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ABSTRACT
We propose a noise robust adaptive blind multichannel identifica-
tion algorithm for acoustic impulse responses. It has been known
that the normalized multichannel frequency domain least-mean-
square (NMCFLMS) algorithm misconverges under low signal-to-
noise ratio. The coefficients of NMCFLMS converge initially to-
ward the true impulse response after which they then misconverge.
The extended NMCFLMS (ext-NMCFLMS) algorithm which has
been proposed to mitigate this misconvergence problem assumes the
knowledge of magnitude and time-differences-of-arrival (TDOA) of
the direct paths for the acoustic impulse responses. In this work, we
show how the TDOA can be obtained. More importantly, we present
a novel approach to estimate the magnitude of the direct path compo-
nent under practical conditions. We then show how these estimates
can be incorporated to the proposed ext-NMCFLMS with direct path
estimation algorithm. We analyze how errors in these estimates af-
fect the performance of the proposed algorithm.

Index Terms— Blind channel identification, adaptive signal
processing, time-delay estimation

1. INTRODUCTION

The profound interest in blind channel identification (BCI) tech-
niques in recent years arise due to their extensive applications in
signal processing. For applications such as speech dereverberation
for example, the identified acoustic channel can be utilized, after in-
version, to remove the degradation introduced by the acoustic chan-
nels. Techniques for BCI can generally be classified into two main
classes (a) higher order statistical (HOS) and (b) second order statis-
tical (SOS) methods. Although HOS methods [1] were proposed for
BCI due to the rich information, large number of observation sam-
ples are required and, in addition, these methods suffer from a slow
rate of convergence. As a result, SOS methods such as [2] [3] have
become more popular. These methods utilize the cross relation (CR)
equality between the channels and the observed channel outputs.
Subspace methods [4] offer another alternative. These methods esti-
mate the channel parameters through subspace decomposition of the
received data matrix utilizing the principle of orthogonality between
the signal and noise subspaces. Comparisons between SOS and HOS
methods have been presented in [5].

More recently, adaptive BCI techniques have been pro-
posed. The normalized multichannel frequency domain least-mean-
square (NMCFLMS) algorithm [6] has been shown to be effective
in identifying room impulse responses for acoustic dereverberation.
This algorithm is derived by iteratively minimizing the cost func-
tion defined as the sum square errors between the interchannel cross-
correlation of a microphone array.
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Fig. 1. Relationship between input and output in a SIMO model.

One of the main challenges for NMCFLMS is that the algo-
rithm suffers from a misconvergence problem [7]. It has been shown
through simulations presented in [8] [9] [10] that the estimated fil-
ter coefficients converge first toward the impulse response of the
acoustic system but then misconverge. Under low signal-to-noise
ratio (SNR) conditions, the effect of misconvergence becomes more
significant and occurs at an earlier stage of adaptation.

To mitigate this misconvergence problem, the extended-
NMCFLMS (ext-NMCFLMS) algorithm [8] is proposed where the
direct path component of each channel is assumed to be known while
the remaining filter coefficients are estimated using the NMCFLMS
algorithm [6]. This a priori knowledge of the direct path compo-
nents includes (a) their magnitude and (b) their time-differences-
of-arrival (TDOA) for each channel. In this paper, we propose a
novel practical approach to avoid misconvergence under low SNR.
The proposed extended NMCFLMS with direct path estimation al-
gorithm (ext-NMCFLMSDPE) employs the GCC algorithm [11] to
estimate the TDOA of the direct path components. More impor-
tantly, we propose a novel method to estimate the magnitude of the
direct path components. We investigate how estimation errors for
the time-delay and magnitude affect the performance of the pro-
posed ext-NMCFLMSDPE algorithm. We show the robustness of
the ext-NMCFLMSDPE algorithm through simulation examples us-
ing both white Gaussian noise (WGN) and speech sequences.

2. ADAPTIVE BCI ALGORITHMS
2.1. Problem statement

We consider a single-input multiple-output (SIMO) finite impulse
response linear system as shown in Fig. 1. The ith channel output
signal xi(n) is given by

xi(n) = Hi(n)s(n) + vi(n), (1)
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for i = 1, 2, . . . , M, where M is the number of chan-
nels, xi(n) = [xi(n) xi(n − 1) . . . xi(n − L + 1)]T ,
hi(n) = [hi,0(n) hi,1(n) . . . hi,L−1(n)]T , s(n) = [s(n) s(n −
1) . . . s(n−2L+2)]T , vi(n) = [vi(n) vi(n−1) . . . vi(n−L+
1)]T ,

Hi(n)=





hi,0(n) · · · hi,L−1(n) · · · 0
...

. . .
...

. . .
...

0 · · · hi,0(n) · · · hi,L−1(n)



 (2)

while L is the length of the longest impulse response and superscript
T denotes transposition. We assume that the additive noise on M
channels is uncorrelated, i.e., E{vi(n)vj(n)} = 0 for i "= j and
E{vi(n)vi(n−n′)} = 0 for n "= n′ while E{vi(n)s(n)} = 0. For
channel identifiability [3], we also assume that the channel transfer
function does not contain any common zeros and the autocorrelation
matrix of the source signal Rss(n) = E{s(n)sT (n)} is full rank.

A blind multichannel system can be identified, in the absence of
noise, using the cross-relationship between the ith and jth channel
outputs given [6], for i "= j, by xT

i (n)hj(n) = xT
j (n)hi(n) for

i, j = 1, . . . , M . An a priori error exists if noise is present, or the
channels are estimated with error given, for i "= j, by

eij(n) = x
T
i (n)ĥj(n − 1) − x

T
j (n)ĥi(n − 1), (3)

where ĥi(n) is the estimated ith channel impulse response. Us-
ing (3), adaptive BCI algorithms such as NMCFLMS are derived
by minimizing the cost function

J(n) =
1

‖ĥ(n)‖2
2

M−1∑

i=1

M∑

j=i+1

e2
ij(n) (4)

with respect to the estimated impulse response ĥi(n) for i =

1, . . . , M where ĥ = [ĥT
1 . . . ĥT

M ]T and ‖.‖2
2 denotes squared l2

norm. The NMCFLMS [6] algorithm is given, for each mth frame,
by:

ε01ij (m)=W01
L×2L[Dxi (m)W10

2L×Lĥj(m) −Dxj (m)W10
2L×Lĥi(m)],

Pi(m)=λPi(m − 1) + (1 − λ)
M∑

j=1,j $=i

D∗
xj

(m)Dxj (m),

ĥ
10

i (m)= ĥ
10

i (m − 1) − ρ[Pi(m) + δI2L×2L]−1 ×

M∑

j=1

D∗
xj

(m)ε01ji (m), i = 1, . . . , M, (5)

where ∗ denotes complex conjugate, 0 < ρ ≤ 1 is the step-size,
λ = [1 − 1/(3L)]L is the forgetting factor and δ is the small reg-
ularization constant. We have also denoted IL×L, 0L×L, and FL

as the identity, null and Fourier matrices of dimension L × L re-
spectively, W01

L×2L = [0L×L IL×L], W10
2L×L = [IL×L 0L×L]T ,

W01
L×2L = FLW01

L×2LF−1
2L , W10

2L×L = F2LW10
2L×LF−1

L ,

ĥi(m) = FLĥi(m), ĥ
10

i (m) = F2L

[
ĥi(m)
0L×1

]
and Dxj (m) =

F2L[xj(mL − L) xj(mL − L + 1) . . . xj(mL + L − 1)]T .
One of the main problems of the NMCFLMS algorithm is that it

suffers from a misconvergence problem [7]. Defining the normalized
projection misalignment (NPM) [12] as

η(n) =
‖h(n) − αĥ(n)‖2

2

‖h(n)‖2
2

, (6)

where α = [hT (n)ĥ(n)]/[ĥT (n)ĥ(n)] and h = [hT
1 . . . hT

M ]T . It
can be seen from Fig. 2 that the estimated filter coefficients for the
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Fig. 2. Misconvergence of the NMCFLMS algorithm at different SNRs.

NMCFLMS algorithm converge first toward the impulse response of
the acoustic system after which they then misconverge. Under low
signal-to-noise ratio (SNR) conditions, the effect of misconvergence
becomes more significant.
2.2. The extended NMCFLMS algorithm

The extended NMCFLMS (ext-NMCFLMS) algorithm [8] is pro-
posed to mitigate the misconvergence problem. It minimizes J(n)
subject to the constraint that for each ith channel the direct path of
estimated channel impulse response is equivalent to the true direct
path component, i.e,

ĥi,dp(n) = hi,dp(n), (7)

where ‘dp’ indicates the tap representing direct path propagation.
The cost function and the update equation for ext-NMCFLMS are
given by

Jext(n)=

∑M−1
i=1

∑M
j=i+1 e2

ij(n)

‖ĥ(n)‖2
2

+ β

M∑

i=1

[
hi,dp(n) − ĥi,dp(n)

]2
,

ĥ
10

i (m + 1)=ĥ
10

i (m) − ρE[Pi(m) + δI2L×2L]−1
M∑

j=1

D∗
xj

(m)ε01ji (m)

+2βρEF2LW10
2L×L

{[
hi,dp(m) − ĥi,dp(m)

]
g̃
}

, (8)

where 0 < ρE ≤ 1 is the step-size, β is the Lagrange multiplier and
the L × 1 vector g̃ =

[
01×ldp−1 1 01×L−ldp

]T while Pi(m),
D∗

xj
(m), ε01ji (m), F2L and W10

2L×L are defined in subsection 2.1.
In order to satisfy (7), we require the amplitude and the TDOA

between all channels direct path components to be estimated.

3. THE PROPOSED EXT-NMCFLMS WITH DIRECT-PATH
ESTIMATION ALGORITHM

We propose to estimate both the (a) TDOA and (b) magnitude of
the direct path components in order to incorporate these estimates
to obtain the proposed ext-NMCFLMS with direct path estimation
(ext-NMCFLMSDPE) algorithm.

3.1. The GCC algorithm

One of the most popular algorithms for TDOA extraction is the gen-
eralized cross-correlation (GCC) algorithm [11] which is realized
using two prefilters followed by a cross-correlator. The TDOA is ob-
tained by identifying the time-lag corresponding to the highest cross-
correlation between the filtered output of the microphones. The per-
formance of the GCC approach is dependent on the design of the
prefilters whose main function is to improve the accuracy of peak
detection. We employed the phase transform (PHAT) prefilter which
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Fig. 3. NPM and Cost function gradient plots for NMCFLMS [6] at (a) SNR
= 10 dB (b) SNR = 20 dB, tf indicates the flattening point.

has shown to give satisfactory TDOA estimates in the presence of
reverberation [13]. The estimated time delay between the ith and
jth channel is given by

τ̂ = arg max
τ

R̂(τ) (9)

where R̂(τ) =
∫

∞

−∞
G(w)P̂ij(w)ejwτdw, G(w) = 1/|P̂ij(w)|

denotes the PHAT weighting function, P̂ij(w) denotes the estimated
cross-power spectrum and w is the normalized frequency. For re-
verberant speech, an effective method has been proposed in [14]
which performs GCC on the Hilbert envelope of linear prediction
(LP) residual of input speech.

3.2. Online cost function estimation (CFE)

In order to estimate the magnitude of the direct path components, we
propose an online cost function flattening estimation (CFE) method.
This method involves estimation of direct path component magni-
tudes iteratively from the ext-NMCFLMSDPE algorithm. We propose
to monitor the cost function J(n) given by (4) at every iteration so
as to estimate the magnitudes of the direct path components. Fig. 3
shows, for two different SNRs, the relationship between J(n) and
η(n) defined in (6) of the system for the NMCFLMS algorithm. It is
clear that the flattening point tf of the cost function J(n) is reached
before misconvergence of the algorithm for an SNR as low as 10 dB.
Hence the direct path estimates at time tf give us an estimate of the
relative magnitudes of the direct path components. The proposed
ext-NMCFLMSDPE algorithm employs online CFE by allowing iter-
ations without direct path substitution following (5) and continually
estimating for the flattening point tf using a windowed averaging
process on the cost function. After reaching tf the estimated direct
path components are frozen and utilized according to (8) during the
remaining adaptation of the proposed ext-NMCFLMSDPE algorithm.
By removing the often-used unit-norm constraint we find that the
knowledge of the relative magnitudes of direct path components is
the only essential requirement to avoid misconvergence in this con-
text and their exact magnitudes are not needed.

4. SIMULATION RESULTS
We now present simulation results to study behaviour of the pro-
posed ext-NMCFLMSDPE algorithm and compare its performance
against the NMCFLMS algorithm [6] and the ext-NMCFLMS algo-
rithm [8] in the context of acoustic room impulse response iden-
tification. The dimensions of the room are (5 × 4 × 3) m and
impulse responses are generated using the method of images [15]
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Fig. 4. Effect of freeze of direct path components at different times = 0.4 s,
0.8 s, 1.2 s and 1.6 s while tf = 1.6 s.

with reverberation time T60 = 0.1 s which are then truncated to
length L = 128. A linear microphone array containing M = 5
microphones with uniform separation d = 0.2 m is used. The
source and the first microphone are placed at (1.0, 1.5, 1.6) m and
(2.0, 1.2, 1.6) m , respectively [9]. Uncorrelated zero-mean WGN
is added to the received signal to achieve the SNR specified for
each experiment [6]. The sampling frequency is 8 kHz and the
SNR is 20 dB unless otherwise specified. The following parame-
ters are chosen for all simulations [9]: λ = [1 − 1/(3L)]L for
WGN input, λ = [1 − 1/(10L)]L for speech signal input, and
ĥi(0) = [1 0 . . . 0]T /

√
M .

We first show the effect of estimation errors for the magnitude
of the direct path components on the proposed ext-NMCFLMSDPE
algorithm. In Fig. 4, direct-path components are frozen by the CFE
method at different time instances. We have used a WGN input with
SNR=20 dB and the step-size equal to 0.5. True time delays for
direct-paths have been used. It can be seen that best asymptotic NPM
is achieved at freezing time 1.6 s which corresponds to the flattening
point tf of the cost function J(n).

Fig. 5 shows the effect of errors in TDOA estimation terr of the
direct-path components by the GCC method. We have used WGN
input with an SNR of 20 dB while the step-size is 0.5. This is clear
that initial speed of convergence and final asymptotic NPM deteri-
orate with increasing errors in the delay estimation. This is due to
the algorithm missing out on the estimation of the tail samples of
the impulse responses. It has been found that the number of missed
samples for each channel is equal to the time delay error. Additional
experiments have been performed for negative terr and performance
deterioration has not been found. This is due to missing out on bulk
zeros at start of acoustic channels which does not effect asymptotic
NPM.

Fig. 6 compares the convergence of the proposed algorithm
with NMCFLMS [6] and ext-NMCFLMS [8]. In this experi-
ment we employed the CFE method and the GCC algorithm to
illustrate the performance of the proposed ext-NMCFLMSDPE al-
gorithm. We have used WGN as input with an SNR=20 dB
while step-sizes are 0.5, 0.45 and 0.7 for ext-NMCFLMSDPE, NM-
CFLMS [6] and ext-NMCFLMS [8] algorithms respectively. The
step-sizes have been chosen such that all algorithms reach same
asymptotic NPM. True delays for direct-paths have been employed
for the ext-NMCFLMS algorithm [8] while we have used GCC
with PHAT prefilter to estimate TDOA of direct-paths for the pro-
posed ext-NMCFLMSDPE algorithm. The NMCFLMS algorithm
misconverges and ext-NMCFLMS converges the fastest. The ext-
NMCFLMS algorithm represents a performance bound for the pro-
posed ext-NMCFLMSDPE algorithm as it uses true magnitudes and
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Fig. 6. Comparison of the convergence of the NMCFLMS, est-NMCFLMS
and the proposed algorithm with WGN input.

TDOAs. The proposed ext-NMCFLMSDPE algorithm achieves a rate
of convergence comparable with NMCFLMS [6] but an asymptotic
performance as good as ext-NMCFLMS [8].

Fig. 7 compares the convergence of the proposed
ext-NMCFLMSDPE algorithm with NMCFLMS [6] and ext-
NMCFLMS [8] algorithms using male speech. We have used
an SNR of 20dB while step-sizes are 0.05, 0.05 and 0.04 for
ext-NMCFLMSDPE, NMCFLMS and ext-NMCFLMS algorithms
respectively. The step-sizes have been chosen such that all algo-
rithms reach same asymptotic NPM. As before, true delays for
direct-paths have been employed for ext-NMCFLMS [8] while we
have employed GCC with PHAT prefilter of the Hilbert envelope
of LP residual of speech [14] to estimate TDOA of direct-paths
for ext-NMCFLMSDPE. After initial convergence, NMCFLMS and
ext-NMCFLMS misconverge whereas ext-NMCFLMSDPE avoids
misconvergence. Other tests have indicated that the proposed
ext-NMCFLMSDPE algorithm achieves a high rate of convergence
which is robust to the presence of noise without misconvergence as
compared to NMCFLMS [6] and ext-NMCFLMS [8].

5. CONCLUSION

We propose the ext-NMCFLMSDPE algorithm for adaptive blind sys-
tem identification under practical conditions. The proposed algo-
rithm achieves robustness to noise by estimating both the TDOA,
using the GCC algorithm, and the magnitude, using the proposed
CFE method, of the direct path components. Simulation results
for WGN and speech input show the convergence performance of
ext-NMCFLMSDPE is as good as or better than the existing BCI al-
gorithms with the added benefit of robustness to noise.
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