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Abstract�— We present order K afne projection and recursive
least squares adaptive lters employing partial update schemes.
The starting point of the work is the MMax tap-selection criterion
in which, given a lter length L, only M coefcients are updated
that correspond to the M largest magnitude elements of the
regression vector. We extend this approach from its existing form
of MMax-NLMS to new afne projection and recursive least
squares schemes with supporting analysis and simulation results.
We discuss the computational complexity of these approaches for
two alternative sort procedures. Finally, we extend the MMax
criterion to a multichannel case by introducing an exclusivity
constraint and show the effectiveness of the resulting XM tap-
selection criterion for application to stereophonic acoustic echo
cancellation.

I. INTRODUCTION

Adaptive lters have been popular in diverse elds such as
communications, radar and biomedical engineering. In system
identication applications such as shown in Figure 1, these
lters employ adaptive algorithms to model the unknown
channel. For acoustic applications, these channels correspond
to the impulse response of a room which is typically around
100-500 ms for an ofce such that with a sampling frequency
of 8kHz, this corresponds to between 800 and 4000 lter
coefcients. Consequently adaptive algorithms such as the
normalized least mean squares (NLMS), afne projection (AP)
and recursive least squares (RLS) algorithms require high
computational complexity for implementation.

Partial update algorithms such as [1][2][3] aim to reduce
computational complexity by updating only a subset of lter
coefcients in each time iteration. The distribution of the
elemental amplitudes in the update vector of, for example,
the NLMS algorithm is dependent on the input signal so
that, in the case of a speech signal, many of the elements
of the update vector are therefore close to zero. This rationale
provides the motivation for the MMax tap-selection criterion
originally proposed by [4] in which, for a lter of length L,
only coefcients corresponding to the M largest magnitude
elements of the regression vector are updated at each iteration.
When MMax tap-selection is applied in adaptive echo cancel-
lation, for example, the resulting MMax-NLMS algorithm can
be shown [4] to give the same performance as a fully updated
NLMS in terms of nal misadjustment but with a reduction
in convergence speed. A computational saving of (L − M )
tap updates is made at the cost of sorting for the M largest
magnitude taps. An efcient approximate sort [5] has been
proposed which reduces this cost.
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Fig. 1. Single channel system identication employing adaptive lter

Whereas for a single channel case, partial updating schemes
are motivated by the reduction in computational complexity,
these algorithms have recently been employed successfully in
the area of stereophonic acoustic echo cancellation (SAEC) [6]
to achieve interchannel decorrelation. It has been shown that
for realistic applications, the high interchannel coherence
between the two channels results in an ill-conditioned auto-
correlation matrix of the tap-input vectors [7]. Consequently,
the adaptive lters suffer from slow convergence. To miti-
gate this problem, a non-linear (NL) preprocessor has been
proposed in [8]. The exclusive maximum (XM) tap-selection
was proposed [9] in combination with the NL preprocessor
such that the XM tap-selection jointly maximizes the MMax
criterion whilst minimizing the the interchannel coherence at
each iteration. XM tap-selection addresses the minimum co-
herence condition by constraining tap-selection to be exclusive
between the two channels so that the same coefcient index
may not be selected in both channels as will be discussed in
Section V.

The rest of this paper is organized as follows: In Section II,
we extend the MMax tap-selection criterion to the afne
projection (MMax-AP) and recursive least squares (MMax-
RLS) algorithms. We will discuss the computational com-
plexity associated when these proposed algorithms utilize the
SORTLINE [10] and the efcient Short-sort [5] algorithms in
Section III. Section IV presents the misalignment analysis for
both the MMax-NLMS and MMax-RLS algorithms. Simula-
tion results and conclusion will be presented in Section VI
and Section VII respectively.

II. MMAX ALGORITHMS

A. MMax-NLMS

The MMax-NLMS algorithm was originally proposed
in [3][4] with the aim of reducing the computational com-
plexity of the NLMS algorithm. With reference to Figure 1,
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we rst dene measurement noise, lter coefcients and tap-
input vector as wn, ĥn = [ĥn(0) ĥn(1) . . . ĥn(L − 1)]T and
xn = [xn(0) xn(1) . . . xn(L−1)]T respectively. In the MMax-
NLMS algorithm, for an adaptive lter of length L, only
taps corresponding to the M largest magnitude tap-inputs are
updated at each iteration such that

ĥn+1 = ĥn + Qn
µxnen

‖xn‖2 + δ
(1)

where Qn = diag{qn} is the tap-selection matrix with
elements given by

qn(i) =

{
1 |xn(i)| ∈ {M maxima of |xn|}
0 otherwise (2)

for i = 1, 2, . . . , L, and the adaptive step-size is µ. The error
signal is given by en = dn − ĥT

nxn.
It has been shown in [6] that the reduction in convergence

rate due to tap-selection can be explained by introducing a
measure Mn, as the ratio of the energy of the M selected
tap-inputs to the energy of all the tap-inputs in the tap-input
vector such that

Mn =
‖Qnxn‖2

‖xn‖2
. (3)

As a result of a graceful reduction of Mn for 0.5L ≤ M ≤ L,
the MMax-NLMS algorithm only suffers a small reduction in
the rate of convergence for this range of M .

B. MMax-Afne Projection Algorithms
The afne projection algorithm [11] incorporates multiple

projections by concatenating past input vectors from time
iteration n to time iteration n−K + 1 where K is dened as
the projection order. We rst dene the subselected tap-input
vector x̃n = Qnxn. The subselected and full tap-input matrix
are then denoted respectively as

X̃n = [x̃n x̃n−1 . . . x̃n−K+1]
T (4)

Xn = [xn xn−1 . . . xn−K+1]
T . (5)

Using (4), (5) and following the same approach as [11], the
tap update equation for the MMax-AP algorithm is given as

ĥn+1 = ĥn + µX̃T
n [XnXT

n + δI]−1en (6)

where en = dn − Xnĥn, dn = [dn dn−1 . . . dn−K+1]T
and I is a K × K identity matrix. It can be seen from (6)
that for projection order K = 1, MMax-AP is equivalent to
MMax-NLMS.

Even though the matrix X̃n is formed by subselecting the
tap-input vector, MMax-AP in general cannot be classied as a
partial-update algorithm. This is because the length L column
vector X̃T

n [XnXT
n ]−1en is fully populated and therefore every

coefcient in ĥn will be updated at each iteration.

C. MMax-RLS Algorithm
The tap-update equation for RLS is given as

ĥn+1 = ĥn + knen (7)

where the Kalman gain kn is

kn =
λ−1R−1

n−1xn

1 + λ−1xT
nR−1

n−1xn
(8)

such that 0 $ λ < 1 is dened as the forgetting factor and
the time-averaged autocorrelation matrix is dened by

Rn =
n∑

i=1

λn−ixix
T
i . (9)

As we shall show in Section VI, direct extension of the
MMax tap-selection approach achieved by sorting the mag-
nitude of kn in (7) will not achieve the desired convergence
for non-stationary signals such as speech. This is because the
Kalman gain depends on previous values of the time-averaged
inverse correlation matrix R−1 as shown in (8) such that the
statistical nature of non-stationary signals is not preserved
from one iteration to the next. For stationary signals however,
the statistics remain consistent throughout time iterations and
hence convergence may be achieved. For speech signals, our
approach will be to form R̃n using the subselected tap-input
vector x̃n = Qnxn. This ensures that the subsampled input
vectors propagate consistently through the memory of the
algorithm. To derive the MMax-RLS algorithm, we rewrite (9)
in terms of the subselected tap-input vector recursively as

R̃n = X̃nΛnX̃T
n

= λR̃n−1 + x̃nx̃T
n (10)

where X̃n = [x̃1 x̃2 . . . x̃n]T and Λ = diag[λn λn−1 . . . λ].
The cross-correlation vector may be expressed recursively as

Θ̃n = X̃nΛndn

= λΘ̃n−1 + x̃ndn (11)

such that dn = [d1 d2 . . . dn]T . Using the matrix inversion
lemma and following the approach of [11] gives

R̃−1
n =

1
λ

[R̃−1
n−1 − k̃nx̃T

n R̃−1
n−1] (12)

where the modied Kalman gain is given by

k̃n =
λ−1R̃−1

n−1x̃n

1 + λ−1x̃T
n R̃−1

n−1x̃n

. (13)

The MMax-RLS tap-update equation is then given by

ĥn+1 = ĥn + k̃nen. (14)

Similar to the XMNL-AP, the XMNL-RLS algorithm in
general updates all the taps at each iteration since the Kalman
gain vector k̃n is a fully populated column vector except in
special cases where there exist any null rows R−1

n .

III. COMPUTATIONAL COMPLEXITY

The MMax tap-selection procedure selects the M largest
tap-inputs at each time iteration. This sorting operation can be
achieved efciently using for example the SORTLINE [10] or
the Short-sort [5] routine. The Short-sort tap-selection routine
operates by considering two regions of the impulse response,
one of length S and one of length L − S, such that all
taps are updated at each iteration in the rst region. In the
second region, only A out of L − S taps are updated. The
resultant SM-NLMS algorithm [5] selects A out of S taps
in the rst region corresponding to the A largest samples
in [xn, xn−1, . . . , x(n − S + 1)]T and then tracks these A
largest samples as they propagate through the memory of the
lter. Thus the worst-case comparison load using Short-sort
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is [1 + S − A]A/S comparisons per iteration compared to
2 + 2 log2 L used in the SORTLINE procedure.

In this Section, we examine the computational complexity
of the SM-NLMS, MMax-NLMS, MMax-AP and MMax-
RLS algorithms. We dene complexity as the total number
of multiplications and comparisons per sample period. The
computational complexity for each algorithm is summarized
as shown below:

MMax − NLMS (Short − sort) :L + S +
A
S

(L + 1 − A) (15)

MMax − NLMS (SORTLINE) : L + M + 3 + 2 log2 L (16)

MMax − AP (SORTLINE) : (M + L)K + 7K2 + 2

+2 log2 L (17)

MMax − RLS (SORTLINE) : L(L + 3M + 2) + M + 3

+2 log2 L. (18)

IV. MISALIGNMENT ANALYSIS

In this analysis, we consider algorithms of the form

ĥn+1 = ĥn + Γnxnen (19)

where Γn is an L × L adaptation control matrix. For NLMS,
Γn = µnI = µ

xT
nxn

I while for RLS, the Kalman gain vector
may be expressed as kn = R−1

n xn [11] and thus Γn = R−1
n

where Rn is as dened in (9). For the purpose of analysis,
we assume that the dimension of ĥn is chosen to match
the dimension of a time-invariant system hn. We dene the
misalignment vector vn = ĥn−hn and hence the error signal
en = wn − xT

nvn where wn is measurement noise. Thus it
follows that vn+1 can be expressed as

vn+1 = [I − ΓnxnxT
n ]vn + Γnxnwn (20)

and dening Rv,n+1 = E[vn+1vT
n+1],

Rv,n+1 = Rv,n − E[ΓnxnxT
n ]Rv,n − Rv,nE[xnxT

nΓT
n ]

+E[ΓnxnxT
nvnvT

nxnxT
nΓT

n ]

+E[ΓnxnxT
nΓT

n ]σ2
w (21)

where E[.] is the expectation operator and E[wn] = 0.

A. MMax-NLMS Analysis

The MMax-NLMS employs tap-selection such that Γn =
µnQn where Qn is a diagonal matrix whose elements are
dened in (2). Convergence in the mean for MMax-NLMS
can be derived using a contraction mapping approach [12]:
0 < ‖E[I − µnQnxnxT

n ]‖ < 1 which implies for i.i.d. xn

0 < µn <
2

∑L−1
i=0 qn(i)x2

n−i

. (22)

For convergence in the mean square, we start by consid-
ering (21) and we note that qn(i) are not independent of xn
as they ensure that only the M largest elements in |xn| are
selected. The selected samples are assumed to have zero mean
and variance denoted κ. Assuming that xn is a white Gaussian
sequence such that xnxT

n is diagonal and using E[µn] = µ
Lσ2

x
,

we can evaluate the following expressions

E[ΓnxnxT
n ] = E[xnxT

nΓT
n ] = E[µn]E[QnxnxT

n ]

=
M
L

µ
Lσ2

x
κI (23)

tr{E[ΓnxnxT
nvnvT

nxnxT
nΓT

n ]}

=
µ2

L2σ4
x
tr{Rv,n}(L + 2)κσ2

x (24)

tr{E[ΓnxnxT
nΓT

n ]} =
M
L

µ2

L2σ4
x
κL. (25)

Substituting (23)-(25) into (21), we obtain

tr{Rv,n+1} = tr{Rv,n}
{

1 − 4µMκ
L2σ2

x
+ (L + 2)

4µ2Mκ
L3σ2

x

}

+
4µ2M
L2σ4

x
κσ2

w. (26)

Assuming that Rv,n is uctuating around its mean, we
dene Rv as the approximately time-invariant autocorrelation
matrix of the mean weight error vector η thus giving

η = tr{Rv} =
µσ2

w

σ2
xφ

(27)

where φ = 1−µ( 2
L +1). It can be seen from (27) that the mean

weight error vector is inversely proportional to the signal-to-
noise ratio (SNR). Additionally, it can be deduced that the
NLMS algorithm is robust to MMax-tap selection such that
the same nal misalignment can be achieved independently of
M .

B. MMax-RLS Analysis

The tap update equation for MMax-RLS may be written as

ĥn+1 = ĥn + R̃−1
n Qnxnen. (28)

In this case, Γn = R̃−1
n Qn in (19) and R̃n =∑n

i=1 λ
n−i[QixixT

i QT
i ]. In the limit n → ∞ and using

QnxnxT
nQT

n = MκI/L, it follows that

E[ lim
n→∞

R̃n] =
1

1 − λ
M
L

κI (29)

and hence Γn = (1 − λ) L
MκQn giving rise to the following

E[ΓnxnxT
n ] = E[xnxT

nΓT
n ] = (1 − λ)

L
Mκ

E[QnxnxT
n ]

= (1 − λ)I (30)

E[ΓnxnxT
nvnvT

nxnxT
nΓT

n ] =
(1 − λ)2L(L + 2)σ2

x

Mκ
Rv,n (31)

E[ΓnxnxT
nΓT

n ] =

[
(1 − λ)L

Mκ

]2

E[QnxnxT
nQn]

=
(1 − λ)2L

Mκ
I. (32)

Substituting (30)-(32) into (21), we obtain

Rv,n+1 = Rv,n − 2(1 − λ)Rv,n +
(1 − λ)2L

Mκ
σ2

wI

+
(1 − λ)2L(L + 2)σ2

x

Mκ
Rv,n (33)
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Fig. 2. Schematic diagram of SAEC structure after [8]

As before, we can assume that Rv,n is uctuating around its
mean and dening η = tr{Rv} we may then express (33) as

η = η − 2(1 − λ)η +
(1 − λ)2L(L + 2)σ2

x

Mκ
η +

(1 − λ)2L2σ2
w

Mκ

=
(1 − λ)Lσ2

w

2σ2
x

[
Mκ
Lσ2

x
− (1 − λ)(1 + L

2 )

] . (34)

We can deduce from (34) that, similar to MMax-NLMS,
the mean weight error vector for MMax-RLS is inversely
proportional to the SNR of the signal. As we shall see in
Section VI, the nal misalignment of the MMax-RLS is
dependent on M such that for fewer tap-selection, the mean
weight error vector increases.

V. MULTI-CHANNEL EXTENSION EMPLOYING AN

EXCLUSIVITY CONSTRAINT

We illustrate an application of the schemes using the
example of stereophonic acoustic echo cancellation (SAEC)
as shown in Figure 2. Standard adaptive ltering algorithms
perform poorly because of the non-uniqueness problem caused
by the high inter-channel coherence of the two channel input
vectors x1,n and x2,n [8]. We rst note that direct application
of MMax tap-selection will not serve to decorrelate the two
tap-input vectors x1,n and x2,n because, since they are highly
correlated, nearly identical tap-indices will be selected in both
lters. We thus propose the use of an extended version of our
tap-selection schemes to jointly maximize the MMax crite-
rion whilst minimizing inter-channel coherence by imposing
an exclusivity constraint [6]. The resulting exclusive maxi-
mum (XM) tap-selection algorithm employs M = 0.5L and
achieves the reduction in interchannel coherence by selecting
exclusive tap-inputs such that, at each iteration, selection of
the same tap index in both channels is not permitted.

Although an exhaustive search of all exclusive tap-selections
could be used to nd the selection set which maximizes M,
a more efcient method can be found by considering pn =
|x1,n|−|x2,n|. The tap-selection with maximum Mn can then
be found efciently by sorting pn.

Consider as a simple example an SAEC system with chan-
nels k = 1, 2, adaptive lters each of length L = 4 and tap-
input vectors xk,n = [xk,n(1) xk,n(2) xk,n(3) xk,n(4)]T . Also
consider the example case p(3) > p(2) > p(1) > p(4), for a
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Fig. 3. Normalized misalignment for single channel MMax-AP with K = 2
and (a) M = L, (b) M = L/2, (c) M = L/4 and (d) NLMS

particular nth time instant. Since p(3) + p(2) > p(1) + p(4),
it follows that

|x1(3)| + |x1(2)| + |x2(1)| + |x2(4)| > |x1(1)| + |x1(4)|
+ |x2(2)| + |x2(3)|. (35)

Thus at this particular time iteration, selection of taps cor-
responding to x1(3), x1(2), x2(1) and x2(4) maximizes M
with the minimum coherence constraint satised by the ex-
clusivity. In this two channel case, Mn is then dened as
Mn = ‖Qnxn‖2

‖xn‖2 where Qn = diag{[qT
1,n qT

2,n]} and
xn = [xT

1,n xT
2,n]T such that at each iteration n, element u of

q1,n and element v of q2,n are dened for u, v = 1, 2 , . . . , L
where

q1,n(u) =

{
1 pn(u) ∈ {M maxima of p}
0 otherwise

q2,n(v) =

{
1 pn(v) ∈ {M minima of p}
0 otherwise.

We propose a method for SAEC employing the XM tap-
selection in combination with the NL preprocessor so as to
improve the convergence rate of algorithms employing the NL
preprocessor alone [8]. We shall show in the next Section that
the resulting XMNL-based algorithms can give faster rate of
convergence.

VI. SIMULATION RESULTS

We present simulation results for both single channel and
stereophonic AEC applications. In all our simulations, impulse
response were generated using the method of images [13] such
that the length of the transmission and receiving room were
both G = 800. Adaptive lters were of length L = 256 and
we dene normalized misalignment as

ξn = ‖h − ĥn‖2/‖h‖2 (36)

calculated over the rst 256 lter coefcients. In all our
simulations, independent noise is added to the desired signal
such that SNR of 25 dB is achieved.

A. Single channel AEC

Figure 3 shows initial convergence in terms of normalized
misalignment for single channel MMax-AP of second order
K = 2 with µ = 0.2 for (a) M = L = 256, (b) M = 128,
(c) M = 64 and (d) NLMS. It can be seen that for M =
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L, the misalignment for MMax-AP corresponds to the full-
update AP as expected. For reducing M , the performance of
MMax-AP degrades gracefully compared to fully updated AP.
Figure 4 shows initial convergence in terms of normalized
misalignment for single channel MMax-RLS with (a) M =
L = 256, (b) M = 128, (c) M = 64 and (d) M = 32 and
(e) M = 16 and λ = 0.999. The MMax-RLS algorithm is
implemented using (12)-(14). For M = L/2 and M = L/4,
the performance of MMax-RLS is close to that of the RLS
algorithm. In both MMax-AP and MMax-RLS simulations,
white Gaussian noise (WGN) input sequence were used.

B. Stereophonic AEC

Figure 5 shows an example result of stereophonic AEC in
which we incorporated the non-linear preprocessor [14] to both
the XM-RLS (XMNL-RLS) and RLS algorithms (NL-RLS).
For clarity, the misalignment of only one channel is plotted.
The speech input is shown in Figure 5(a). The forgetting
factor was λ = 0.9996 while non-linearity constant for NL
preprocessor was α = 0.5. As shown in Figure 5, there is
a signicant improvement in normalized misalignment of 3
to 6 dB for the XMNL-RLS compared to that of NL-RLS.
This is due to the additional decorrelation property of the XM
preprocessor. The performance of XMNL-NLMS has come
close to that of the NL-RLS. As well as showing improved
performance, the XMNL schemes benet additionally from the
reduced complexity of the partial updating, particularly when
the short-sort technique is employed.

VII. CONCLUSION

In this paper, we have extended the MMax tap-selection
criterion to the AP and RLS algorithms. We note that di-
rect extension of the MMax tap-selection approach achieved
by sorting the magnitude of Kalman gain in RLS will not
achieve the desired convergence for speech input signals.
The computational complexity for MMax-AP and MMax-
RLS have been discussed. Misalignment analysis for MMax-
NLMS and MMax-RLS for the single channel case have been
presented. The exclusive maximum (XM) tap-selection was
then proposed and applied to SAEC which jointly maximizes
the MMax criterion whilst minimizing the interchannel co-
herence. The resultant XMNL-RLS algorithm achieves faster
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Fig. 5. (a) Speech Signal and normalized misalignment for (b) XMNL-
NLMS, (c) NL-RLS and (d) XMNL-RLS

convergence of approximately 3 to 6 dB compared to the use
of the NL-preprocessor alone in our simulation example using
speech.
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