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ABSTRACT
The common zeros problem for blind system identification (BSI) is
well known. It degrades the performance of classic BSI algorithms
and therefore imposes the limit on the performance of subsequent
speech dereverberation. The effect of near-common zeros has re-
cently been studied in terms of channel diversity and the degradation
in performance of BSI and multichannel equalization algorithms has
been shown. We now introduce a novel approach to improve channel
diversity which we refer to as Forced Spectral Diversity (FSD). The
FSD concept uses a combination of spectral shaping filters and effec-
tive channel undermodelling. Simulation results show that the pro-
posed approach achieves improved performance with reduced com-
plexity for multichannel BSI in a room acoustics example.

Index Terms— blind system identification, speech dereverber-
ation, near-common zeros, channel diversity

1. INTRODUCTION

Speech acquisition in rooms with microphones positioned at a dis-
tance from the talker suffers degradation in quality due to reverber-
ation. This is caused by multiple reflections of the sound from sur-
rounding walls and objects [1]. Speech reverberation is therefore an
important problem in, for example, hands-free telecommunication
applications. One approach to this problem is to perform multichan-
nel blind system identification (BSI) to estimate the room impulse
responses and to recover an estimate of the original speech through
multichannel equalization [2].

One of the identifiability conditions for most second order statis-
tics (SOS)-based BSI algorithms is that the channels must be co-
prime, i.e., they do not share common zeros [3]. Otherwise, BSI
algorithms fail to identify the channels correctly as they cannot dis-
tinguish whether the common terms are due to the input signal or the
acoustic channels. Although increasing spatial diversity with more
microphones is effective in reducing the number and negative impact
of common (or near-common) zeros, it is computationally expensive
and practically limited. In addition, the coprime property is also
required for equalization of a SIMO system using the Bezout theo-
rem [2][4]. However, it has been shown that the presence of near-
common zeros (NCZs) degrades the performance of both BSI and
equalization algorithms and that the effect can be quantified in terms
of channel diversity [5]. For multichannel systems with high order,
the problem of NCZs can be very significant since zeros of channel
responses tend to cluster around the unit circle [6]. The NCZs prob-
lem in speech dereverberation has not been specifically addressed so
far in the literature.

In this paper, we propose a novel method to overcome the NCZs
problem for speech dereverberation based on the concept of forced
spectral diversity (FSD), which combines the use of spectral shaping
filters and effective channel undermodelling [7]. We first show how

Input ObservationsAdditive 
NoiseChannels

M
ic

ro
ph

on
e 

A
rr

ay

te
xt

1h

2h

Mh

( )s n
1( )x n

2 ( )x n

( )Mx n

1( )b n

2 ( )b n

( )Mb n

1( )x n
2 ( )x n
( )Mx n

( )s n

1h

Mh

(a) (b)

Fig. 1. Diagram of (a) M -channel SIMO acoustic system and (b) the prob-
lem of BSI.

NCZs affect the dereverberation performance in Section 3. The FSD
concept is proposed in Section 4 with illustrative examples. In Sec-
tion 5, we apply this concept to blind identification of SIMO acoustic
systems for speech dereverberation. Simulation results of BSI and
dereverberation incorporating FSD is presented in Section 6.

2. PROBLEM FORMULATION

A speech signal s(n) in a reverberant room propagates from its
source to an array of M microphones as shown in Fig. 1(a). This
can be modelled by a SIMO system where the observed signal at the
mth microphone, as shown in Fig. 1(b), is given by

xm(n) = hT
ms(n) + bm(n), m = 1, . . . , M (1)

where hm = [hm,0 . . . hm,L−1]
T is the L-tap impulse response be-

tween the source and the mth microphone, s(n) = [s(n) . . . s(n−
L + 1)]T is the input signal vector, bm(n) is the additive noise
and [·]T denotes the vector transpose operator. The aim of BSI
is to estimate blindly the impulse responses hm from the observa-
tions xm(n). Among various BSI algorithms, SOS-based algorithms
have become popular [8]. A typical approach is to utilize the cross-
relation (CR) between two channels [3], i.e., xT

i (n)hj = xT
j (n)hi

for i, j = 1, 2, . . . , M, i "= j, where xm(n) = [xm(n) . . . xm(n−
L + 1)]T . In the presence of noise, a cost function can be obtained
by considering all combinations of M channels, i.e.,

Rh = e, (2)

where h = [hT
1 . . . hT

M ]T is a vector of concatenated channel re-
sponses and R is a correlation-like matrix [3]. The estimated chan-
nel responses bh can then be found, up to a scaling factor, by mini-
mizing (2) using adaptive or closed-form algorithms such as [9][10].

For the subsequent dereverberation of speech, a second stage
is required where a system of inverse filters can be obtained using
multichannel equalization algorithms, such as multichannel inverse
theorem (MINT) [4].
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Fig. 2. BSD vs. number of clusters for simulated impulse responses.

3. EFFECT OF NEAR-COMMON ZEROS ON
DEREVERBERATION

Defining Hm(z) = K
QL−1

p=1 (z − zm(p)) as the z-transform of the
mth channel impulse response where zm(p) denotes the pth zero
and K is the gain constant, NCZs are clusters of zeros that satisfy
the following conditions [11]: (i) each cluster contains only M ze-
ros with each channel contributing one zero, and (ii) the Euclidean
distance between any pair of zeros in a cluster lies within a pairwise
tolerance ξ where ξ ≥ 0. We note that given these two conditions,
any zero can be included in more than one cluster, and NCZs become
exactly-common zeros when ξ = 0.

Since the presence of NCZs degrades the performance of BSI
and equalization algorithms, we show how they can affect the over-
all performance of dereverberation. We simulated a set of impulse
responses using the method of images [12] with room dimensions
10 × 10 × 3 m. The sampling frequency and reverberation time
are 8 kHz and T60 = 0.2 s, and the generated impulse responses
were truncated to 1024 coefficients. A speech sample containing
both male and female utterance was used and captured by a linear
microphone array with uniform spacing of 5 cm. Employing nor-
malized multichannel frequency domain least-mean-squares (NM-
CFLMS) [9] and MINT [4], the performance of dereverberation is
measured using Bark spectral distortion (BSD) [13] and shown in
Fig. 2 for a set of two-channel systems extracted from the generated
impulse responses, where the step-size was set 0.2, the signal-to-
noise ratio (SNR) was 60 dB, and the number of NCZ clusters were
found using the GMC-ST algorithm [11] with ξ = 2 × 10−3. It can
be clearly seen that BSD value increases with number of clusters
indicating the degradation of the dereverberation performance.

4. THE CONCEPT OF FSD

Since increasing spatial diversity through the use of larger micro-
phone arrays is limited practically, the motivation underlying FSD is
to introduce spectral shaping filters in combination with undermod-
elling in order to increase channel diversity. We introduce the FSD
concept by describing how these two processing steps are combined
using illustrative examples and numerical results.

4.1. Illustrative examples
Channel undermodelling was introduced for BSI in [7], where it was
shown that the Lmth-order least-squares (LS) method [3] can esti-
mate the Lmth-order “significant” part of the full L-order impulse
responses for Lm < L provided that it offers sufficient diversity. For
hm defined in (1), the Lmth-order “significant” part can be found by
hLm

m = hm − dLm
m , where hLm

m = [hm,0 . . . hm,Lm−1 0 . . . 0]T

and dLm
m = [0 . . . 0 hm,Lm . . . hm,L−1]

T . Similarly, define in
z-domain A(z) = z − zA, B(z) = z − zB and

C(z) = A(z)B(z) = z2 − (zA + zB)z + zAzB , (3)

where zA, zB "= 0, the 1st-order part of C(z) is thus given by,

C′(z) = z − (zA + zB) = z − zC′ . (4)

We refer to such procedure as the channel undermodelling.
Utilizing A(z), B(z) and C(z), we consider a SIMO system

with two identical channels, H1(z) = H2(z) = A(z), which pro-
duces the output signals, Xm(z) = S(z)Hm(z), m = 1, 2, where
S(z) is the z-transform of the source signal. BSI algorithms are
not expected to work successfully as Hm(z) is equivalently a single
channel system. However, if we introduce B(z) to obtain

X1(z) = X1(z)B(z) = S(z)H1(z)B(z) = S(z)C(z), (5)

and employ BSI with order L = 2 on X1(z) and X2(z), it is equiv-
alent to identifying a modified system H ′

m(z) of order L = 2 with
H ′

2(z) = H2(z) and H ′
1(z) = C′(z). Since it is found that the

distance between zeros has been increased from |zA − zA| = 0 to
|zC′ − zA| = |zB | > 0, H ′

m(z) now contains no exactly-common
zeros, and thus the BSI algorithm is able to successfully estimate
both H2(z) and H ′

1(z). This indicates that extra diversity, quanti-
fied by |zB |, is introduced into Hm(z) using linear convolution and
channel undermodelling. Therefore, as long as |zB | is sufficiently
large such that the first condition for NCZs to exist, as described in
Section 3, is not satisfied, H ′

m(z) can be identified.
In some cases [7], undermodelling is sufficient without extra ze-

ros for increasing channel diversity. Consider another example sys-
tem with H1(z) = A(z)B(z) and H2(z) = B(z)C′(z) where zB is
the common zero, repeating similar procedures in (4) for both chan-
nels results in a modified system with zeros of each channel being
z′
1 = zA + zB and z′

2 = zB + zC′ , respectively, from which it is
found that the common zero can be eliminated without introducing
extra zeros since |z′

2 − z′
1| = |zB |. However, extra zeros obtained

from spectral shaping filters have been found necessary because the
zeros of acoustic systems tend to cluster around the unit circle; the
effect of the extra zeros in combination with undermodelling is that
the zeros in the modified system are located differently to those in
the original system, adding additional channel diversity. For a M -
channel system, up to M spectral shaping filters can be employed.

4.2. Numerical results
We now present numerical results to further illustrate how FSD pro-
cessing affects simple SIMO systems with common zeros, from
which important characteristics of the FSD processing can be sum-
marized. Let h denote a two-channel SIMO system with real co-
efficients of length L = 7 and h′ as the modified system after FSD
processing, respectively. The zeros of each channel are defined as z1

and z2, and z1 = z2. Since these zeros exist as complex conjugate
pairs, Fig. 3(a) shows z1 and z2 on the upper half of the z-plane, re-
spectively denoted by circles and squares. A set of spectral shaping
filters with two zeros defined as zf,m = [zf,m(1) zf,m(2)], m =
1, 2 are then randomly generated such that zf,m(1) = z∗

f,m(2). In
order to show how the effect of FSD processing varies with zf,1 and
zf,2, the modulus ρ1 = |zf,1(1)| = |zf,1(2)| was set to range from
0.05 to 1, and Fig. 3(b) shows zf,1 and zf,2 where ρ1 = 1. Denote
the zeros of h′ as z′

m = [z′
m(1) z′

m(2)], m = 1, 2, Fig. 3(c) and
Fig. 3(d) show z′

m for the example cases ρ1 = 0.45 and 0.7. Com-
paring z′

1 with z1, it is seen that by introducing zf,1 with increasing
ρ1, z′

1 is located further away from z2 indicating the increment in
channel diversity of h′ compared to h.

We compare various measurements over h′ against different ρ1.
In Fig. 4(a), the mean distance between z′

1 and z′
2 is plotted against

ρ1. As can be seen, the channel diversity for h′, quantified by |z′
1 −
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Fig. 3. Effect of FSD: a) z1 and z2; b) zf,1 and zf,2 with ρ1 = 1 for zf,1;
c) z′1 and z′2 for ρ1 = 0.45; d) z′1 and z′2 for ρ1 = 0.7.
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Fig. 4. Various results on h′ for the effect of FSD filtering against various
ρ1: a) |z′1 − z′2|; b) NPM performance for WGN input.

z′
2|, increases due to the increasing ρ1 for the extra zeros of spectral

shaping filters. We then employ white Gaussian noise (WGN) as the
source signal with 50 dB SNR to simulate the BSI performance over
h′ using the subspace algorithm [10]. As shown in Fig. 4(b), the
improvement of BSI performance measured using NPM [14] due to
increased diversity is clearly seen, which is expected to result in a
better performance for channel equalization.

In summary, the FSD processing involves two important compo-
nents: (i) spectral shaping filters provide extra zeros, and (ii) effec-
tive undermodelling of the system with these extra zeros gives rise
to additional diversity compared to the original system. It is now im-
portant to note that an estimate of bs(n) can be obtained without the
need to “undo” the effect of FSD processing by equalizing bh′

m using
bg′

m = ming′
m
‖ bH′T

m g′
m − δ(n − τ)‖2 where τ is the modelling de-

lay, bH′
m is the convolutive matrix of bh′

m and ‖ · ‖ denotes l2-norm,
so that the FSD concept can be directly applied to dereverberation,
although the accuracy of the inversion process can be limited due to
noise amplification if spectral shaping filters have zeros close to the
unit circle, which then indicates a potential tradeoff between increas-
ing diversity using the FSD and the equalization performance.

5. FSD PROCESSING FOR SIMO ACOUSTIC SYSTEMS

We now apply the FSD concept to SIMO system for dereverbera-
tion. For simplicity, we assume the system to be noise-free. A two-
channel system diagram is shown in Fig. 5, where the microphone
signal xm(n) is filtered by the spectral shaping filters and the result-
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Fig. 5. Schematic for a two-channel SIMO system with FSD processing for
speech dereverberation.

0 0.1 0.2 0.3 0.4 0.5

-100

-50

0

Normalised frequency ( 2  rad)

M
ag

ni
tu

de
 (d

B
)

 

 

f1
f2

Fig. 6. Frequency responses of the spectral shaping filters, where the solid
line denotes f1 and the dotted line denotes f2.

ing outputs xm(n) can be written

xm(n) = FT
mHms(n), m = 1, 2 (6)

where Fm denotes the convolutive matrix associated with the im-
pulse responses of the mth spectral shaping filter of length Lp.
xm(n) can thus be considered as the linear convolution between
s(n) and a SIMO system of length L + Lp − 1, given by,

hm = FT
mhm, m = 1, 2. (7)

The effective undermodelling is then implemented by employing
BSI with order L. This is reasonable since in practice the BSI algo-
rithms are equivalently “blind” to the existence of spectral shaping
filter. The modified system to be identified is now given by

h′
m = Uhm, m = 1, 2 (8)

where U = [IL×L 0L×(Lp−1)] with IL×L and 0L×(Lp−1) being an
identity matrix and a null matrix, respectively.

As indicated in Section 4, the design of Fm is not trivial as they
need to offer sufficient diversity, which is correlated with the distri-
bution of zeros in the original system. Utilizing the characteristic
that for long impulse responses, zeros cluster around the unit circle
with an approximately uniform distribution, we propose to employ
a typical pair of highpass and lowpass FIR filter as spectral shaping
filters for the FSD filtering. Such choice increases the FSD effect
since the zeros of the filters locate complementarily in the z-plane,
so that in the modified systems, the zeros can be “relocated” towards
opposite directions in the z-plane. It is also noted that the BSI al-
gorithm is always employed with the order of L regardless of Fm,
indicating a Lp − 1 undermodelling factor.

6. SIMULATIONS

We demonstrate the performance improvement brought about by
FSD using a set of measured acoustic impulse responses obtained
from the MARDY database [15] which were resampled at 8 kHz and
truncated to 512 taps. A pair of highpass and lowpass FIR shaping
filters of length Lp = 32 was generated with magnitude responses

Authorized licensed use limited to: Imperial College London. Downloaded on January 4, 2010 at 08:27 from IEEE Xplore.  Restrictions apply. 



0 5 10 15 20 25
-9

-8

-7

-6

-5

-4

-3

-2

-1

0

Time (s)

N
P

M
 (d

B
)

 

 

NMCFLMS without FSD, M=2

NMCFLMS with FSD, M=2

NMCFLMS without FSD, M=5

Fig. 7. Comparison of BSI performance for SIMO system with and without
FSD processing using speech input.
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Fig. 8. Spectrogram of a) clean speech; b) reverberant speech; dereverber-
ated speech without FSD; d) dereverberated speech with FSD.

shown in Fig. 6. The speech samples described in Section 3 were
employed.

Figure 7 shows the BSI performance in NPM for NMCFLMS
algorithm using step-size 0.1 with FSD processing as for M = 2.
This is compared with the case without FSD processing for M =
2. A 6.5 dB improvement in NPM for the FSD processed system
is seen over the original system for the case M = 2. We further
show the performance for the case of M = 5 representing greater
spatial diversity without FSD processing and it is noted that the two-
channel FSD processing still achieves about 6 dB gain of NPM. This
indicates that the use of FSD can result in improved performance
without the need of larger microphone arrays.

Using the improved accuracy of the FSD channel estimate, the
MINT [4] algorithm was then employed to produce corresponding
inverse filters. The spectrograms of various speech signals are shown
in Fig. 8 for the first 3 seconds for clarity of presentation. Since the
FSD processing results in a modified system with fewer NCZs, cor-
responding improvement for dereverberation is seen from compar-
ing Fig. 8(c) with Fig. 8(d) in both low and high frequencies. The
BSD values shown in the figure further supports such improvement
of FSD processing for the overall dereverberation performance.

7. CONCLUSIONS

We have introduced the concept of FSD to mitigate the NCZs prob-
lem in blind system identification and subsequent dereverberation.
We have shown how the performance of BSI is affected by NCZs,
and how effective undermodelling can be combined with spectral
shaping filters to generate a modified system with sufficient diver-
sity to enable more accurate system identification. It is noted that
inversion of the modified system is sufficient for recovery of the orig-
inal source signal. Simulation results based on real acoustic impulse
responses confirmed the effectiveness of the proposed concept for
improved BSI and subsequent dereverberation of speech.
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