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A Class of Sparseness-Controlled Algorithms
for Echo Cancellation
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Abstract—In the context of acoustic echo cancellation (AEC), it
is shown that the level of sparseness in acoustic impulse responses
can vary greatly in a mobile environment. When the response is
strongly sparse, convergence of conventional approaches is poor.
Drawing on techniques originally developed for network echo
cancellation (NEC), we propose a class of AEC algorithms that can
not only work well in both sparse and dispersive circumstances,
but also adapt dynamically to the level of sparseness using a new
sparseness-controlled approach. Simulation results, using white
Gaussian noise (WGN) and speech input signals, show improved
performance over existing methods. The proposed algorithms
achieve these improvement with only a modest increase in compu-
tational complexity.

Index Terms—Acoustic echo cancellation (AEC), network echo
cancellation (NEC), sparse impulse responses, adaptive algo-
rithms.

I. INTRODUCTION

E CHO cancellation in telephone networks comprising
mixed packet-switched and circuit-switched components

requires the identification and compensation of echo systems
with various levels of sparseness. The network echo response
in such systems is typically of length 64–128 ms, characterized
by a bulk delay dependant on network loading, encoding, and
jitter buffer delays [1]. This results in an “active” region in
the range of 8–12 ms duration and consequently, the impulse
response is dominated by “inactive” regions where coefficient
magnitudes are close to zero, making the impulse response
sparse. The echo canceller must be robust to this sparseness
[2]. This network echo cancellation (NEC) issue is particularly
important in legacy networks comprising packet-switched and
circuit switched components whereas in pure packet-switched
networks NEC is not normally required.

Traditionally, adaptive filters have been deployed to achieve
NEC by estimating the network echo response using algorithms
such as the normalized least-mean-square (NLMS) algorithm.

Several approaches have been proposed over recent years to
improve the performance of the standard NLMS algorithm in
various ways for NEC. These include Fourier [3] and wavelet [4]
based adaptive algorithms, variable step-size (VSS) algorithms
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[5]–[7], data reusing techniques [8], [9], partial update adap-
tive filtering techniques [10], [11] and subband adaptive filtering
(SAF) schemes [12]. These approaches aim to address issues in
echo cancellation including the performance with colored input
signals, time-varying echo paths and computational complexity,
to name but a few. In contrast to these approaches, sparse adap-
tive algorithms have been developed specifically to address the
performance of adaptive filters in sparse system identification.
For sparse echo systems, the NLMS algorithm suffers from slow
convergence [13].

One of the first sparse adaptive filtering algorithms for NEC
is proportionate NLMS (PNLMS) [2] in which each filter co-
efficient is updated with an independent step-size that is lin-
early proportional to the magnitude of that estimated filter co-
efficient. It is well known that PNLMS has very fast initial con-
vergence for sparse impulse responses after which its conver-
gence rate reduces significantly, sometimes resulting in a slower
overall convergence than NLMS. In addition, PNLMS suffers
from slow convergence when estimating dispersive impulse re-
sponses [13], [14]. To address the latter problem, subsequent im-
proved versions, such as PNLMS++ [14], were proposed. The
PNLMS++ algorithm achieves improved convergence by alter-
nating between NLMS and PNLMS for each sample period.
However, as shown in [15], the PNLMS++ algorithm only per-
forms best in the cases when the impulse response is sparse or
highly dispersive.

An improved PNLMS (IPNLMS) [15] algorithm was pro-
posed to exploit the “proportionate” idea by introducing a
controlled mixture of proportionate (PNLMS) and non-propor-
tionate (NLMS) adaptation. A sparseness-controlled IPNLMS
algorithm was proposed in [16] to improve the robustness
of IPNLMS to the sparseness variation in impulse responses.
Composite PNLMS and NLMS (CPNLMS) [17] adaptation was
proposed to control the switching of PNLMS++ between the
NLMS and PNLMS algorithms. For sparse impulse responses,
CPNLMS performs the PNLMS adaptation to update the large
coefficients and subsequently switches to NLMS, which has
better performance for the adaptation of the remaining small
taps. The -law PNLMS (MPNLMS) [18] algorithm was
proposed to address the uneven convergence rate of PNLMS
during the estimation process. As proposed in [18], MPNLMS
uses optimal step-size control factors to achieve faster overall
convergence until the adaptive filter reaches its steady state.

With the development of hands-free mobile telephony in re-
cent years, another type of echo, acoustic echo, seriously de-
grades user experience due to the coupling between the loud-
speaker and microphone. For this reason, effective acoustic echo
cancellation (AEC) [19] is important to maintain usability and
to improve the perceived voice quality of a call. Although sparse
adaptive filtering algorithms, such as those described above,
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Fig. 1. Adaptive system for acoustic echo cancellation in a Loud-
speaker–Room–Microphone system (LRMS).

Fig. 2. Room impulse responses obtained, at 20 kHz sampling frequency, when
the distances between a loudspeaker and a microphone are (a) 75 cm and (b) 185
cm, with room dimensions 3� 5� 3.5 m. � represents the sparseness measure
defined in Section III-A.

have originally been developed for NEC, it has been shown in
[20] that such algorithms give good convergence performance
in the AEC system as illustrated in Fig. 1.

The time variation of the near-end acoustic impulse response
(AIR) may arise due to, for example, a change in temperature
[21], pressure and changes in the acoustic environment. It is also
well known that the reverberation time of an AIR is proportional
to the volume of the enclosed space and inversely proportional
to the absorption area [22]. For an outdoor environment, the
reverberation time is reduced significantly due to the lack of
reflections from any enclosure. The outdoor environment refers
here to a typical urban area or a rural area with sparsely placed
acoustically reflecting objects. The sparseness of the AIR of an
outdoor environment is significantly greater than typical indoor
environments and equally, if not more, variable.

Variation in the sparseness of AIRs can also occur in AEC
within an enclosed space. Consider an example case where the
distance between a loudspeaker and the user using, for ex-
ample, a wireless microphone is varying. Fig. 2 shows two AIRs
obtained in the same room, at 20 kHz sampling frequency, when
(a) cm and (b) cm, with room dimensions
3 5 3.5 m. As can be seen, the sparseness of these AIRs
varies with the loudspeaker-microphone distance. Hence, algo-
rithms developed for mobile hands-free terminals are required
to be robust to the variations in the sparseness of the acoustic
path.

In this paper, we propose a class of algorithms that are ro-
bust to the sparseness variation of AIRs. These algorithms com-
pute a sparseness measure of the estimated impulse response
at each iteration of the adaptive process and incorporate it into

their conventional methods. As will be shown, the proposed
sparseness-controlled algorithms achieve fast convergence for
both sparse and dispersive AIRs and are effective for AEC.

II. REVIEW OF ALGORITHMS FOR ECHO CANCELLATION

Fig. 1 shows a Loudspeaker–Room–Micro-
phone system (LRMS) and an adaptive filter

deployed to cancel
acoustic echo, where is the length of the adaptive filter
assumed to be equal to the unknown room impulse response
and is the transposition operator. Defining the input
signal and

as the unknown
impulse response, the output of the LRMS is given by

(1)

where is additive noise and the error signal is given by

(2)

Several adaptive algorithms such as those described below have
been developed for either AEC or NEC.

Many adaptive algorithms can be described by (2) and the
following set of equations:

(3)

(4)

where is a step-size and is the regularization parameter. The
diagonal step-size control matrix is introduced here to
determine the step-size of each filter coefficient and is dependent
on the specific algorithm.

A. NLMS, PNLMS, and MPNLMS Algorithms

The NLMS algorithm is one of the most popular for AEC due
to its straightforward implementation and low complexity com-
pared to, for example, the recursive least squares algorithm. For
NLMS, since the step-size is the same for all filter coefficients,

with being an identity matrix.
One of the main drawbacks of the NLMS algorithm is that

its convergence rate reduces significantly when the impulse re-
sponse is sparse, such as often occurs in NEC. The poor perfor-
mance has been addressed by several sparse adaptive algorithms
such as those described below that have been developed specifi-
cally to identify sparse impulse responses in NEC applications.

The PNLMS [2] and MPNLMS [18] algorithms have been
proposed for sparse system identification. Diagonal elements

of the step-size control matrix for the PNLMS and
MPNLMS algorithms can be expressed as

(5)

(6)
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where is specific to the algorithm. The parameter
in (6) prevents the filter coefficients from

stalling when at initialization and , with a
typical value of 0.01, prevents the coefficients from stalling
when they are much smaller than the largest coefficient.

The PNLMS algorithm achieves a high rate of convergence
by employing step-sizes that are proportional to the magnitude
of the estimated impulse response coefficients where elements

are given by

(7)

Hence, PNLMS employs larger step-sizes for “active” coeffi-
cients than for “inactive” coefficients and consequently achieves
faster convergence than NLMS for sparse impulse responses.
However, it is found that PNLMS achieves fast initial conver-
gence followed by a slower second phase convergence [18].

The MPNLMS algorithm was proposed to improve the
convergence of PNLMS. It achieves this by computing the
optimal proportionate step-size during the adaptation process.
The MPNLMS algorithm was derived such that all coefficients
attain a converged value to within a vicinity of their optimal
value in the same number of iterations [18]. As a consequence,

for MPNLMS is specified by

(8)

with and is a very small positive number chosen as a
function of the noise level [18]. It has been shown that
is a good choice for typical echo cancellation. The positive bias
of 1 in (8) is introduced to avoid numerical instability during the
initialization stage when .

It is important to note that both PNLMS and MPNLMS suffer
from slow convergence when the unknown system is dis-
persive [14], [13]. This is because when is dispersive,

in (6) becomes significantly large for most .
As a consequence, the denominator of in (5) is large,
giving rise to a small step-size for each large coefficient. This
causes a significant degradation in convergence performance for
PNLMS and MPNLMS when the impulse response is dispersive
such as can occur in AIRs.

B. IPNLMS Algorithm

The IPNLMS [15] algorithm was originally developed for
NEC and was further developed for the identification of acoustic
room impulse responses [20]. It employs a combination of pro-
portionate (PNLMS) and non-proportionate (NLMS) adapta-
tion, with the relative significance of each controlled by a factor

such that the diagonal elements of are given as

(9)

where is defined as the -norm and the first and second
terms are the NLMS and the proportionate terms, respectively. It
can be seen that IPNLMS behaves like NLMS when
and PNLMS when . Use of a higher weighting for
NLMS adaptation, such as or , is a favor-
able choice for most AEC/NEC applications [15]. It has been

Fig. 3. Acoustic impulse responses.

shown that, although the IPNLMS algorithm has faster conver-
gence than NLMS and PNLMS regardless of the impulse re-
sponse nature [15], we note from our simulations that it does
not outperform MPNLMS for highly sparse impulse responses
with the above choices of .

III. CHARACTERIZATION OF FRAMEWORK

FOR ROBUST CONVERGENCE

In this section, we quantify the degree of sparseness in AIRs.
We provide an illustrative example to show how the sparseness
of AIRs varies with the loudspeaker–microphone distance in an
enclosed space such as when the user is using a wireless micro-
phone for tele/video conferencing. This serves as a motivation
for us to develop new algorithms which are robust to the sparse-
ness variation of AIRs in the next Section. In addition, we also
demonstrate how the choice of in (6) affects the step-size of
each filter coefficient for PNLMS.

A. Variation of Sparseness in AIRs

The degree of sparseness for an impulse response can be
quantified by [16], [23]

(10)

It can be shown [16], [23] that . In the extreme
but unlikely case when

and
(11)

where and , then . On
the other hand, when , then . In reality

and hence is time-varying and depends on factors
such as temperature, pressure and reflectivity [21]. As explained
in Section I, the sparseness of AIRs varies with the location
of the receiving device in an open or enclosed environment. We
show below how can also vary with the loudspeaker–mi-
crophone distance in an enclosed space.

Consider an example case where the distance between
a fixed position loudspeaker and the talker using a wireless
microphone is varying. Fig. 3 shows two AIRs, generated using
the method of images [24], [25] with 1024 coefficients using
room dimensions of 8 10 3 m and 0.57 as the reflection
coefficient. The loudspeaker is fixed at 4 9.1 1.6 m in the
LRMS while the microphone is positioned at 4 8.2 1.6 m
and 4 1.4 1.6 m giving impulse responses as shown in
Fig. 3(a) and (b) for m and m, respectively.
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Fig. 4. Sparseness measure against the distance between loudspeaker and mi-
crophone �. The impulse responses are obtained from the image model using a
fixed room dimensions of 8� 10� 3 m.

Fig. 4 illustrates how of such AIRs varies with . For each
loudspeaker–microphone distance , the microphone is directly
in front of the loudspeaker. As can be seen, reduces with
increasing , since for increasing , the sound field becomes
more diffuse. Since varies with , we propose to incor-
porate into PNLMS, MPNLMS, and IPNLMS in order
to improve their robustness to the sparseness of AIRs in AEC.
Since is unknown during adaptation, we employ to
estimate the sparseness of an impulse response, where at each
sample iteration

(12)

B. Effect of on Step-Size Control Matrix for PNLMS

As explained in Section II-A, the parameter in (6) was orig-
inally introduced to prevent freezing of the filter coefficients
when they are much smaller than the largest coefficient. Fig. 5
shows the effect of for both sparse and dispersive AIRs on the
convergence performance of PNLMS measured using the nor-
malized misalignment defined by

(13)

A zero mean white Gaussian noise (WGN) sequence is used as
the input signal while another WGN sequence is added to
give an SNR of 20 dB. Impulse responses as shown in Fig. 3(a)
and (b) are used as sparse and dispersive AIRs, and

. It can be seen from this illustration that, for a sparse ,
we desire a low value of while, for a dispersive unknown
system , we desire a high value of . This is due to the
resulting effect of how different values of affect the step-size
control element as illustrated in Fig. 6. It can be observed
that a higher value of will reduce the influence of the propor-
tional update term meaning that all filter coefficients are updated

Fig. 5. Convergence of the PNLMS for different values of � using WGN input
signal. Impulse responses in Fig. 3(a) and (b) are used as sparse and dispersive
AIRs, respectively. [� � ���� ��� � �� dB].

Fig. 6. Magnitude of � ��	 for � � � � 	 � 
 against the magnitude of
normalized tap coefficients 
 ��	 in PNLMS.

at a more uniform rate. This provides a good convergence per-
formance for PNLMS for a dispersive AIR. On the other hand, a
lower will increase the degree of proportionality hence giving
good convergence performance when the AIR is sparse. As a
consequence of this important observation, we propose to incor-
porate into for both PNLMS and MPNLMS as described
in the next section.

IV. CLASS OF SPARSENESS-CONTROLLED ALGORITHMS

We propose to improve the robustness of PNLMS,
MPNLMS, and IPNLMS to varying levels of sparseness
of impulse response such as encountered in, for example,
AEC. As will be shown in the following, this is achieved by
incorporating the sparseness measure of the estimated AIRs
into the adaptation process. We will discuss these approaches
conceptually and with simulation results on both WGN and
speech. For an analytical prospective, the reader is referred to
[26].

A. Proposed SC-PNLMS and SC-MPNLMS Algorithms

In order to address the problem of slow convergence in
PNLMS and MPNLMS for dispersive AIR, we require the
step-size control elements to be robust to the sparseness
of the impulse response. Several choices can be employed
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Fig. 7. Variation of � against sparseness measure ���� of impulse response.

to obtain the desired effect of achieving a high when
is small when estimating dispersive AIRs. We consider an
example function

(14)

The variation of in PNLMS for the exponential function
is plotted in Fig. 7 for the cases where and . It can
be noted that a linear function also achieves
our desired condition. We have tested this case and found it to
perform worse than the more general form of (14), so we will
not consider it further.

It can be seen that low values of are allocated for a large
range of sparse impulse responses such as when . As
a result of small values in using (14), the proposed sparse-
ness-controlled PNLMS algorithm (SC-PNLMS) inherits the
proportionality step-size control over a large range of sparse im-
pulse response. When the impulse response is dispersive, such
as when , the proposed SC-PNLMS algorithm in-
herits the NLMS adaptation control with larger values of .
As explained in Section III-B and Fig. 6, this gives a more uni-
form step-size across . Hence, the exponential function de-
scribed by (14) will achieve our overall desired effect of the ro-
bustness to sparse and dispersive AIRs.

The choice of is important. As can be seen from Fig. 7, a
larger choice of will cause the proposed SC-PNLMS to inherit
more of PNLMS properties compared to NLMS giving good
convergence performance when AIR is sparse. On the other
hand, when the AIR is dispersive, must be small for good con-
vergence performance. Hence, we show in Section VI-A that a
good compromise is given by , though the algorithm is
not very sensitive to this choice in the range of .

Incorporating in a similar manner for the MPNLMS
algorithm, the resulting sparseness-controlled MPNLMS algo-
rithm (SC-MPNLMS) inherits more of the MPNLMS proper-
ties when the estimated AIR is sparse and distributes uniform

TABLE I
SPARSENESS-CONTROLLED ALGORITHMS

step-size across , as in NLMS, when the estimated AIR is
dispersive. In addition, we note that when

and hence, to prevent division by a small number or zero,
can be computed for in both SC-PNLMS and

SC-MPNLMS. When , we set as described
in [15]. The SC-PNLMS algorithm is thus described by (2)–(7),
(12), and (14), whereas SC-MPNLMS is described by (2)–(6),
(8), (12) and (14) with , as summarized in Table I.

B. SC-IPNLMS Algorithm

We choose to incorporate sparseness-control into the
IPNLMS algorithm (SC-IPNLMS) [16] in a different manner
compared to SC-PNLMS and SC-MPNLMS because, as can be
seen from (9), two terms are employed in IPNLMS for control
of the mixture between proportionate and NLMS updates.
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Fig. 8. Magnitude of � ��� for � � � � � � � against the magnitude of
coefficients � ��� in SC-IPNLMS and different sparseness measures of eight
systems.

The proposed SC-IPNLMS improves the performance of the
IPNLMS by expressing for as

(15)

As can be seen, for large when the impulse response is
sparse, the algorithm allocates more weight to the proportionate
term of (9). For comparatively less sparse impulse responses,
the algorithm aims to achieve the convergence of NLMS by ap-
plying a higher weighting to the NLMS term. An empirically
chosen weighting of 0.5 in (15) is included to balance the per-
formance between sparse and dispersive cases. In addition, nor-
malization by is introduced to reduce significant coefficient
noise when the effective step-size is large for sparse AIRs with
high .

Fig. 8 illustrates the step-size control elements for
SC-IPNLMS in estimating different unknown AIRs. As can
be seen, for dispersive AIRs, SC-IPNLMS allocates a uniform
step-size across while, for sparse AIRs, the algorithm
distributes proportionally to the magnitude of the co-
efficients. As a result of this distribution, the SC-IPNLMS
algorithm varies the degree of NLMS and proportionate adap-
tations according to the nature of the AIRs. In contrast, in
standard IPNLMS the mixing coefficient in (9) is fixed
a priori. The SC-IPNLMS algorithm is described by (2)–(4),
(12) and (15), as specified in Table I.

V. COMPUTATIONAL COMPLEXITY

The relative complexity of NLMS, PNLMS, SC-PNLMS,
IPNLMS, SC-IPNLMS, MPNLMS, and SC-MPNLMS in
terms of the total number of additions (A), multiplications (M),
division (D), logarithm (Log), and comparisons (C) per iteration
for adaptation of filter coefficients is assessed in Table II. The
additional complexity of the proposed sparseness-controlled
algorithms, on top of their conventional method, arises from

TABLE II
COMPLEXITY OF ALGORITHMS’ COEFFICIENTS UPDATE—ADDITION

(A), MULTIPLICATION (M), DIVISION (D), LOGARITHM (LOG),
AND COMPARISON (C)

the computation of the sparseness measure . Given that
in (10) can be computed offline, the remaining

-norms require an additional additions and multiplica-
tions. The SC-PNLMS and SC-MPNLMS algorithms addi-
tionally require computations for (14). Alternatively, a look-up
table with values of defined in (14) can be computed for

. Segment PNLMS (SPNLMS) is proposed in
[27], to approximate the -law function in MPNLMS using
line segments. Since computation is already available
from IPNLMS in (9), SC-IPNLMS only requires an additional

additions, multiplications, and 1 division. As we
shall see, the increase in the complexity is compromised by the
algorithm’s performance. Consequently, the tradeoff between
complexity and performance depend on the design choice for
a particular application.

VI. SIMULATION RESULTS

We present simulation results to evaluate the performance
of the proposed SC-PNLMS, SC-MPNLMS and SC-IPNLMS
algorithms in the context of AEC. In addition, we show an
example case of how SC-IPNLMS can be employed in NEC.
Throughout our simulations, algorithms were tested using a
zero mean WGN and a male speech signal as inputs while
another WGN sequence was added to give an SNR
of 20 dB. We assumed that the length of the adaptive filter

is equivalent to that of the unknown system. Two
receiving room impulse responses for AEC simulations
have been used as described in Fig. 3. The sparseness measure
of these AIRs are computed using (10) giving (a)
and (b) , respectively.

A. Effect of on the Performance of SC-PNLMS for AEC

SC-PNLMS was tested as shown in Fig. 9 for different
values in (14) to illustrate the time taken to reach 20 dB
normalized misalignment using a WGN sequence as the input
signal. A step-size of was used in this experiment. We
see from the result that, for each case of , the SC-PNLMS
has a higher rate of convergence for a sparse system compared
to a dispersive system. This is due to the initialization choice
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Fig. 9. Time to reach �20-dB normalized misalignment level for different
values of � in SC-PNLMS using WGN input signal. Impulse response
in Fig. 3(a) and (b) used as sparse AIR and dispersive AIR, respectively.
[� � ���� ��� � �� dB].

of , where most filter coefficients are initialized
close to their optimal values. In addition, a smaller value of
is favorable for the dispersive AIR, since SC-PNLMS performs
similarly to NLMS for small values. On the contrary, a higher
value for is desirable for the sparse case. It can be noted that
SC-PNLMS behaves like NLMS for . It can also be seen
that a range of good value for is . Fig. 10 shows
the performance of SC-PNLMS with an echo path change
introduced from Fig. 3(a) to (b) at 4.5 s, for and

. We observe from this result that the convergence rate of
SC-PNLMS is high when is small for a dispersive channel.
This is because, as explained in Section IV-A, the proposed
algorithm inherits properties of the NLMS for a small value.
For a high , the SC-PNLMS algorithm inherits properties of
PNLMS giving good performance for sparse AIR before the
echo path change. As can be seen, a good compromise of is
given by .

B. Convergence Performance of SC-PNLMS for AEC

Fig. 11 compares the performance of NLMS, PNLMS, and
SC-PNLMS using WGN as the input signal. The step-size
parameter for each algorithm is chosen such that all algorithms
achieve the same steady-state. This is achieved by setting

. An echo path
change was introduced from Fig. 3(a) to (b) while for the
SC-PNLMS algorithm is set to 6. It can be seen from Fig. 11
that the convergence rate of SC-PNLMS is as fast as PNLMS
for sparse and much better than PNLMS for dispersive, there-
fore achieving our objective of improving robustness to varying
sparseness. This is because SC-PNLMS inherits the beneficial
properties of both PNLMS and NLMS. It can be seen from
the result that SC-PNLMS achieves high rate of convergence
similar to PNLMS giving approximately 5-dB improvement in
normalized misalignment during initial convergence compared
to NLMS for a sparse AIR. After the echo path change, for a

Fig. 10. Convergence of the SC-PNLMS for different values of � using WGN
input signal with an echo path change at 3.5 s. Impulse response is changed from
Fig. 3(a) to (b) and � � ������� � �� dB.

Fig. 11. Relative convergence of NLMS, PNLMS, and SC-PNLMS using
WGN input signal with an echo path change at 3.5 s. Impulse response is
changed from that shown from Fig. 3(a) to (b) and � � � �

� � ������� � �� dB.

dispersive AIR, the SC-PNLMS maintains its high convergence
rate over NLMS and PNLMS giving approximately 4-dB im-
provement in normalized misalignment compared to PNLMS.

Fig. 12 shows simulation results for a male speech input
signal where we used the same parameters as in the case of
WGN input signal. As can be seen, the proposed SC-PNLMS
algorithm achieves the highest rate of convergence, giving
convergence as fast as PNLMS and approximately 7-dB im-
provement during initial convergence compared to NLMS for
the sparse AIR. For dispersive AIR, SC-PNLMS performs
almost the same as NLMS with approximately 4-dB improve-
ment compared to PNLMS.

C. Convergence Performance of SC-MPNLMS for AEC

Fig. 13 illustrates the performance of NLMS, MPNLMS, and
SC-MPNLMS using WGN as the input signal. As before, the
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Fig. 12. Relative convergence of NLMS, PNLMS and SC-PNLMS using
speech input signal with echo path changes at 58 s. Impulse response is
changed from that shown in Fig. 3(a) to (b) and � � ���� � �

� � ������� � �� dB.

Fig. 13. Relative convergence of NLMS, MPNLMS, and SC-MPNLMS using
WGN input signal with an echo path change at 3.5 s. Impulse response is
changed from that shown from Fig. 3(a) to (b) and � � ���� � �

� � ���	���� � �� dB.

step-sizes were adjusted to achieve the same steady-state mis-
alignment for all algorithms. This corresponds to

. We have also used
for SC-MPNLMS. As can be seen from this result, the
SC-MPNLMS algorithm attains approximately 8-dB improve-
ment in normalized misalignment during initial convergence
compared to NLMS and same initial performance followed
by approximately 2-dB improvement over MPNLMS for the
sparse AIR. After the echo path change, SC-MPNLMS achieves
approximately 3-dB improvement compared to MPNLMS and
about 8-dB better performance than NLMS for dispersive
AIR. As shown in Fig. 14, with speech signal as the input,
the proposed SC-MPNLMS algorithm achieves approximately
10-dB improvement during initial convergence compared to
NLMS and 2 dB compared to MPNLMS for the sparse AIR.

Fig. 14. Relative convergence of NLMS, MPNLMS, and SC-MPNLMS
using speech input signal with echo path changes at 58 s. Impulse response is
changed from that shown in Fig. 3(a) to (b) and � � ���� � �

� � ���	���� � �� dB.

For dispersive AIR, the SC-MPNLMS algorithm achieves
an improvement of approximately 4 dB compared to both
NLMS and MPNLMS. It is also noted that NLMS achieves
approximately 7-dB better steady-state performance than the
MPNLMS-based approaches for this example with speech
input. This is attributed in [4] to sensitivity to eigenvalue spread
of the speech signal’s autocorrelation matrix.

D. Convergence Performance of SC-IPNLMS for AEC

For SC-IPNLMS performance comparison, we used
in order

to attain same steady-state performance. Proportionality con-
trol factors have been used for both
IPNLMS and SC-IPNLMS. It can be seen from Figs. 15 and 16
that by using both WGN and speech input signals, SC-IPNLMS
achieves approximately 10-dB improvement in normalized
misalignment during initial convergence compared to NLMS
for the sparse AIR. For a dispersive AIR, the SC-IPNLMS
achieves a 5-dB improvement compared to NLMS. For a
speech input, the improvement of SC-IPNLMS over IPNLMS
is 3 dB for both sparse and dispersive AIRs. On the other hand,
the improvement of SC-IPNLMS compared to NLMS are 10
dB and 6 dB for sparse and dispersive AIRs, respectively.

E. Convergence Performance of the Algorithms for Various
Airs With Different Sparseness in AEC

We extracted eight different impulse responses from the
set of AIRs with sparseness measure as
shown in Fig. 4. The time taken to reach 20 dB normalized
misalignment is plotted against for NLMS, PNLMS,
SC-PNLMS, IPNLMS, and SC-IPNLMS in Fig. 17, and for
NLMS, MPNLMS, and SC-MPNLMS in Fig. 18. As before, all
step-sizes have been adjusted so that the algorithms achieve the
same steady-state normalized misalignment. These correspond
to

and .
A zero mean WGN was used as an input signal while another
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Fig. 15. Relative convergence of NLMS, IPNLMS, and SC-IPNLMS using
WGN input signal with an echo path change at 3.5 s. Impulse response is
changed from that shown from Fig. 3(a) to (b) and � � � �

���� � � ������� � �� dB.

Fig. 16. Relative convergence of NLMS, IPNLMS, and SC-IPNLMS using
speech input signal with echo path changes at 58 s. Impulse response is
changed from that shown in Fig. 3(a) to (b) and � � � �

���� � � ��	���� � �� dB.

WGN sequence w(n) was added to achieve an SNR of 20 dB. It
can be seen that when the AIRs are sparse, the speed of initial
convergence increases significantly for each algorithm. This is
because many of the filter coefficients are initialized close to
their optimum values since during initialization, .
In addition, the sparseness-controlled algorithms (SC-PNLMS,
SC-MPNLMS and SC-IPNLMS) give the overall best per-
formance compared to their conventional methods across the
range of sparseness measure. This is because the proposed
algorithms take into account the sparseness measure of the
estimated impulse response at each iteration.

Fig. 17. Time to reach the�20-dB normalized misalignment against different
sparseness measures of eight systems for NLMS, PNLMS, SC-PNLMS,
IPNLMS, and SC-IPNLMS.

Fig. 18. Time to reach the �20-dB normalized misalignment against dif-
ferent sparseness measures of eight systems for NLMS, MPNLMS, and
SC-MPNLMS.

F. Convergence Performance of SC-IPNLMS for NEC

We provide additional simulations to illustrate the per-
formance of SC-IPNLMS in the context of sparse adaptive
NEC, such as may occur in network gateways for mixed
packet-switched and circuit-switched networks. Fig. 19 shows
two impulse responses, sampled at 8 kHz comprising a 12-ms
active region located within a total duration of 128 ms. The
sparseness of these impulse responses computed using (12) are
(a) and (b) respectively. As before,
we used a WGN input signal while another WGN sequence
is added to give an SNR of 20 dB. Fig. 20 shows the perfor-
mances of NLMS, IPNLMS, for and , and
the proposed SC-IPNLMS algorithm with .
An echo path change was introduced using impulse responses
as shown from Fig. 19(a) to (b) at 3.5 s. We can see from the
result that the performance of IPNLMS is dependent on .
More importantly, a faster rate of convergence can be seen for

Authorized licensed use limited to: Imperial College London. Downloaded on November 12, 2009 at 13:09 from IEEE Xplore.  Restrictions apply. 



1600 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 17, NO. 8, NOVEMBER 2009

Fig. 19. Sparse impulse responses, sampled at 8 kHz, giving (a) ���� � ����
and (b) ���� � ����, respectively.

Fig. 20. Relative convergence of NLMS, IPNLMS for � � ���� and �����
and SC-IPNLMS using WGN input signal with an echo path change at 3.5 s.
Impulse response is changed from that shown in Fig. 19(a) to (b) and � �
� � ���� � � ����	
� � �� dB.

SC-IPNLMS compared to NLMS and IPNLMS both at initial
convergence and also after the echo path change.

VII. CONCLUSION

We have presented a class of sparseness-controlled algo-
rithms which achieves improved convergence compared to
classical NLMS and typical sparse adaptive filtering algo-
rithms. We have incorporated the sparseness measure into
PNLMS, MPNLMS, and IPNLMS for AEC to achieve fast
convergence that is robust to the level of sparseness encoun-
tered in the impulse response of the echo path. The resulting
SC-PNLMS, SC-MPNLMS, and SC-IPNLMS algorithms take
into account the sparseness measure via a modified coefficient
update function.

It has been shown that the proposed sparseness-controlled al-
gorithms are robust to variations in the level of sparseness in
AIR with only a modest increase in computational complexity.
Moreover, we have shown that these proposed algorithms have
same or faster convergence in NEC.
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