd;
0347     case 2                                                  % 'D': input is power, output is power/Hz
0348         xi=ginsid*x';
0349         x=goutd*x*(gind*ginsd);
0350     case 3                                                  % 'dD': input and output are both power/Hz
0351         xi=(ginsid*gind)*x';
0352         x=goutd*x*ginsd;
0353 end
0354 if ww(20)                                                   % 'S': double outputs to include negative frequency energy
0355     x=2*x;
0356     xi=0.5*xi;
0357 end
0358 if ww(13)                                                   % 'Z': DC input is an impulse plus a diffuse component
0359     x(:,2)=x(:,2)+x(:,1)*ginsd(2,2);                        % power of diffuse component at DC is equal to that opf adjacent bin corrected for 's' option
0360     x(:,1)=0;                                               % Eliminate references to DC input in forward transform only
0361 end
0362 if ww(14)                                                   % 'q': we need an extra output that replicates the DC component
0363     if ww(12)                                               % 'z': DC input is an impulse
0364         x=[sparse(1,1,1,1,nf); x];
0365         xi=[sparse(1,1,1,nf,1) xi];
0366     elseif ww(13)                                           % 'Z': DC input is an impulse plus a diffuse component
0367         x=[sparse([1 1],[1 2],[1 -ginsd(2,2)],1,nf); x];    % impulse component is DC input minus adjacent bin corrected for 's' option
0368         xi=[sparse(1,1,1,nf,1) xi];
0369     else
0370         x=[sparse(1,nf); x];                                % '': DC input is diffuse as normal
0371         xi=[sparse(nf,1) xi];
0372     end
0373 end
0374 %
0375 % sort out the output argument options
0376 %
0377 if ~ww(5)                                                   % output cf in Hz instead of mel/erb/...
0378     cf=[zeros(1,ww(14)) mb(2:pmq+1)];                       % ... and include an initial 0 if 'q' option (ww(14)==1)
0379 else                                                        % keep cf in mel/erb/...
0380     if ww(14)                                               % 'q' (ww(14)==1): we need an extra output for the DC component
0381         if wr==1                                            % log-scaled so ...
0382             cf=[-Inf cf(2:p)];                              % ... DC corresponds to -Inf
0383         else                                                % not log-scaled                 ...
0384             cf=[0 cf(2:p)];                                 % ... DC corresponds to 0
0385         end
0386     else                                                    % no 'q' option (ww(14)==0) ...
0387         cf=cf(2:p+1);                                       % ... just remove dummy end frequencies
0388     end 
0389 end
0390 if ww(1)                                                    % round outputs to the centre of gravity bin
0391     sx2=sum(x,2);                                           % sum of each row
0392     msk=full(sx2~=0);
0393     vxc=zeros(pmq,1);
0394     vxc(msk)=round((x(msk,:)*(1:nf)')./sx2(msk));           % find centre of gravity of each row
0395     x=sparse(1:pmq,vxc,sx2,pmq,nf);                         % put all the weight into the centre of gravity bin
0396 end
0397 il=1; % default range is entire x maxtrix
0398 ih=nf;
0399 if nargout > 3                                  % if il and/or ih output arguments are specified ...
0400     if nargout==4                               % xi has been omitted ...
0401     msk=full(any(x>0,1));                       % find non-zero columns in x
0402     else                                        % xi output included
0403         msk=full(any(x>0,1) | any(xi>0,2)');    % find non-zero columns in x or rows in xi
0404     end
0405     il=find(msk,1);                             % il is first non-zero column
0406     if ~numel(il)                               % if x is all zeros ...
0407         il=1;                                   % ... set il and ih to 1
0408         ih=1;                              
0409     elseif nargout >3
0410         ih=find(msk,1,'last');                  % ih is last non-zero column
0411     end
0412     x=x(:,il:ih);                               % remove redundant columns from x
0413     if nargout==4                               % xi has been omitted ...
0414         xi=il;                                  % shift the il and ih outputs up by one position
0415         il=ih;
0416     else
0417         xi=xi(il:ih,:);                         % remove redundant rows from xi
0418     end
0419 elseif ww(23)                                   % ww(23)='w': use whole dft
0420     x=[x sparse(p,n-nf)];                       % append zeros onto x
0421     xi=[xi; xi(n-nf+1:-1:2,:)];                 % reflect elements other than the DC and Nyquist
0422 end
0423 %
0424 % plot results if no output arguments or 'g','G' options given
0425 %
0426 if ~nargout || ww(21) || ww(22)                 % plot idealized filters
0427     ww(22)=~ww(21);                             % 'G' option is the default unless 'g' is specified
0428     finax=(il-1:ih-1)*df;                       % input frequency axis
0429     newfig=0;
0430     if  ww(21)
0431         plot(finax,x(:,il:ih)'); 
0432         hold on  
0433         plot(finax,sum(x,1),'--k');
0434         v_axisenlarge([-1 -1.05]);
0435         plot(repmat(mb(2:end-1),2,1),get(gca,'ylim'),':k');
0436         hold off
0437         title(['filtbankm: mode = ''' w '''']);
0438         xlabel(['Frequency (' v_xticksi 'Hz)']);
0439         ylabel('Weight');
0440         newfig=1;
0441     end
0442     if  ww(22)
0443         if newfig
0444             figure;
0445         end
0446         imagesc(finax,1:pmq,x);
0447         axis 'xy'
0448         colorbar;
0449         hold on
0450         ylim=get(gca,'ylim');
0451         plot(repmat(mb(2:end-1),2,1),ylim,':w');
0452         hold off
0453         v_cblabel('Weight');
0454         switch wr
0455             case 1
0456                 type='Log-spaced';
0457             case 2
0458                 type='Erb-spaced';
0459             case 3
0460                 type='Bark-spaced';
0461             case 4
0462                 type='Mel-spaced';
0463             otherwise
0464                 type='Linear-spaced';
0465         end
0466         ylabel([type ' Filter']);
0467         xlabel(['Frequency (' v_xticksi 'Hz)']);
0468         title(['filtbankm: mode = ''' w '''']);
0469     end
0470 
0471 end

Generated by m2html © 2003