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Abstract 
In this paper, a new method that exploits the ideas of 
independent source separation in the context of Speech 
Enhancement in single sensor signals, is developed and 
tested in various situations. The channel distortions 
of the two sensor case are artificially reproduced by 
suitable linear and nonlinear filters. Separation is im- 
plemented via a Lagrange neural network. Results on 
speech signals are shown. 

1. Introduction 

Recently there has been considerable work on the prob- 
lem of source separation (see e.g [7],  [8], [lo]). In its 
simplest form the problem is given a linear mixture of 
signals (sources), to separate the contribution of each 
of the sources present assuming they are independent. 
Other interesting work in the area has been presented 
in [3], [6] and [9]. Previous research has focused mainly 
on multisensor approaches to the problem where differ- 
ent mixtures of the source signals axrive at  each one of 
the sensors. Such approaches are difficult to use in 
practice, because of the increased complexity imposed 
by the presence of an array. The approach of our work 
is to produce estimates of the signals present using just 
one sensor. The different distortions normally suffered 
by the signals in the channel are modelled locally by 
suitably filtering the received signa.1. A Lagrange min- 
imisation problem is formed to be solved by a Lagrange 
programming neural network ([ll]). The results of the 
application of the method on contaminated speech sig- 
nal are included. 

2. The Source Separati'on Problem 

Consider two independent signals 371 and ;c2 propagat- 
ing in the same medium and two s,ensors, each receiv- 
ing a different mixture of the two signals, i.e. y1 = 

a1121 + a1222 and YZ = ~21x1  + ~ 2 2 x 2 .  

recovered as ([l]): 
It can then be shown that the initial signals can be 

s 2  = 6 2 x 2  = ~ 2 1 ~ 1  + ~ 2 2 ~ 2  (2) 

where bl and b2 are constant gains and the wcj de- 
pend only on the aijs. This recovery may be performed 
provided that alla22 - (1126121 # 0. 

Since the aijs are of course not known, the wijs  
must be estimated through some kind of optimisation 
procedure. The two signals are by assumption idepen- 
dent, zero mean implying that their odd powered cross 
moments are zero. This fact can be exploited for this 
optimisation. Examples of ways to estimate these mo- 
ments are given in [I] and [7]. The method of estima- 
tion used in our work will be presented later on in this 
paper. 

A typical block diagram of a source separation ap- 
paratus, is given in figure 1. The first part of the circuit 
( marked as 'CHANNEL' ) reproduces the distortions 
that would normally be suffered by the signals in the 
channel. The second part (marked as 'NEURAL NET') 
is the one that recovers the mixed signals. The weights 
wij are controlled by some adaptive mechanism, spe- 
cific to each method. 
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:Figure 1: Standard source separation setup 
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3. The single sensor case 

The modified arrangement for the new method is de- 
picted in figure 2. In our case there is only one sig- 
nal available, namely the noise contaminated signal 
(marked as ‘sensor’). A two sensor simulation can be 
made in such a manner that the distortions that the sig- 
nal would undergo when travelling through a channel 
are modelled by passing it through two different filters 
(shown in figure 2 as H1 and H 2 ) .  Some guidelines for 
chosing these filters are given later in this paper. This 
produces two pseudo-sensor signals, shown as “sensor 
1” and “sensor 2 ” .  These two signals are then used as 
substitutes for the signals from the two sensors. 

- 
NEURALNET 

Figure 2 :  Block diagram of the setup used for the new 
method 

The adaptation mechanism is further assisted by 
the introduction of constraints. A constrained optimi- 
sation problem is set up and its solution implemented 
through the use of Lagrange Programming Neural Net- 
works. This type of neural networks are based on the 
Lagrange minimisation theory. They were chosen be- 
cause they permit the introduction of constraints, but 
exhibit further advantages in terms of speed of conver- 
gence, ability to  readapt and good stability. Details 
about them are given in [ l l ]  and [4]. 

It has already been mentioned that odd power cross 
momentss of the outputs must be zero, and the function 
to be minimised is therefore taken to be 

subject to  the constraint that SI +s2 = g where y is 
the received signal. This gives the following Lagrange 
function to be minimised: 

The update equations for wij and X can be obtained 
by using (1) and (refequ2) and differentiating the above 
expression. A steepest descent adaptation is then per- 
formed. 

In this study i and j are restricted so that: 

For reasons of simplicity only the two source case is 
considered. 

4. Implementation Issues 

The received signal which is assumed to be a linear 
mixture of the two source signals is passed through 
two separate filters. The two outputs are used in our 
setup in the manner of a standard source separation 
problem ([5], [7]). These filters should not have high 
stopband attenuation so that both the outputs convey 
information about all frequency components of the sig- 
nals. Further investigations as to  the choice of these 
filters are currently under way. 

It can be easily seen that the following modification 
to the objective function, reduces the computational 
load considerably: 

I \ 2  

Possible further implications of this modification 
are currently under investigation. 

Several alternative methods for estimating the cross 
moments of the signals have been investigated. Clearly, 
since we are dealing with higher order moments, a large 
number of samples must be used for reducing the vari- 
ance of the estimation. The fact however that the sig- 
nals can not be assumed stationary poses a limit on 
the number of past samples that can be meaningfully 
used in the estimation. For these reasons the following 
recursive formula was used: 

where 

is the estimate for the moment at time n, and ~ k , ~  

is the value of signal sk at  time n and q’J is a forgetting 
factor. Equation (6) provides an unbiased estimate for 
the moments. Clearly it produces good estimates of the 
value of the moments, since a large number of samples 
is involved. Additionally, with a suitable choice of 4, it 
can quickly respond to changes in the statistics of the 
signal. 
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A variable gain adaptation was used to  give better 
stability and eliminate oscillations of the weights in a 
dynamic Lagrange neural network realisation. For sta- 
tionary environments the adaptatioin gain modification 
is taken to follow the rule: 

(7) 
1 p = p(J--- 

(iteration number)p 

where ,B is a positive constant. Typically 0 5 ,B 5 2. 
This update method is used in current literature ([l]). 
It gives an initial, near optimal soslution quickly and 
then convergences with small missadjustment. 

Solutions for non-stationary cases are currently be- 
ing explored. 

5.  Results 

Convergence is fast and due to the variable gain there 
are no weight oscillations after the final values are reached. 
Sample convergence curves for the weights of the neural 
network can be seen in figure 3. 

Figure 3: Sample convergence curve for the weights 
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Figure 4: Improvement in SNR after processing versus 
input SNR (both measured as segmental SNR) 

The tests were performed on single sinusoid plus 
white, zero-mean, gaussian noise, speech plus sinu- 
soid and speech plus white, zero-mean, gaussian noise. 
Sample results for speech plus white noise, can be seen 
in figures 5 (the original and the contaminated signals) 
and 6 (the reconstructed signals). 
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Figure 5: Example of the application of the method: 
Speech plus White Gaussian Noise. a: original signal, 
b: Contaminated signal 

The graphs clearly show a definite improvement of 
the reproduction of the different signals in each case. 
The outputs are acoustically close to their original ver- 
sions. The improvement in SNR versus input SNR is 
given in figure 4. It can be seen that the proposed 
method gives good results in very adverse conditions. 
Note that the SNR displayed is a segmental SNR. 

were performed. For an input SNR of -3.7 d R ,  the out- 
put SNR was 16.12 dB for a fixed frequency of the sine 

Tests for removing sinusoidal interference from speech 
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determine the limits of its applicability. Further devel- 
opment of this work is reported in [a]. 

0.51 ,.I 

7. References 
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Figure 6: Example of the application of the method: 
Speech plus White Gaussian Noise. a: reconstructed 
signal ,b: reconstructed noise 

wave ( improvement 19.81 dB ) and 12.2 db  for a slowly 
varying one (improvement 15.9 db). 

6. Conclusions 

A new method to enhance signals, based on source sep- 
aration techniques is presented. The initial results ob- 
tained are quite promising. Several improvements are 
possible in a variety of directions, for example in using 
different filters and different objective functions. The 
method is potentially useful in many applications to 
other signal processing problems, such as for example 
Voice Activity Detection. Research is currently un- 
der way to explore the fundamental parameters that 
influence this approach in a decisive manner and to 
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