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ABSTRACT

Partial update adaptive algorithms have been proposed as a means of
reducing complexity for adaptive filtering. The MMax tap-selection
is one of the most popular tap-selection algorithms. It is well known
that the performance of such partial update algorithm reduces with
reducing number of filter coefficients selected for adaptation. We
propose a low complexity and fast converging adaptive algorithm
that exploits the MMax tap-selection. We achieve fast convergence
with low complexity by deriving a variable step-size for the MMax
normalized least-mean-square (MMax-NLMS) algorithm using its
mean square deviation. Simulation results verify that the proposed
algorithm achieves higher rate of convergence with lower computa-
tional complexity compared to the NLMS algorithm.

Index Terms— acoustic echo cancellation, partial update adap-
tive filtering, variable step-size, adaptive algorithms

1. INTRODUCTION

The profound interest in adaptive filtering with finite impulse re-
sponse (FIR) arises due to its extensive application in signal process-
ing. One of the most popular adaptive algorithms is the normalized
least-mean-square (NLMS) algorithm [1][2] which has been applied
to many applications including acoustic echo cancellation (AEC). To
achieve effective echo cancellation, a replica of the echo is generated
by means of modelling the Loudspeaker-Room-Microphone (LRM)
system using an adaptive filter as shown in Fig. 1. Implementation
of an acoustic echo canceller poses great challenges due to (i) the
highly time-varying nature of the impulse response [3] and (ii) the
long duration of the LRM system, which can require several thou-
sands of filter coefficients for accurate modelling. Much recent re-
search has aimed to develop fast converging algorithms that are nec-
essary to track time variations in the LRM system. In addition, a
typical room impulse response in the region of 50 to 300 ms re-
quires an FIR adaptive filter with 400 to 2400 taps at 8 kHz sampling
frequency. Since the NLMS algorithm requires O(2L) multiply-
accumulate (MAC) operations per sampling period, it is very de-
sirable to reduce the computational workload of the processor, es-
pecially for the real-time implementation of AEC algorithms in
portable devices where power budget is a constraint. As a result,
a class of partial update adaptive filtering algorithms has been pro-
posed that share the characteristic of executing tap update operations
on only a subset of the filter coefficients at each iteration.

Partial update adaptive algorithms differ in the criteria used
for selecting filter coefficients to update at each iteration. The
Periodic-LMS and Sequential-LMS algorithms [4] employ tap-
selection schemes that are independent of the input data. In the
Periodic-LMS algorithm, reduction in computation is achieved at
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Fig. 1. Acoustic echo cancellation.

each time iteration by updating a subset of filter coefficients pe-
riodically whereas the Sequential-LMS algorithm employs the in-
stantaneous gradient estimate at each time iteration by decimation in
the tap space. In contrast, data dependent tap-selection criteria are
employed in later algorithms including Max-LMS [5] and MMax-
NLMS [6][7]. Block-based and transform domain algorithms which
generalized MMax-NLMS [8] have also been proposed. More re-
cently, the MMax tap-selection criterion has been extended to a
class of selective-tap algorithms including the MMax affine projec-
tion (MMax-AP) and MMax recursive least squares (MMax-RLS)
algorithms [9]. The performance of these MMax-based adaptive al-
gorithms for time-varying LRM systems has also been analyzed [9]
and extended for the multichannel case [10]. It has been shown that
the performance of MMax tap-selection is better than Periodic- and
Sequential-LMS algorithms [11].

It is found that as the number of filter coefficients updated per
iteration in a partial update adaptive filter is reduced, the computa-
tional complexity is also reduced but at the expense of some loss in
performance. Hence the goal of the designers of such algorithms is
to find ways to reduce the number of coefficients updated per itera-
tion in a manner which degrades algorithm performance as little as
possible. The aim of this paper is to propose a low complexity, fast
converging adaptive algorithm for AEC. It has been shown in [9]
that the convergence performance of MMax-NLMS is dependent on
the step-size when identifying a LRM system. This motivates us
to jointly utilize the low complexity of MMax tap-selection and the
improvement in convergence performance brought about by a vari-
able step-size. We begin by first analyzing the mean-square devia-
tion of MMax-NLMS and deriving a variable step-size in order to
increase its rate of convergence. We show through simulation ex-
amples that the proposed variable step-size MMax-NLMS (MMax-
NLMSvss) algorithm achieves higher rate of convergence with lower
computational complexity compared to NLMS for both white Gaus-
sian noise (WGN) and speech inputs.
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2. THE MMAX-NLMS ALGORITHM

Figure 1 shows an echo canceller in which, at the nth iteration,
y(n) = xT (n)h(n) where x(n) = [x(n), . . . , x(n − L + 1)]T

is the tap-input vector while the unknown LRM system h(n) =

[h0(n), . . . , hL−1(n)]T is of length L. An adaptive filter ĥ(n) =

[ĥ0(n), . . . , ĥL−1(n)]T , which we assume [3] to be of equal length
to the unknown system h(n), is used to estimate h(n) by adaptively
minimizing the a priori error signal e(n) using ŷ(n) defined by

e(n) = xT (n)h(n) − ŷ(n) + w(n), (1)

ŷ(n) = xT (n)ĥ(n − 1) (2)

with w(n) being the measurement noise.
In the MMax-NLMS algorithm [6], only those taps correspond-

ing to the M largest magnitude tap-inputs are selected for updating
at each iteration with 1 ≤ M ≤ L. Defining the subselected tap-
input vector

x̃(n) = Q(n)x(n), (3)
where Q(n) = diag{q(n)} is a L × L tap selection matrix
and q(n) = [q0(n), . . . , qL−1(n)]T , element qi(n) for i =
0, 1, . . . , L − 1 is given by,

qi(n) =

{
1 |x(n − i)| ∈ {M maxima of |x(n)|}
0 otherwise , (4)

where |x(n)| =
[
|x(n)|, . . . , |x(n − L + 1)|

]T . Defining ‖.‖2 as
the squared l2-norm, the MMax-NLMS tap-update equation is then

ĥ(n) = ĥ(n − 1) +
µQ(n)x(n)e(n)
‖x(n)‖2 + δ

, (5)

where δ is the regularization parameter. Defining IL×L as the L×L
identity matrix, we note that if Q(n) = IL×L, i.e., with M = L,
the update equation in (5) is equivalent to the NLMS algorithm.
Similar to the NLMS algorithm, the step-size µ in (5) controls the
ability of MMax-NLMS to track the unknown system which is re-
flected by its rate of convergence. To select the M maxima of |x(n)|
in (4), MMax-NLMS employs the SORTLINE algorithm [12] which
requires 2 log2 L sorting operations per iteration. The computa-
tional complexity in terms of multiplications for MMax-NLMS is
O(L + M) compared to O(2L) for NLMS.

As explained in Section 1, the performance of MMax-NLMS
normally reduces with the number of filter coefficients updated per
iteration. This tradeoff between complexity and convergence can be
illustrated by first defining

η(n) =
∥∥h(n) − ĥ(n)

∥∥2/∥∥h(n)
∥∥2 (6)

as the normalized misalignment. Figure 2 shows the variation in
convergence performance of MMax-NLMS with M for the case of
L = 2048 and µ = 0.3 using a white Gaussian noise (WGN) in-
put. For this illustrative example, WGN w(n) is added to achieve
a signal-to-noise ratio (SNR) of 20 dB. It can be seen that the rate
of convergence reduces with reducing M as expected. The depen-
dency of the asymptotic performance and rate of convergence on M
for MMax-NLMS has been analyzed in [9].

3. MEAN SQUARE DEVIATION OF MMAX-NLMS

It has been shown in [9] that the convergence performance of MMax-
NLMS is dependent on the step-size µ when identifying a LRM sys-
tem. Since our aim is to reduce the degradation of convergence per-
formance due to partial updating of the filter coefficients, we propose
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Fig. 2. MMax-NLMS: Variation of convergence rate with number of filter
coefficients selected for adaptation M for L = 2048, µ = 0.3, SNR=20 dB.

to derive an adaptive step-size for MMax-NLMS. A similar approach
was adopted in [13] for NLMS by analyzing the mean square devia-
tion (MSD) of NLMS. Similar to the analysis of MMax-NLMS un-
der time-varying unknown system conditions as shown in [9], we as-
sume that the MMax-NLMS algorithm is able to track the unknown
system. The MSD of MMax-NLMS can be obtained by first defining
the system deviation as

ε(n) = h(n) − ĥ(n), (7)

ε(n − 1) = h(n) − ĥ(n − 1). (8)

Subtracting (8) from (7) and using (5), we obtain

ε(n) = ε(n − 1) − µQ(n)x(n)e(n)
xT (n)x(n) + δ

. (9)

Defining E{·} as the expectation operator and taking the mean
square of (9), the MSD of MMax-NLMS can be expressed itera-
tively as

E
{
‖ε(n)‖2} = E

{
εT (n)ε(n)

}

= E
{
‖ε(n − 1)‖2} − E

{
ψ(µ)

}
, (10)

where

E
{
ψ(µ)

}
= E

{
2µx̃T (n)ε(n − 1)e(n)

‖x(n)‖2
− µ2‖x̃(n)‖2e2(n)

[
‖x(n)‖2

]2

}

(11)
and similar to [13], we assume that the effect of the regularization
term δ on the MSD is small. The subselected tap-input vector x̃(n)
is defined by (3). As can be seen from (10), in order to increase
the rate of convergence for the MMax-NLMS algorithm, we choose
step-size µ such that E{ψ(µ)} is maximized.

4. THE PROPOSED MMAX-NLMSVSS ALGORITHM

Following the approach of [13], we differentiate (11) with respect to
µ. Setting the result to zero, we obtain,

E
{

µ(n)e(n)‖x̃(n)‖2e(n)
[
‖x(n)‖2

]2

}
=E

{
εT (n − 1)x̃(n)

[
‖x(n)‖2

]−1
e(n)

}

giving the variable step-size

µ(n) = µmax ×

εT (n − 1)x̃(n)
[
‖x(n)‖2

]−1
xT (n)ε(n − 1)‖x(n)‖2

‖x̃(n)‖2εT (n − 1)x(n)
[
‖x(n)‖2

]−1
xT (n)ε(n − 1) + σ2

wM(n)
,
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where 0 < µmax ≤ 1 limits the maximum of µ(n) and we have
defined [9]

M(n) =
‖x̃(n)‖2

‖x(n)‖2
(12)

as the ratio between energies of the subselected tap-input vec-
tor x̃(n) and the complete tap-input vector x(n), while σ2

w =
E{w2(n)}. To simplify the numerator of µ(n) further, we utilize
the relationship x̃(n)xT (n) = x̃(n)x̃T (n) giving

µ(n) = µmax ×

εT (n − 1)x̃(n)
[
‖x(n)‖2

]−1
x̃T (n)ε(n − 1)‖x(n)‖2

‖x̃(n)‖2εT (n − 1)x(n)
[
‖x(n)‖2

]−1
xT (n)ε(n − 1) + σ2

wM(n)
.

We can now simplify µ(n) further by letting

p̃(n) = x̃(n)[xT (n)x(n)]−1x̃T (n)ε(n − 1), (13)

p(n) = x(n)[xT (n)x(n)]−1xT (n)ε(n − 1), (14)

from which we can then show that

‖p̃(n)‖2 = M(n)εT (n − 1)x̃(n)
[
‖x(n)‖2]−1

x̃T (n)ε(n − 1),

‖p(n)‖2 = εT (n − 1)x(n)
[
‖x(n)‖2]−1

xT (n)ε(n − 1).

Following the approach in [13], and defining 0 << α < 1 as the
smoothing parameter, we can estimate p̃(n) and p(n) iteratively by

p̃(n)=αp̃(n − 1) + (1 − α)x̃(n)[xT (n)x(n)]−1ea(n), (15)

p(n)=αp(n − 1) + (1 − α)x(n)[xT (n)x(n)]−1e(n), (16)

where we have used e(n) = xT (n)ε(n − 1) in (16) while the error
ea(n) due to active filter coefficients x̃(n) in (15) is given as

ea(n) = x̃T (n)ε(n − 1) = x̃T (n)[h(n) − ĥ(n − 1)]. (17)

It is important to note that since x̃T (n)h(n) is unknown, we
need to approximate ea(n). Defining Q(n) = IL×L − Q(n) as the
tap-selection matrix which selects the inactive taps, we can express

ei(n) =
[
Q(n)x(n)

]T
ε(n − 1)

as the error contribution due to the inactive filter coefficients such
that the total error e(n) = ea(n) + ei(n). As explained in [9], for
0.5L ≤ M < L, the degradation in M(n) due to tap-selection
is negligible. This is because, for M large enough, elements in
Q(n)x(n) are small and hence the errors ei(n) are small, as is the
general motivation for MMax tap-selection [7]. We can then approx-
imate ea(n) ≈ e(n) in (15) giving

p̃(n) ≈ αp̃(n − 1) + (1 − α)x̃(n)
[
xT (n)x(n)

]−1
e(n). (18)

Using (16) and (18), the variable step-size is then given as

µ(n) = µmax
‖p̃(n)‖2

M2(n)‖p(n)‖2 + C
(19)

where C = M2(n)σ2
w. Since σ2

w is unknown, it is shown that we
can approximate C by a small constant, typically 0.01 [13].

We note that the computation of (16) and (18) each requires M
additions. In order to reduce computation even further, and since
for M large enough the elements in Q(n)x(n) are small, we can
approximate ‖p(n)‖2 ≈ ‖p̃(n)‖2 giving

µ(n) ≈ µmax
‖p̃(n)‖2

M2(n)‖p̃(n)‖2 + C
. (20)

Table 1. The MMax-NLMSvss algorithm
0 << α < 1, 0 < µmax ≤ 1, C = 0.01,
e(n) = y(n) − xT (n)ĥ(n − 1) + w(n)
Q(n) = diag{q(n)}

qi(n) =
{

1 |x(n − i)| ∈ {M maxima of |x(n)|}
0 otherwise

x̃(n) = Q(n)x(n)
p̃(n) = αp̃(n − 1) + (1 − α)x̃(n)[xT (n)x(n)]−1e(n)
M(n) = ‖x̃(n)‖2/‖x(n)‖2

µ(n) = µmax‖p̃(n)‖2/
[
M2(n)‖p̃(n)‖2 + C

]

ĥ(n) = ĥ(n − 1) + µ(n)
Q(n)x(n)e(n)
‖x(n)‖2 + δ

When Q(n) = IL×L, i.e., M = L, MMax-NLMS is equivalent to
the NLMS algorithm and from (12), M(n) = 1 and ‖p̃(n)‖2 =
‖p(n)‖2. As a consequence, the variable step-size µ(n) in (20) is
consistent with that presented in [13] for M = L. The proposed
MMax-NLMSvss is summarized in Table 1.

5. COMPUTATIONAL COMPLEXITY

We now discuss the computational complexity in terms of the num-
ber of multiplications required for the proposed MMax-NLMSvss al-
gorithm at each sample iteration. Computation of (18) and ‖p̃(n)‖2

for (20) require M multiplications each. The computation of
‖x(n)‖2 and ‖x̃(n)‖2 for M(n) in (12) requires 2 multiplications
and a division using recursive means [11]. More importantly, since
the term x̃(n)[xT (n)x(n)]−1e(n) is already computed in (18), no
multiplications are now required for the update equation in (5).
Hence, including the computation of xT (n)ĥ(n − 1) for e(n),
MMax-NLMSvss requires O(L + 2M) multiplications per sample
period compared to O(2L) for NLMS. The number of multiplica-
tions required for MMax-NLMSvss is thus less than NLMS when
M < L/2. We note that although MMax-NLMSvss requires an
additional 2 log2 L sorting operations per iteration using the SORT-
LINE algorithm [12], its complexity is still lower than NLMS. As
with MMax-NLMS, we would expect the convergence performance
for MMax-NLMSvss to degrade with reducing M . However, we
shall show through simulation results that any such degradation is
offset by the improvement in convergence rate due to µ(n).

6. SIMULATION RESULTS

We demonstrate the performance of MMax-NLMSvss in terms of the
normalized misalignment η(n) defined in (6) using both WGN and
speech inputs. Impulse response h(n) is generated using the method
of images [14] in a room of dimension 4×5×3 m. The microphone
and source positions are placed at coordinates {2.01, 2.5, 1.6} and
{2.1, 1.5, 1.6} respectively. With a sampling rate of 8 kHz and a
reverberation time of 256 ms, the length of the impulse response is
L = 2048. Similar to [13], we have used C = 0.01, α = 0.95
and we added WGN w(n) to y(n) in order to achieve an SNR of
20 dB. We have used µmax = 1 for MMax-NLMSvss while step-
size µ for the NLMS algorithm is adjusted so as to achieve the same
steady-state performance for all simulations.

We illustrate first the improvement in convergence rate due to
the variable step-size µ(n) for the MMax-NLMSvss algorithm. Fig-
ure 3 shows the improvement in convergence performance of MMax-
NLMSvss over MMax-NLMS for the cases of M = 1024 and 512.
For each case, the proposed MMax-NLMSvss algorithm achieves an
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Fig. 3. Comparison between MMax-NLMSvss and MMax-NLMS for L =
2048 and SNR= 20 dB using WGN input.
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Fig. 4. WGN input: Comparison between convergence performance of
MMax-NLMSvss with NLMS for L = 2048 and SNR= 20 dB.

improvement of approximately 7 and 5.5 dB over MMax-NLMS in
terms of normalized misalignment during initial convergence.

We next illustrate the tradeoff between computational complex-
ity and convergence performance for the MMax-NLMSvss algo-
rithm. We also compare the performance of MMax-NLMSvss and
NLMS for a WGN input as shown in Fig. 4. The step-size of NLMS
has been adjusted in order to achieve the same steady-state normal-
ized misalignment. This corresponds to µ = 0.3. The number of
multiplications per sample iteration required for each case is de-
picted between braces in the figure. As can be seen from Fig. 4,
for the same number of multiplications of 4096, the improvement
of MMax-NLMSvss in terms of normalized misalignment compared
with NLMS is approximately 8 dB during initial convergence. More
importantly, the proposed MMax-NLMSvss algorithm outperforms
NLMS even with lower complexity when M = 512. This improve-
ment in normalized misalignment of 7 dB (together with a reduction
of 25% in terms of multiplications) over NLMS is due to variable
step-size for MMax-NLMSvss. The MMax-NLMSvss achieves the
same convergence performance as the NLMSvss [13] when M = L.

The performance of MMax-NLMSvss for a male speech input
is depicted in Fig. 5. For this simulation, we have used L = 2048
and an SNR=20 dB as before. In order to illustrate the benefits of
our proposed algorithm, we used M = 512 for both MMax-NLMS
and MMax-NLMSvss. This gives a 25% savings in multiplications
per iteration for MMax-NLMSvss over NLMS. As can be seen, even
with this computational savings, the proposed MMax-NLMSvss al-
gorithm achieves an improvement of 3.5 dB in terms of normalized
misalignment over NLMS.

7. CONCLUSIONS

We have proposed a low complexity fast converging partial update
MMax-NLMS algorithm by introducing a variable step-size during
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Fig. 5. Speech input: Comparison between convergence performance of
MMax-NLMSvss with NLMS for L = 2048, M = 512 and SNR= 20 dB.

adaptation. This is derived by analyzing the mean-square devia-
tion of MMax-NLMS. In terms of convergence performance, the
proposed MMax-NLMSvss algorithm achieves approximately 7 and
3.5 dB improvement in normalized misalignment over NLMS for
WGN and speech input respectively. More importantly, the proposed
algorithm can achieve higher rate of convergence with lower compu-
tational complexity compared to NLMS.
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