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Selective-Tap Adaptive Algorithms in the Solution
of the Nonuniqueness Problem for Stereophonic
Acoustic Echo Cancellation

Andy W. H. Khong and Patrick A. Naylor, Member, IEEE

Abstract—We investigate stereophonic acoustic echo cancel-
lation in which solutions for the system can be nonunique and
propose the use of selective-tap adaptive filters to address this
problem. The main concept is to employ tap selection to opti-
mize jointly for minimum interchannel coherence and maximum
L>-norm of the subselected tap-input vectors. The exclusive
maximum (XM) tap-selection approach is proposed and ap-
plied to normalized least-mean squares (NLMS) and recursive
least-squares (RLS) algorithm. We propose an approach for
solving the nonuniqueness problem employing XM tap selection
in combination with a nonlinear preprocessor. Simulation results
show a significant improvement in convergence rate compared
with existing techniques.

Index Terms—Adaptive filtering, selective-tap, stereophonic
acoustic echo cancellation.

1. INTRODUCTION

TEREOPHONIC Acoustic Echo Cancellation (SAEC), as
S shown in Fig. 1, plays a crucial role in applications that
include desktop conferencing and hands-free telephony [1], [2].
In SAEC, the solutions for the adaptive filters can be nonunique
[1]. Defining L and W as the lengths of the adaptive filters and
transmission room’s impulse response, respectively, and Ryx
as the concatenated input autocorrelation matrix as in [3], two
cases have been described for a noiseless system:

casel: L >W = Ryx(n)issingular V n

case2: L < W = Rxx(n) is ill conditioned

giving rise to nonuniqueness and poor convergence due to high
interchannel coherence.

The use of nonlinear (NL) distortion has been proposed to
solve this problem [1]. Other approaches include the use of
spectrally shaped random noise [4] and leaky normalized least-
mean squares (NLMS) [5] with the common aim of reducing in-
terchannel correlation without affecting the speech quality and
stereophonic perception.

Selective-tap schemes such as [6] update only a subset of taps
at each iteration and were originally proposed to reduce compu-
tational complexity. Subsequent work using MMax-NLMS [7],
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Fig. 1. Stereophonic acoustic echo cancellation system (after [1]).

[8] has shown an improvement in the convergence rate by up-
dating taps corresponding to the M largest magnitude tap in-
puts. In this letter, we propose the use of an exclusive maximum
(XM) tap-selection technique that addresses practical case 2. We
further propose an approach for SAEC employing XM tap se-
lection in combination with the NL preprocessor to overcome
the nonuniqueness problem with improved convergence speed.

II. MMAX TAP-SELECTION CRITERION

In the single channel MMax-NLMS algorithm [7] for an
adaptive filter of length L, only taps corresponding to the M
largest magnitude tap inputs are selected for updating at each it-
eration. Defining the tap-selection matrix Q(n) = diag{q(n)},
x(n), and h(n) as the single channel tap-input vector and
filter coefficients, respectively, the MMax-NLMS tap-update
equation may be expressed as

R+ 1) =B + QT
gi(n) = {(1) L:z;},lgngsee {M maxima of |x(n)|} o

where ¢;(n) are the elements of q(n) fori = 1,2,..., L, and
the adaptive step size is . The error signal is given by e(n) =
d(n) — hT(n)x(n).

We now examine the dependence of the convergence rate on
the subselection by proposing the measure M (n) as the ratio of
the squared Lo-norm of the M selected tap inputs to that of the
full tap-input vector. Thus, M(n) may be written as

_ lIQmx(m)]*

M(n
") Ix(n)|1*
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Fig. 2. (a) Variation of M with subselection parameter M. (b) Dependence

of convergence rate on M.

This measure quantifies the “closeness” of the tap selection to
the full tap-input vector in an MMax sense such that when all
taps are updated, M = 1. Fig. 2(a) shows how M varies with
the number of selected taps M for zero mean, unit variance
white Gaussian noise (WGN) for a particular time iteration n
with L = 256. We note that M exhibits only a modest reduc-
tion for 0.5L < M < L, and hence, a graceful reduction in con-
vergence rate is expected over this range as compared to fully
updated NLMS [9]. Fig. 2(b) shows the number of iterations for
MMax-NLMS to achieve —20-dB misalignment for various M.
Since the convergence rate can be seen to increase with M, we
propose that any degradation in convergence performance due
to subselection of taps can be minimized by selecting taps to
maximize M.

III. XM TAP-SELECTION CRITERION

Although selective-tap partial update adaptive algorithms
[6]-[8] were originally proposed for complexity reduction,
this is not our aim. We now propose and develop selective-tap
schemes aimed instead to reduce the interchannel coherence
of the two tap-input vectors. We note that direct application
of MMax tap selection will not serve to decorrelate the two
tap-input vectors because since x; (n) and xo(n) are themselves
highly correlated, nearly identical tap indices will be selected
in both filters. Therefore, we formulate the XM tap-selection
criterion that aims jointly to maximize M(n) and minimize
interchannel coherence at each iteration. XM tap selection
addresses the minimum coherence condition by constraining
tap selections to be exclusive between the two channels so that
the same coefficient index may not be selected in both channels
[9], [10].

Assuming that x;(n) and xo(n) are highly correlated
Gaussian inputs and defining x(n) = [x7 (n)xZ (n)]T and E[]
as the mathematical expectation operator, the autocorrelation
matrix can be expressed as

Rux(n) = E [x(n)x" (n)]
_ |Ru(n) Raa(n)
B Rgl(n) RQQ(TL) ’ (3)
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We may examine the effect of exclusive tap selection on Ry (1)
for which nonselected elements in X;(n) = Q1(n)x;(n) and
Xa2(n) = Q2(n)xq(n) are zero. It can be seen that this ex-
clusive tap selection has the effect of making the diagonals of
Ri2(n) and Rog(n) zero and adds additional zeros elsewhere in
Ri2(n) and Ry;(n). As a result, the conditioning of R (n) is
improved, and in the limit where X; (n) and X2 (n) are perfectly
uncorrelated, the autocorrelation matrix is diagonal Rxx(n) =
diag[o?...0% 03 ... 03], where o7 is the ith channel input vari-
ance, and good convergence is then obtained.

Although an exhaustive search of all exclusive tap selections
could be used to find the selection set that maximizes M, a more
efficient method can be found by considering p(n) = |x1(n)|—
|x2(n)|. The tap selection with maximum M (n) can then be
found efficiently by sorting p(n). Utilizing the robustness of
the NLMS algorithm to tap selection for 0.5L < M < L as
discussed in the previous section, we select M = 0.5L taps at
each iteration.

Consider as a simple example an SAEC system with channels
k = 1, 2, adaptive filters each of length L. = 4, and tap-input
vectors Xi(n) = [Tr1 Tko T3 Tk 4]T. Also consider the ex-
ample case p3 > pa > p1 > py, for a particular time instance.
Since p3 + p2 > p1 + p4, it can be shown that

|21 3|+ |z12| |2+ 224 > |211| |21 a|+ 22,2+ |22,3]

4)
Thus, the tap selection corresponding to inputs x13, 1,2,
x2.1, and 5 4 maximizes M (n) with the minimum coherence
constraint satisfied by the exclusivity. In this two-channel case,
M(n) is then defined as

_lamxm)|®
Ix(n)]*

where Q(n) = diag{[qT (n) qI (n)]} is the selection matrix
such that at each iteration n, element u of q1(n) and element v
of qa(n) are defined for u, v = 1,2, ..., L such that

[t
qlu = 07
_JL
q2.v = 07

A. XMNL-NLMS

The NLMS algorithm is popular for its robustness and sim-
plicity of implementation, but it is not normally useful for SAEC
applications due to its poor convergence. The NL preprocessor
[1] has shown to be one of the most effective methods to achieve
signal decorrelation by using « as the nonlinearity constant such
that

M(n) )

Py € {M maxima of p}
otherwise
Py € {M minima of p}
otherwise.

x) =x1(n) + 0.5 [x1(n) + |x1(n)|]

xh =x2(n) + 0.5a [x2(n) — [x2(n)]].

We propose a method for SAEC employing the XM tap selec-
tion in combination with the NL preprocessor to improve the
convergence rate of the NL-NLMS algorithm. We shall show in
the next section that the resulting XMNL-NLMS algorithm can
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TABLE 1
XMNL-NLMS
p(n) = x}(n)| — |x3(n)]
Q(n) = diag{[a] (n) a3 (n)]}
y(n)  =hT(n)x'(n)
e(n) =dn)—yn)
1 pu € {M maxima of p}
q1,u
0 otherwise
1  py € {M minima of p}
q2,v
0 otherwise

give useful levels of convergence with performance close to that
of an existing RLS-based approach [1].

The XM tap-selection technique may be incorporated into
NL-NLMS by selecting taps corresponding to the M highest
value elements of the input magnitude difference vector p(n)
in the first channel. For the second channel, the selected taps
will correspond to the M lowest value elements of p(n). Note
that at each iteration, M = 0.5L taps are selected in each
channel. Consequently, the XMNL-NLMS has the same com-
plexity as the MMax-NLMS algorithm, which requires, at most,
1.5L 4 2logs + 3 operations (multiplications or comparison) for
each filter per sample period, assuming the use of the SORT-
LINE algorithm . The XMNL-NLMS is expressed in Table 1.

B. XMNL-RLS

Direct application of the RLS algorithm to SAEC does
not address the nonuniqueness problem, and hence, conver-
gence is poor. We first denote A as the forgetting factor and
U(n) = X'(n)A(n)X'T(n) as the weighted autocorrelation
matrix such that X’(n) = [x/(0) x’(1) ... x'(n)]T and
A = diag[A\" A"~! ... \°]. Defining e,,_1(n) as the a priori
error, the RLS tap update is given by

h(n) =h(n — 1) + k(n)en_1(n) (6)
where k(n) = [ki(n) ka(n)]7 is defined as the concatenated

Kalman gain, which is defined at each iteration as

_ A1 (n)x!(n)
14+ AT (n)¥—1(n)x'(n)

k(n) ©

The iterative update of W~1(n) is then given by
U n+1) = A" U (n) = k(n)x" (n)T " (n)] . (8)

To extend the XM tap-selection approach to NL-RLS, we
could first consider the selection of M out of L taps with the
largest Kalman gain. However, this is not a good approach be-
cause any subselection of k(n) is used recursively in the up-
dating of U=1(n + 1), and this recursion is, therefore, incon-
sistent from sample to sample since the tap selection changes at
each n. Our proposed approach is, therefore, to replace x'(n)
in the Kalman gain calculation (7) and Ricatti update (8) with a
subsampled input vector X' (n) = Q(n)x’(n). This ensures that
the subsampled input vectors propagate consistently through
the memory of the algorithm. Accordingly, we formulate the

TABLE 11

XMNL-RLS
M = 0.5L
p(n) = I[xi(n)] = [x5(n)]
k(n) = kT (n) kI (n)*
Q(n) = diag{[a{ (n) aj (n)]}
X'(n) = Q(n)x(n)

w1 (n)x'(n)

k(n)

T AR MITE ()R (n)
yn) =0T (n)x'(n)

en-1(n) =d(n) —y(n)

h(n +1) = h(n) + k(n)e,—1(n)
Tl +1)= 1T (n)

K(n) X (n)]T ¥~ ()]

-

pu € {M maxima of p}
q1,u

(=}

otherwise

pv € {M minima of p}

o =

q2,v .
otherwise

Misalignment (dB)
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Fig. 3. Misalignment for (a) NLMS, (b) NL-NLMS, (¢) XM-NLMS, and
(d) XMNL-NLMS [L = 256, M = 128, ¢ = 0.1, = 0.5].

XMNL-RLS algorithm as shown in Table II. As before, we have
used u and v to denote the elemental indices of q;(n), q2(n),
and p(n). Using the SORTLINE algorithm , the complexity of
XMNL-RLS is, at most, 2.5L(LH) + 3 + 2logs L operations
per adaptive filter compared to 4L? + 3L + 2 for RLS. Alh-
tough complexity reduction is not our main aim, it can be seen
that XM tap selection reduces computational complexity.

IV. SIMULATION RESULTS
A. Performance of XMNL-NLMS Algorithm

In these tests, the unknown room impulse responses were
generated using the method of images [12], with the micro-
phones placed one meter apart and the source positioned one
meter away from each of the microphones in the transmission
room. In this first experiment, the lengths of the adaptive filters
are L = 256, while the lengths of the transmission and receiving
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Misalignment (dB)

samples x 10

Fig. 4. (a) Speech and misalignment plot for (b) NL-NLMS, (c)
XMNL-NLMS, and (d) NL-FRLS [L = 256, M = 128, 0 = 0.9,
o = 0.5, A = 0.9996].

rooms are W = 1600 and N = 256, respectively. Fig. 3 shows
the misalignment 7(n) for NLMS-based algorithms, where

pnef
n(n) = W

A WGN input was used with M = 128 and a nonlinear distor-
tion factor of « = 0.5. We see that NLMS converges to a poor
solution. The convergence rate of XM-NLMS and NL-NLMS
increases significantly, due to the XM and NL preprocessor,
respectively. XMNL-NLMS shows even further improvement
compared to NL-NLMS, due to the additional decorrelation
property of the XM tap selection. Alternatively, XMNL-NLMS
could achieve the same rate of convergence as NL-NLMS but
with a lower value of « [1].

9

B. Comparison of XMNL-NLMS and NL-FRLS

Fig. 4 compares the convergence of NL-NLMS, XMNL-
NLMS and fast-RLS with NL preprocessor (NL-FRLS) [1]
using a speech signal from a male talker. Both the transmission
and receiving room’s responses were of length W = N = 800.
Adaptive filters of length L = 256 and M = 128 were used
with A = 1 — (1/10L) for the NL-FRLS algorithm. It can be
seen that the performance of XMNL-NLMS exceeds that of
NL-NLMS by around 5 to 8 dB and is close to that of NL-FRLS
in this example.

C. Comparison of XMNL-RLS and NL-FRLS

We now compare the rate of convergence between the
XMNL-RLS algorithm and the NL-FRLS algorithm using the
same experimental setup as the previous experiment but using
a different speech signal for generality. We see from Fig. 5 that
there is a significant improvement in misalignment of 3 to 6 dB
for the XMNL-RLS compared to that of the NL-FRLS.

V. CONCLUSION

We have formulated the XM tap-selection technique and em-
ployed it in the proposed XMNL-NLMS and the XMNL-RLS
algorithms. These algorithms achieve the required decorrelation
of the tap-input vectors in SAEC using this novel selective-tap
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Misalignment (dB)

samples x 10

Fig.5. (a)Speech and misalignment plot for (b) XMNL-NLMS, (c) NL-FRLS,
and (d) XMNL-RLS [L = 256, M =128, = 0.9, = 0.5, A = 0.9996].

scheme and give a significant improvement in performance
over and above the use of the NL preprocessor alone. Although
NLMS is not normally employed for SAEC because of its
poor convergence, relatively good performance—close to
that of RLS-based schemes—can be obtained, nevertheless,
through the use of the proposed XM tap-selection approach.
XMNL-NLMS has the benefits of low complexity and robust-
ness compared to least-squares approaches. Additionally, a
significant increase in the convergence rate can be seen for
XMNL-RLS as compared to that obtained from an RLS-based
approach using the NL preprocessor alone.
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