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ABSTRACT

We propose a new low complexity and fast converging frequency-
domain adaptive algorithm for sparse system identification. This
is achieved by exploiting the MMax and SP tap-selection criteria
for complexity reduction and fast convergence respectively. We
incorporate these tap-selection techniques into the multi-delay fil-
tering (MDF) algorithm in order to reduce the delay inherent in
frequency-domain algorithms. We illustrate two such approaches
and discuss the tradeoff between convergence performance and com-
putational complexity for these approaches. Simulation results show
an improvement in convergence rate for the proposed algorithm over
MDF with reduced complexity. The proposed algorithm achieves a
convergence performance close to that of the recently proposed but
substantially more complex improved proportionate MDF algorithm.

Index Terms— sparse system identification, network echo can-
cellation, partial update, frequency-domain adaptive filtering

1. INTRODUCTION

Sparse system identification has found applications in packet-
switched network echo cancellation (NEC) [1] and geophysical ex-
ploration as well as communication systems. In NEC for example,
the echo path impulse response is caused by the impedance mis-
match between the four- and two-wire circuits connected via the
network hybrid. The echo path impulse response is typically of
length 64-128 ms and exhibits an “active” region, defined as the
region of the impulse response containing large magnitude coeffi-
cients, in the range of 8-12 ms duration. The impulse response is
dominated by regions where magnitudes are close to zero making
the impulse response sparse. These “inactive” regions are due to
the presence of bulk delay caused by network propagation, encod-
ing, and jitter buffer delays. For effective echo cancellation, al-
gorithms adopted by network echo cancellers aim to estimate the
sparse impulse response. Adaptive algorithms, such as the nor-
malized least-mean-square (NLMS), have been employed success-
fully for estimating impulse responses in acoustic and communi-
cation channels. For the identification of sparse systems, such as
occur in NEC as shown in Fig. 1, several algorithms have been
proposed which utilize the sparse nature of the impulse response
to achieve higher rate of convergence than the NLMS algorithm.
One of the first algorithms proposed for NEC is the proportionate
NLMS (PNLMS) algorithm [2] where, at each iteration, the step-size
for each filter coefficient is proportional to its magnitude. Although
PNLMS achieves fast initial convergence, its rate of convergence
is reduced significantly by the adaptation of small coefficients [3].
The improved PNLMS (IPNLMS) algorithm [4] addresses this prob-
lem by incorporating both proportionate and NLMS adaptation. The
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Fig. 1. Network echo cancellation.

IPNLMS algorithm however requires twice as many multiplications
per iteration as the NLMS algorithm.

As applications utilizing voice over IP (VoIP) have gained more
popularity in recent years, algorithms have been proposed with the
aim of achieving complexity reduction. The algorithm proposed
in [5] alternates between updating the whole adaptive filter using
NLMS and only those coefficients which are significantly large.
More recently, the Sparse Partial (SP) update NLMS (SPNLMS)
algorithm [6] incorporates the MMax tap-selection [7] for the re-
duction of computational complexity. In order to achieve an im-
provement in convergence rate, SPNLMS updates filter coefficients
corresponding to both tap-inputs and filter coefficients having large
magnitudes. It has been well known that frequency-domain adaptive
filtering such as the fast-LMS (FLMS) algorithm [8] offers an attrac-
tive means of achieving efficient implementation. One of the main
drawbacks of FLMS, however, is the delay introduced between the
input and output, which is equivalent to the length of the adaptive
filter L. This delay can be significant since the number of filter co-
efficients can be several hundreds. To address this problem of delay,
the multi-delay filter (MDF) structure has been proposed [9] which
partitions the adaptive filter into blocks of length N independent of
L. The benefit of low delay for MDF over FLMS and NLMS in the
context of NEC has been shown in [10].

In this work, we propose a low complexity and fast converging
adaptive algorithm for NEC. We achieve this by incorporating the
SP update for fast convergence and the MMax tap-selection for low
complexity. In addition, we exploit the MDF structure to achieve
low delay between the input and output. We first describe how
MMax tap-selection can be incorporated into the MDF algorithm
using two approaches and we illustrate the tradeoff between their
rate of convergence and complexity in Section 3.1. We then pro-
pose to incorporate the SP tap-selection into the MMax-MDF algo-
rithm giving (SPMMax-MDF) as described in Section 3.2. We il-
lustrate, in Section 4, the performance of the proposed MMax-MDF
and SPMMax-MDF algorithms.
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2. REVIEW OF SPNLMS AND MDF ALGORITHMS

The Sparse Partial (SP) update NLMS (SPNLMS) algorithm [6]
has been proposed to achieve fast convergence with low computa-
tional complexity. With reference to Fig. 1, we first define x(n) =

[x(n) . . . x(n − L + 1)]T , h = [h1 . . . hL]T and ĥ(n) =

[ĥ1(n) . . . ĥL(n)]T where [·]T is defined as vector transposition.
The SPNLMS update equation can be described by

ĥ(n) = ĥ(n − 1) + µ
Q(n)x(n)e(n)

‖Q(n)x(n)‖2 + δ
, (1)

where e(n) = y(n)−xT (n)ĥ(n− 1), ‖ · ‖2 is the squared l2-norm
and δ is the regularization parameter. The L×L tap-selection matrix
Q(n) = diag{q1(n) . . . qL(n)} contains elements qi(n) for tap-
selection index i = 1, . . . , L. The SPNLMS utilizes MMax tap-
selection [7] to achieve complexity reduction. For fast convergence,
coefficients are updated based on the magnitudes of the input and the
estimated filter coefficients. The relative significance of these tap-
selection strategies is controlled by the variable T ∈ Z+. Elements
of Q(n) are then given, under the condition of mod(n, T ) = 0, by

qi(n) =

{
1 i ∈ {M1 maxima of |x(n − i + 1)|},
0 otherwise,

(2)

and that for mod(n, T ) %= 0,

qi(n) =

{
1 i ∈ {M2 maxima of |x(n − i + 1)ĥi(n)|},
0 otherwise.

(3)
The variables M1 and M2 define the number of selected taps for
MMax and the active taps selected for sparse adaptation respectively.
The SPNLMS incorporates MMax tap-selection given by (2) for
complexity reduction. To achieve fast convergence for sparse sys-
tems, SPNLMS selects filter coefficients corresponding to the largest
products of tap-input and filter coefficients given by (3).

The MDF algorithm [9] was proposed to address the problem of
delay inherent in FLMS [8] since the latter computes the output for
every L samples. The MDF addresses this problem by partitioning
the adaptive filter of length L into K subfilters each of length N
with L = KN . Consequently, the delay of MDF is reduced by a
factor of L/N compared to FLMS. To describe the MDF algorithm,
we first define m as the frame index and the following time-domain
quantities given by X(m) = [x(mN) . . .x(mN+N−1)], y(m) =

[y(mN) . . . y(mN+N−1)]T , ĥ(m) = [ĥT
0 (m) . . . ĥT

K−1(m)]T ,
ŷ(m) = [ŷ(mN) . . . ŷ(mN +N −1)]T = XT (m)ĥ(m), e(m) =
y(m) − ŷ(m) and the 2N × 1 input vector

χ(m−k) = [x(mN−kN−N) . . . x(mN−kN +N−1)]T , (4)

where k = 0, . . . , K − 1 is defined as the block index and the sub-
filters ĥk(m) = [ĥkN+1(m) . . . ĥkN+N (m)]T . We next define F
as the Fourier matrix and a 2N × 2N diagonal matrix

D(m − k) = diag
{
Fχ(m − k)

}
= diag

{
χ(m − k)

}
(5)

with elements containing the Fourier transform of χ(m − k) for
the kth subfilter. We also define the following frequency-domain

quantities y(m) = F

[
0N×1
y(m)

]
, ĥk(m) = F

[
ĥk(m)
0N×1

]
, e(m) =

F

[
0N×1
e(m)

]
, G01 = FW01F−1, W01 =

[
0N×N 0N×N
0N×N IN×N

]
,

G10 = FW10F−1 and W10 =

[
IN×N 0N×N

0N×N 0N×N

]
where 0N×N

is an N × 1 null matrix. The MDF algorithm is then given by [9]

e(m) = y(m) − G01
K−1∑

k=0

D(m − k)ĥk(m − 1), (6)

SMDF(m) = λSMDF(m − 1) + (1 − λ)D∗(m)D(m), (7)

ĥk(m) = ĥk(m − 1) + µG10D∗(m − k) ×
[SMDF(m) + δMDF]−1e(m), (8)

where ∗ denotes complex conjugate, 0 & λ < 1 is the forgetting
factor and µ = β(1−λ) is the step-size with 0 < β ≤ 1. Letting σ2

x

be the input signal variance, the initial regularization parameters [11]
are SMDF(0) = σ2

x/100 and δMDF = 20σ2
xN/L. For N = L,

K = 1 and hence MDF is equivalent to FLMS [8].

3. THE SPARSE PARTIAL UPDATE MULTI-DELAY
FILTERING ALGORITHM

We propose to incorporate the MMax and SP tap-selection into the
MDF algorithm. Similar to SPNLMS, we aim to achieve reduced
complexity due to MMax tap-selection as well as improved conver-
gence performance due to SP tap-selection. In addition, we exploit
the low delay provided by the MDF structure. We first describe how
the MMax tap-selection in (2) can be incorporated into the MDF
which we denote MMax-MDF. We next show the SPMMax-MDF
algorithm in which SP tap-selection given by (3) is incorporated into
the MMax-MDF. The proposed MMax-MDF and SPMMax-MDF
algorithms can be described by (6), (7) and

ĥk(m) = ĥk(m − 1) + µG10D̃
∗
(m − k) ×

[SMDF(m) + δMDF]−1e(m). (9)

The difference between (8) and (9) is that the latter employs D̃
∗
(m−

k) and we will describe in the following how this 2N ×2N diagonal
matrix can be obtained.

3.1. The MMax-MDF Algorithms

The diagonal matrix D̃(m − k) for MMax-MDF can be obtained
using two approaches. When tap-selection is performed in the time-
domain, we denote the algorithm as MMax-MDFt. To indicate tap-
selection in the frequency-domain, we use MMax-MDFf . For the
time-domain selection approach, elements for the 2N×2N diagonal
tap-selection matrix Q(m) can then be expressed by subselecting
from elements in χ(m) defined in (4) giving, for 1 ≤ M1 ≤ 2N ,

qi(m) =

{
1 i ∈ {M1 maxima of |x(j − N + i − 1)|},
0 otherwise,

(10)
with j = mN − kN and i = 1, . . . , 2N . Utilizing Q(m), elements
of D̃(m − k) for the MMax-MDFt algorithm can be expressed as

D̃(m − k) = diag
{
FQ(m − k)χ(m − k)

}
. (11)

The MMax-MDFt algorithm is described by (6), (7), (11) and (9).
For frequency-domain selection, the approach is to select fre-

quency bins corresponding to the largest magnitude Fourier trans-
form of the tap-input over all the subfilter blocks k = 0, . . . , K − 1.
Defining χ(m − k) = Fχ(m − k), the concatenated Fourier trans-
form of the input across all subfilters is then defined as

g(m) =
[
χT (m) . . . χT (m − K + 1)

]T
=

[
χ

1
(m) . . . χ

2L
(m)

]T
.

(12)
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Fig. 2. Variation of Mt(m) and Mf (m) with M1 for K = 1 and L =
N = 128.

Each element in the tap-input matrix Q(m) is then given by

qi(m) =

{
1 i ∈ {M1 maxima of |χ

i
(m)|},

0 otherwise,
(13)

for i = 1, . . . , 2L and for this case of frequency-domain selection
1 ≤ M1 ≤ 2L. Defining a 2L × 1 vector g̃(m) containing the
subselected Fourier transform of the input vector as

g̃(m) = Q(m)g(m) =
[
χ̃

1
(m) . . . χ̃

2L
(m)

]T
, (14)

the 2N × 2N diagonal matrix D̃(m− k) for this frequency-domain
tap-selection approach is then given by

D̃(m − k) = diag
{
χ̃

2kN+1
(m) . . . χ̃

2kN+2N
(m)

}
. (15)

The MMax-MDFf algorithm is described by (6), (7), (15) and (9).
We next compare the convergence performance of MMax-MDFt

and MMax-MDFf . It has been shown [12], that the convergence
performance of MMax-NLMS degrades with reducing normalized
energy of the subselected tap-input vector brought about by M1.
This energy is defined by M(n) = ‖Q(n)x(n)‖2

/
‖x(n)‖2 with

elements of Q(n) given in (2). In the same manner and for the
case of N = L, convergence performance of MMax-MDFt and
MMax-MDFf can be studied by defining respectively for the time-
and frequency-domain tap-selection approaches,

Mt(m) =
∥∥Q(m)χ(m)

∥∥2/∥∥χ(m)
∥∥2

, (16)

Mf (m) =
∥∥F−1Q(m)g(m)

∥∥2/∥∥F−1g(m)
∥∥2

, (17)

where Q(m) in (16) and (17) are defined by (10) and (13) respec-
tively. Due to the orthogonality property of the Fourier transform,
matrix F−1 can be omitted from (17). Figure 2 shows how Mt(m)
and Mf (m) vary with M1 for the case of N = L = 128 with
a white Gaussian noise (WGN) input χ(m). Since Mt(m) >
Mf (m) when M1 < 2L, we would then expect that the degra-
dation in performance due to tap-selection is less for time-domain
selection in MMax-MDFt than frequency-domain in MMax-MDFf .
We further illustrate this by way of simulation presented in Section 4.

Although selection in the time-domain induces a less signifi-
cant degradation in convergence performance than for the frequency-
domain, the computational cost for the latter is lower. This is because
the diagonal elements in D̃(m− k) given by (15) for MMax-MDFf

consists of 2L − M1 null elements across all k. On the other hand,
due to matrix F, diagonal elements in D̃(m − k) given by (11) for
MMax-MDFt does not necessarily contain null elements.

3.2. The Sparse Partial Update MMax-MDF Algorithm
The proposed SPMMax-MDF algorithm utilizes the SP tap-selection
defined by (3) to achieve fast convergence for the identification of

Table 1. Complexity of algorithms
Algorithm Multiplication Division

MDF 2L 2L

IPMDF 3L 4L

SPMMax-MDF [M1 + (T − 1)M2]/T [M1 + (T − 1)M2]/T

Table 2. Complexity for the case of L = 512, T = 8, M1 =
0.0625 × 2L and M2 = L

Algorithm Multiplication Division
MDF 1024 1024

IPMDF 1536 2048
SPMMax-MDF 456 456

sparse impulse responses. Incorporating the SP tap-selection into
MDF is not trivial, since as can be seen from (4), the length of the
input frame χ(m) is 2N compared to L for the adaptive filter. To
address this problem, we first define a 2L × 1 vector obtained by
concatenating all subfilters ĥk(m) for k = 0, . . . , K − 1, i.e,

ĥ(m) =
[
ĥ

T
0 (m) . . . ĥ

T
K−1(m)

]T
=

[
ĥ1(m) . . . ĥ2L(m)

]T
. (18)

Our approach of achieving SP tap-selection is then to select 1 ≤
M2 ≤ 2L elements from

∣∣χ
i
(m)ĥi(m)

∣∣ for i = 1, . . . , 2L, where
elements χ

i
(m) can be obtained from g(m) defined in (12). This

selection technique is then equivalent to subselecting frequency bins
corresponding to the M2 magnitude response where both χ

i
(m) and

ĥi(m) are significantly large. Elements of the 2L×2L diagonal tap-
selection matrix Q(m) are then given by

qi(m) =

{
1 i ∈ {M2 maxima of |χ

i
(m)ĥi(m)|},

0 otherwise,
(19)

for i = 1, . . . , 2L. The diagonal matrix D̃(m − k) in (9) for the SP
tap-selection can be described by (14) and (15).

The proposed SPMMax-MDF utilizes both MMax and SP
tap-selection as described above. Since SPMMax-MDF aims to
achieve fast convergence with low complexity, we utilize MMax-
MDFf when mod(m, T ) = 0. We show in Section 4 that any
degradation due to MMax tap-selection can be offset by SP tap-
selection. The proposed SPMMax-MDF is described by (6), (7)
and (9) where D̃(m − k) is defined as (15). For mod(m, T ) = 0
and mod(m, T ) %= 0, Q(m) is defined by (13) and (19) respec-
tively. The number of multiplications and divisions required for
MDF [9], IPMDF [10] and SPMMax-MDF to compute the term
D̃

∗
(m − k)[SMDF(m) + δMDF]−1e(m) are as shown in Table 1.

For an example case of L = 512, T = 8, M1 = 0.0625 × 2L and
M2 = L, the complexity is as shown in Table 2.

4. SIMULATION RESULTS

We compare the performance of the proposed algorithms for NEC
using a recorded network impulse response h similar to that as
shown [6]. The adaptive filter ĥ(m) is chosen to be of the same
length as h with L = 512 and we define the normalized mis-
alignment as η(m) = ‖h − ĥ(m)‖2/‖h‖2. We used a sampling
frequency of 8 kHz and additive WGN w(n) is added to achieve
a signal-to-noise ratio (SNR) of 20 dB. The following parameters
for the algorithms are chosen for all simulations [10]: N = 8,
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Fig. 4. Performance of SPMMax-MDF for WGN input with T = 8.

K = 64, T = 8, λ = [1 − 1/(3L)]N , SMDF(0) = σ2
x/100,

δMDF = σ2
x20N/L. We first illustrate how the convergence of

MMax-MDFt and MMax-MDFf vary with M1 using WGN input
and a step-size control variable β = 0.6. It can be seen from Fig. 3
that for each case of M1, the degradation in convergence of MMax-
MDFt due to tap-selection is lower than that for MMax-MDFf . This
is because, as explained in Section 3.1, Mt(m) > Mf (m). For
both algorithms, since Mt(m) and Mf (m) reduces with M1, the
rate of convergence reduces with M1 as expected.

Figure 4 shows the convergence performance of the proposed
SPMMax-MDF algorithm where, as explained in Section 3.2, we
perform selection in the frequency-domain in order to reduce compu-
tational complexity. We have used T = 8 and β = 1 for SPMMax-
MDF. For each iteration, M2 = L frequency-bins are selected for
SP adaptation. For the MDF algorithm, we have used β = 0.6 in or-
der to achieve the same steady-state performance as SPMMax-MDF.
For purpose of comparison, we have also included the convergence
of the substantially more complex IPMDF algorithm [10]. It can
be seen that the proposed SPMMax-MDF algorithm achieves higher
rate of convergence of approximately 6 dB in terms of normalized
misalignment compared to the more complex MDF during adapta-
tion. For the case of M1 = 0.0625 × 2L and M2 = L, the number
of multiplications required for each algorithm is shown in Table 2.

Figure 5 shows the performance of the algorithms obtained us-
ing a male speech input. Parameters used for each algorithms are
the same as that for the WGN input. The performance of SPMMax-
MDF with M1 = 0.0625 × 2L and M2 = L is shown in Fig. 5 (a)
while Fig. 5 (b) shows the case when M1 = 0.25×2L and M2 = L.
We note that SPMMax-MDF achieves approximately 6 dB improve-
ment in normalized misalignment with lower complexity than that
for MDF. As before, the convergence of SPMMax-MDF is close to
the substantially more complex IPMDF algorithm.
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Fig. 5. Performance of SPMMax-MDF using speech input for T = 8 with
(a) M1 = 0.125L, M2 = L and (b) M1 = 0.5L, M2 = L.

5. CONCLUSION

We have proposed SPMMax-MDF for sparse system identification.
This algorithm achieves high rate of convergence with low com-
plexity by novelly exploiting both the MMax and SP tap-selection.
We discussed two approaches of incorporating MMax tap-selection
into MDF and showed their tradeoff between rate of convergence
and complexity. Simulation results using both WGN and speech in-
puts show that the proposed SPMMax-MDF achieves approximately
6 dB improvement in convergence performance with only 45% of the
complexity of MDF. The performance of SPMMax-MDF is close to
that for the substantially more complex IPMDF algorithm.
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