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A Class of Frobenius Norm-Based Algorithms
Using Penalty Term and Natural Gradient

for Blind Signal Separation
Uttachai Manmontri and Patrick A. Naylor, Member, IEEE

Abstract—We consider the blind signal separation (BSS)
problem of instantaneous mixtures using penalty term and natural
gradient. A class of Frobenius norm-based algorithms consisting
of the offline/block processing (BP), online processing (OP) algo-
rithms, and their normalized versions is proposed for separating
nonstationary and nonwhite signals. The BP and OP algorithms,
respectively, suitable for blind separation with offline and online
data, are derived by using the nonstationarity and nonwhiteness
of signals and the natural gradient method in conjunction with an
appropriate penalty term. Associated with almost all algorithms
employing a gradient method is a gradient noise problem. We thus
develop, from BP and OP, their normalized versions in which the
update of an unknown demixing matrix is based on the minimal
disturbance principle. We show that the resulting updates are in
the same direction as those of the original algorithms but with a
scaling factor whose upper bound is unity. Algorithms using the
nonstationarity and nonwhiteness properties have been proposed
before but, due to the use of logarithms in their derivation, they are
not capable of separating signals that are not persistently active
and require regularization parameters to mitigate the problem. In
this paper, the superior performance of the proposed algorithms
to the previously proposed logarithm-based algorithms with and
without regularization when separating nonpersistently active
source signals is presented through some illustrative numerical
experiments.

Index Terms—Blind signal separation (BSS), natural gradient
methods, penalty term, second-order statistics.

I. INTRODUCTION

B LIND signal separation (BSS) of both instantaneous and
convolutive mixtures has received considerable attention

over the last two decades in the fields of signal processing and
communications [1], [2].

The classical instantaneous BSS mixing and demixing
models of equal numbers of source signals and observed sig-
nals can be described in their basic forms by
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where is the source signals
vector, is the observed
signals vector, is an es-
timate of the source signals vector called the output signals
vector, is an unknown mixing matrix, is a cor-
responding demixing matrix to be computed, the superscript
denotes transposition, and is the sample index.

By the establishment of second-order statistical relations
from these signals, instantaneous BSS can be solved up to
arbitrary scaling and permutations of the source signals [3], [4].

In this paper, we consider the instantaneous BSS problem and
propose a class of Frobenius norm-based algorithms for sepa-
rating signals within the framework of second-order statistics.
The proposed algorithms utilize the nonstationarity and non-
whiteness properties of signals together with the penalty term
and the natural gradient method.

The use of nonstationarity and nonwhiteness properties has
been proposed before in [5] for instantaneous BSS and in [2]
for convolutive BSS. The technique of [5], which exploits a
whitening process followed by the Jacobi-like technique [6]
to seek an orthogonal matrix that jointly diagonalizes a set of
whitened signals correlation matrices at different time intervals
and several time lags (see also e.g., [1], [7], and [8] for the
approach employing only the nonwhiteness property), distorts
the structure of the desired demixing matrix in the presence of
additive noise [9]. This structural distortion cannot be resolved
by any postwhitening process and leads to nonorthogonal
search techniques subsequently presented in [4], [10], and [11].

The technique of [2] introduces a generalization of the loga-
rithm-based cost function originally proposed in [12] to a set of
novel correlation matrices and employs natural gradient method
to seek the desired demixing matrix. It can be shown by using
the Oppenheim’s inequality [13] that the proposed cost func-
tion will attain the minimum at the desired demixing matrix [2].
Although the logarithm-based algorithm [2] employs a system-
atic search technique through the natural gradient adaptation, its
proposed cost function which utilizes the logarithmic function
inevitably requires the correlation matrices to be strictly posi-
tive definite. As a consequence, all source signals are required
to be persistently active with variances always greater than zero
so that the logarithm-based cost function will be differentiable.
This problem, as suggested in [14], raises the need for regular-
ization parameters to take care of nonpersistently active signals
when performing the logarithm-based algorithm. The regular-
ization parameters can, however, lead to biased solutions when
they increase robustness to nonpersistently active signals. This
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is due to the fact that the basic feature of the regularization is
a compromise between the fidelity to data and the fidelity to
prior information about the solution [14].1 To avoid the biased
solutions, we therefore propose the use of Frobenius norm to-
gether with the nonstationarity and the nonwhiteness properties
of signals to form the cost function and find the solution of the
problem using the natural gradient method. By the use of Frobe-
nius norm, the proposed algorithms, without the need of regular-
ization, will be capable of separating signals that are not persis-
tently active. In addition, we also derive the efficient normalized
versions of the proposed algorithms to cope with the problem of
gradient noise amplification.

We employ the following assumptions in derivations of our
proposed algorithms.

A1: is a full rank square matrix.
A2: Source signals are a zero mean, nonstationary and non-

white process with
1) ;
2) and ;
3) and ;

also, each source signal is uncorrelated with
4)

and ;
where denotes the statistical expectation operator, de-

notes for all, denotes for some, and is the maximum nonzero
time lag of interest.

A1 ensures that all source signals are observed in the form
of by the rank of and makes a solution to the problem
feasible. A2 is a key assumption that forms the joint diagonal-
ization criterion to be used in our proposed algorithms.

The remainder of the paper is outlined as follows. We propose
offline, online Frobenius norm-based algorithms and their nor-
malized versions in Sections II–IV, respectively. In Section II,
the offline/block processing (BP) algorithm is derived by em-
ploying a set of local time-average correlation matrices. The
prerequisites for using second-order statistics to separate sig-
nals and the existence of global minimum in the neighborhood
of a penalized region are also given. The online processing (OP)
algorithm is presented in Section III and is derived in a similar
fashion using a set of current time-average correlation matrices.
Normalized versions of the BP and OP algorithms, based on
the minimal disturbance principle, are presented in Section IV.
Computational complexity of all proposed algorithms is pre-
sented in Section V. Illustrative numerical results are shown in
Section VI and we conclude in Section VII.

The main contribution of this paper is to present the BP, OP al-
gorithms and their normalized versions together with supporting
analysis. Earlier work with these algorithms was given in [15]
and [16]. We focus on real-valued data, although the extension
to the complex-valued data is straightforward.

II. OFFLINE/BLOCK PROCESSING (BP) ALGORITHM

In this section, we derive an offline algorithm using the
Frobenius norm. The main reason to use the Frobenius norm
rather than the logarithmic function is that it does not require

1The use of the logarithmic function and a set of positive definite matrices
along with Oppenheim’s inequality, which together form the logarithm-based
algorithm, as well as the use of regularization will be presented in Section IV.

the source signals to be persistently active. However, the
Frobenius norm-based approach, unlike the logarithm-based
approach, requires an appropriate penalty term to prevent the
algorithms from converging to trivial solutions. Also, as we
employ the natural gradient to seek a demixing matrix instead
of the ordinary gradient, it is thus worth noting that the BSS
algorithm that employs the natural gradient adaptation [17],
or equivalently, the relative gradient adaptation [18] to seek
a demixing matrix offers preferable convergence properties
when compared to its ordinary gradient counterpart [2], [14],
[17], [18].2

A. Second-Order Statistical Relations Using Local
Time-Average Correlation Matrices

The BP algorithm employs both the nonstationarity and the
nonwhiteness properties through a set of blocks of nonstationary
but locally stationary observed signals. We require an estimator
of the correlation matrix for nonstationary source signals. Let

denote an estimate of the correlation matrix in the th
block, , and at the time lag ,
where is the maximum nonzero time lag of interest. We refer
to this estimate as the local time-average correlation matrix of
the observed signals

(3)

where is the length of the th block and is an
matrix of stationary samples in the th block.

The block of stationary samples can be expressed in expanded
form as

(4)

where is the overlap factor with and
.

Unlike other block methods (see, e.g., [19], [2]), an overlap
factor is proposed here to facilitate more flexibility in sectioning
the signals. To obtain a set of these locally stationary blocks,
it is essential that the parameters used in (4) are chosen prop-
erly. These parameters depend on the nature of source signals
and, in practice, some a priori knowledge of the source signals
is required to choose appropriate values. For nonstationary and
nonwhite signals such as speech signals, the length of the block
is chosen using the average duration of phonemes [19] and the
nonzero time lag is chosen to be a small number over which
speech exhibits high correlation [2]. Using (3), we write the
second-order statistical relations

(5)

(6)

where , and are, respectively, the local
time-average correlation matrices of the source signals, the ob-
served signals and the output signals, all at . It can be seen
from (5) and (6) that the blind separation of nonstationary and
nonwhite signals becomes one of finding that jointly diago-
nalizes a set of local time-average correlation matrices .

2The superior performance of the natural gradient to the ordinary gradient are
presented both theoretically and experimentally in [17] and references therein.
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B. Prerequisites for Using Local Time-Average Correlation
Matrices

Before proceeding to the derivation of the BP algorithm, it is
useful to study what level of nonstationarity and nonwhiteness
is needed in the source signals for blind separation to be fea-
sible. The following prerequisites give necessary requirements
for source signals to be separated through a set of local time-av-
erage correlation matrices.

Prerequisites 1: Let be corre-
sponding diagonal entries of ,

1) nonstationarity: and
must be linearly inde-

pendent, ;
2) nonwhiteness: and

must be linearly inde-
pendent, .
Proof: See Appendix A.

According to the proof of necessity of the Prerequisites 1, it
can be seen that, at least, has to be linearly independent
of when the nonstationarity property is the only property
that is used in blind separation of signals and that, when the
nonwhiteness property is the only used property, at least,
and have to be linearly independent in order to allow the
separation of signals.

C. Derivation of the BP Algorithm

We note that no closed-form solution exists for solving the re-
lations of (5) and (6). Therefore, we form a cost function that can
be minimized iteratively. It is more advantageous to use natural
gradient adaptation rather than the ordinary gradient adaptation
for this problem [17, Theorem 6]. To obtain a more compact
form of natural gradients, we employ symmetric matrices and
rewrite (5) and (6) as

(7)

(8)

where , and are, respectively, the sym-
metric parts of , and defined by, e.g.,

.
To cope with nonpersistently active signals, we approach the

joint diagonalization problem using the Frobenius norm [20].
The joint diagonalization cost function is given by

(9)

where is a positive weight satisfying
and is generally set to .

The joint diagonalization component is

off (10)

where off is the operator that returns a matrix with all its di-
agonal entries being set to zero and denotes the Frobenius

norm. According to [17, Theorem 6], the natural gradient and
the ordinary gradient of are related by

(11)

where and are, respectively, the natural gradient and
the ordinary gradient operators with respect to . Using matrix
differentiation and the relation given in (11), the natural gradient
of is given by

off (12)

Next, we need to examine all possible stationary points of
in order to determine an appropriate penalty term. For con-

venience of presentation, we introduce the following definition.
Definition 1: Let and be sets of ma-

trices defined by
, and

where is an diagonal matrix with in-
dicating the number of nonzero elements in the diagonal entries
and is an permutation matrix.

The set is a set of all desired demixing matrices whose
existence is ensured by A1. The sets ,
which also exist by A1, indicate that consists of zero
rows, each of which results from replacing all elements in the
row of with zeros. The special set defined in
a similar fashion consists of matrices that have the same prop-
erties as the set but with all diagonal entries being unity.
We note here that only the sets and give the desired
demixing matrix and that all other sets give trivial solutions. We
show that is a subset of in Proposition 1.

Proposition 1: 1) If , then (a) any permutation
of the rows of is a matrix that belongs to and (b) any
nonzero scaling of the rows of is a matrix that belongs to

; 2) is a subset of .
Proof: See Appendix B.

Based on Definition 1, we give the following lemma which
provides the existence of all stationary points of .

Lemma 1: is a stationary point of iff , where
is a zero matrix, or .

Proof: See Appendix C.
It is anticipated that the desired demixing matrix should

be found when attains its minimum. However, by using
a small perturbation (for details, see Proof of Theorem 1), it
can be shown that the stationary points of are all minima.
Since only a full rank , not -rank

, is the desired demixing matrix, we thus
need to preserve the full rank property of during its iterative
search process by confining the search to a region. As Proposi-
tion 1 suggests that is a subset of , we thus exploit the
penalty function given by

(13)

where is the operator that returns a matrix with all
its off-diagonal entries being zero. By differentiating with
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respect to and using the relation given in Theorem 6 of [17],
the natural gradient of is given by

(14)

We then combine and and form an unconstrained cost
function to be minimized as

(15)

where is a small positive penalty factor aiming to reduce
the significance of .

Let be the change of the demixing matrix from iteration
to

(16)

The BP update using the natural gradient descent adaptation is
of the form

(17)

where is a positive step-size, and
can be, respectively, obtained from (12) and (14) by replacing

including those in with .
It can be seen that (17) violates the uniform performance

property [18] due to . However, we can regard BP
as an algorithm that exhibits quasi-uniform performance since

is always much less than unity and therefore considerably
reduces the effect of . Also, we point out that (17) can
be used without restriction and is thereby capable of performing
BSS even when some source signals are not persistently active.

As an effect of on , we show that the global minimum
of exists and corresponds to the desired demixing matrix.

Theorem 1: In the neighborhood of a matrix whose diagonal
entries are all equal to unity, is a stationary point of iff

. In this case, attains the global minimum.
Proof: See Appendix D.

It can be seen that all minima of except vanish
by adding to . Based on Theorem 1, the convergence of
BP to the desired demixing matrix can be achieved by initial-
izing with any matrix whose diagonal entries are equal to
unity so as to prevent the algorithm from converging to an un-
desired but possible minimum induced by . Also, since the
proof relies on a small perturbation , it is necessary that an
adequately small and are used. The use of as a penalty
factor can be found in [21]–[23] as well as [24] (see [25] and
[26] for details).

III. ONLINE PROCESSING (OP) ALGORITHM

For applications operating on a sample-by-sample basis, it
is necessary to devise an algorithm that can adapt itself to the
most current given sample. The estimation of the correlation
matrix using a local time-average correlation matrix does not
suit this purpose as it does not represent the current second-order
statistics of signals. In this section, we propose the OP algorithm
derived using a set of current time-average correlation matrices.

A. Second-Order Statistical Relations Using Current
Time-Average Correlation Matrices

By making use of assumptions A1 and A2, the online joint di-
agonalization problem can be established through the following
second-order statistical relations

(18)

(19)

where and are, respectively, the sym-
metric parts of a current estimate of the correlation matrix of the
source signals, the observed signals and the output signals, all
with a time lag .

To obtain the current estimate of the observed signals cor-
relation matrix , we generalize the estimator in [27] to
incorporate the nonzero time lag and propose the following cur-
rent time-average correlation matrix:

(20)

where is a forgetting factor with .
For stationary but nonwhite signals, each sample has equal

importance in calculating the current time-average correlation
matrix. In that case, (20) is thus replaced by

(21)

B. Prerequisites for Using Current Time-Average Correlation
Matrices

The online signal separation can be achieved using a set of
current time-average correlation matrices, provided that the fol-
lowing prerequisites are satisfied.

Prerequistites 2: Let be corre-
sponding diagonal entries of :

1) nonstationarity:
and must be lin-
early independent, ;

2) nonwhiteness:
and must be lin-
early independent, .
Proof: The proof is similar to that for Prerequisites 1.

It is worth pointing out that the Prerequisite 2 1) is the under-
lying concept that allows the algorithms proposed in [12], [19]
to separate nonstationary source signals and the Prerequisite 2
2) is the key insight that allows source signals that are stationary
but nonwhite to be separated in an online fashion. In addition, a
sufficient condition for separating nonstationary signals is given
in [12] by using the Prerequisite 2 1) together with the logarithm
function.

C. Derivation of the OP Algorithm

To find a demixing matrix using any online gradient-based al-
gorithm, it is necessary that variations in the nonstationarity of
the source signals are sufficiently slow and a number of samples
has to be adequately large so as to allow the algorithm to attain
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the minimum. This means that source signals have to keep ex-
citing (1), but some of them, however, need not be persistently
active.

Following the derivation of BP, the OP cost function can be
expressed as

(22)

where off is the joint diagonalization
component, is the penalty func-
tion, is a positive weight that satisfies and,
in the general case, is set to is a small posi-
tive penalty factor, is the joint diagonalization component
at time lag , and is the penalty function. By use of matrix
differentiation and [17, Theorem 6], the corresponding natural
gradients are

off (23)

(24)

Consequently, the change or
equivalently the demixing matrix update of OP is of the form

(25)

where is a positive step-size.
The OP algorithm, like BP, requires to be initialized in

such a way that all its diagonal entries are unity so as to prevent
the algorithm from being trapped by local minima induced by

. As the difference between OP and BP is in the estimation
of correlation matrices, the OP algorithm, at any given , thus
has the global minimum in the neighborhood of the penalized
region that corresponds to the desired demixing matrix.

IV. NORMALIZED VERSIONS OF THE ALGORITHMS

In BSS, the concept underlying most gradient-based algo-
rithms is that the demixing matrix is adjusted with an appro-
priate step-size in the direction of the computed gradient. Ex-
cessively small and large gradients can result in gradient noise
problems ranging from slow convergence to divergence of the
algorithm. In this section, we develop, from BP and OP, their
corresponding normalized algorithms in which the demixing
matrix update is based on the minimal disturbance principle
[28]. A common theme is that the update of an unknown in the
adaptive structure should be disturbed in a minimal fashion.

A. Normalized BP (NBP) Algorithm

At iteration index , we can rewrite (15) as

(26)

where and are short forms of
and , respectively.

Based on (26), the corresponding update in (17) can
be written by using a set of components comprising
and as

(27)

where is an update based on , and
is an update based on . In light of the minimal

disturbance principle, every component of in (27)
should disturb the separation system in a minimal fashion.
Let us consider an update based on a particular
given and form the following constrained minimal
disturbance problem

minimize

subject to (28)

To allow (28) to be differentiable with respect to
, we estimate using the Taylor

series expansion.
Let be a function that is differentiable with respect to

an matrix . The Taylor series expansion of a function
at is given by [29]

(29)

where is a small change of de-
notes higher order expansions about , and

Trace .
For a sufficiently small , we can neglect its higher order

terms and estimate using its first-order. The Taylor
series expansion in (29) thus becomes

(30)

In the above approximation, the steepest direction of a function
at is given by the ordinary gradient . However, it

is pointed out in [17] that, when the parameter space consid-
ered is not Euclidean, for example, the space of nonorthogonal
matrices in BSS, the steepest direction is represented by the nat-
ural gradient instead of the ordinary gradient. This is due to the
fact that there is no orthogonal linear coordinate in the non-Eu-
clidean space. As the demixing matrix is not assumed to be
orthogonal, it is more general to modify (30) by using the nat-
ural gradient, which gives

(31)

Next, we apply the above approximation of Taylor series to-
gether with the natural gradient to estimate . We
begin by viewing the update as a small change of
a demixing matrix that causes the change between
and . Since is sufficiently small, its
higher order terms in Taylor series expansion are neglected. The
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Taylor series expansion of is approximately given
by

(32)

Following the method of Lagrange multipliers, we first re-
place with (32) and then convert (28) to the fol-
lowing unconstrained problem:

(33)

where is the cost function of an unknown
and is the Lagrange multiplier.

Given and , we obtain the first-order conditions
of (33) as

(34)

(35)

and solve for by substituting from (34) into
(35) giving

(36)

Replacing in (34) with (36), we obtain the following optimal
component:

(37)

A key feature of (37) is that the update obtained
from the use of minimal disturbance principle mitigates the gra-
dient noise by normalizing the natural gradient of
with its squared Frobenius norm. In particular, we can interpret
(37) as an update that moves towards the minimum
of in the natural gradient descent direction with dis-
tance proportional to and then vanishes at the min-
imum. To simplify (37), we use (10) and (12) at iteration and
expand the scalar terms in (37) to obtain

off

off

(38)

By applying the inequality property of the squared
Frobenius norm [20] to the squared Frobenius
norm terms in (38), we obtain off
off off
off . Using this

inequality and expanding the remaining , (38)
is approximately simplified to

off
(39)

We note that the squared Frobenius norm of (39) is always less
than that of (38) due to the squared Frobenius norm inequality.
Therefore, in (39) still obeys the principle of min-
imal disturbance. Following the above methodology, we simi-
larly obtain

(40)

In order to control the rate of convergence, we introduce a
scaling factor to (27) and write

(41)

where with 1 being an upper bound that still keeps
the squared Frobenius norm of in accordance with
the minimal disturbance principle; and
can be obtained from their simplified form in (39) and (40),
respectively.

B. Normalized OP (NOP) Algorithm

The normalized OP (NOP) algorithm utilizes a set of current
time-average correlation matrices and can be derived in a similar
style as NBP. We provide without derivation the update
of the NOP algorithm which takes the form

(42)

where and is, respectively, given in their
simplified form by

off
(43)

(44)
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TABLE I
OPERATIONS NEEDED TO COMPUTE OF BP, OP, NBP, AND NOP

C. Discussion

In NBP and NOP, normalization is achieved using terms that
do not involve the criterion of the original algorithms. It is seen
from (39) and (43) that the normalization terms turn out to be de-
pendent on which is different from relevant previous work.
In [4], [21], [22], and [24], the use of squared Frobenius norm
of a correlation matrix as a normalization term is given without
derivation. We note that the squared Frobenius norm of a cor-
relation matrix, when used in the algorithm, although similar in
some degree to the normalized LMS (NLMS) algorithm in the
sense that it is independent of the unknown, i.e., , does not
mitigate the gradient noise problem and also destroys the desir-
able property of having unity upper bound on the scaling factor.

The only requirement to use the proposed normalized algo-
rithms is that all source signals cannot be simultaneously in-
active to avoid a zero normalization term. The proposed nor-
malized algorithms exhibit fast convergence and robustness to
gradient noise. Lastly, it is shown by numerical experiments in
Section VI that improved performance, when compared to the
non-normalized versions, is achieved.

V. COMPUTATIONAL COMPLEXITY

The computational complexity of the proposed algorithms is
given in terms of operations, which include the number of mul-
tiplications/divisions and the number of additions/subtractions.
The multiplication of two matrices, the multiplication
of two matrices with one having only off-diagonal en-
tries and the multiplication of two matrices with one
having only diagonal entries require and

, respectively. The computational complexity of the matrix
operators off and is neglected for all algorithms due
to their implementation. The operations requirements for com-
puting of BP, OP, NBP, and NOP are summarized in Table I.

The table shows that the numbers of operations required to
compute for NBP and NOP are more than those used by BP
and OP. Specifically, NBP and NOP employ the normalization
terms achieved at the additional cost of and

operations, respectively.

VI. NUMERICAL EXPERIMENTS

To evaluate the performance of the BSS algorithms, the close-
ness of the global matrix to is measured.
We employ the performance index defined as

where and are, respectively, the maximum
value of and for . Accordingly, smaller
values of indicate better performance. A slightly different per-
formance index can be found in [30].

We test the proposed Frobenius norm-based algorithms,
both offline and online, by comparing them with the previ-
ously proposed logarithm-based algorithms with and without
regularization. The experiments are divided into two parts
depending on the types of algorithms: offline algorithms and
online algorithms.

A. Offline Algorithms

In this section, we aim to compare BP and NBP, which are
classified as the Frobenius norm-based algorithm, with the
logarithm-based algorithm proposed in [2]. We consider the
instantaneous BSS problem and exploit only the nonstationarity
property of signals as these do not require the novel matrix
formulation in [2]. Since all correlation matrices obtained from
the nonstationarity property are symmetric, we thus do not need
to employ their symmetric parts. The BP and NBP algorithms
with are compared with a modified version of the loga-
rithm-based algorithm in [2] or, in short, the log algorithm, which
employs the cost function and update, respectively, given by

(45)

off (46)

where denotes the determinant of a matrix and
.

This offers, as close as possible, a like-for-like comparison by
removing from [2] the features of convolutive mixing and ex-
ploitation of the nonwhiteness property. We also note that (45)
is based on the logarithmic function in addition to Oppenheim’s
inequality and, as a consequence, requires to be positive
definite rather than nonnegative definite so that it will exist and
can be differentiable. This result bounds the performance of the
algorithm when separating signals with variances close to zero.
To overcome this problem, Aichner et al. [14] propose the regu-
larization strategy by adding to the diagonal elements of
with a constant regularization parameter , i.e.,

(47)

where is corresponding diagonal ele-
ments of and is a positive constant.

Alternatively, a dynamical regularization is also introduced
in [14] by computing using

(48)

where and are positive constants.
For convenience, the log algorithm and its regularized

versions using a constant and a dynamical regularization pa-
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rameters are, respectively, referred to as LOG, LOG-CR and
LOG-DR.

We perform separation using the proposed algorithms and the
log algorithms with and without regularization under three dif-
ferent cases, i.e., two source signals having high variance, two
source signals with one having low variance and two source sig-
nals in a noisy environment.

The two source signals are generated by autoregressive
models of order two (AR2)

where and are positive constants that control the nonsta-
tionarity property of the source signals, and are
generated randomly by a normal distribution process.

By changing the values of and , the signals and
become nonstationary through the change of their variances.
Therefore, we divide and into two blocks using two sets
of and . This method not only demonstrates a simple non-
stationarity property of the signals but also offers a set of two
correlation matrices for the implementation of the generalized
eigen decomposition (GED) method [31], [32], which separates
the signals by using two correlation matrices.

Since a set of two output signals correlation matrices
will be used in all experiments, we are thus able to employ GED
as a reference that gives a closed-form solution. All algorithms
are tested on three cases, and is averaged over 500 indepen-
dent trials of the above nonstationary source signals, each with
5000 samples. A penalty factor is set to 0.001 for BP and
NBP in all experiments. The full rank mixing matrix with all its
elements randomly drawn from a normally distributed random
process is given by

Case 1 Two Source Signals Both With a High Variance: We
set for and
for . Fig. 1 shows a faster convergence rate of
LOG, which is due to its steeper cost function. All algorithms
converge to the result obtained from GED though with different
rate. It should be mentioned that, apart from NBP whose upper
bound is unity, the upper bounds of all other algorithms have
not been given explicitly, and thus their step-sizes used in the
experiment have to be chosen empirically to be as large as pos-
sible but for which each algorithm still converges.

Case 2 Two Source Signals With one Having a low Vari-
ance: We study the effect of gradient noise amplification in-
duced by a low variance signal. Unlike , the natural
gradient requires an inverse of a matrix, meaning that
the source signals need to be active throughout the observation.
Moreover, a small value of any elements of such a matrix will be
sufficient to cause an excessively large natural gradient leading
to the performance degradation of the algorithm. In this experi-
ment, is decreased to 0.1 for and the other
parameters including those for remain similar to
Case 1.

Fig. 1. Mean performance indices of BP , NBP , LOG, and
GED obtained from the mixtures of two nonstationary AR2 source signals, both
with a high variance.

Fig. 2. Mean performance indices of BP , NBP , LOG, and
GED obtained from the mixtures of two nonstationary AR2 source signals with
one source signal having a low variance for a certain period of time.

In Fig. 2, the best performance is obtained from NBP. The
performance of LOG considerably deteriorates when compared
to Case 1 due to the gradient noise amplification caused by
the low variance signal. To mitigate this effect, we need to de-
crease the step-size of LOG. The better performance, however,
is achieved at the expense of slower convergence rate.

Fig. 3 shows the performance of BP, NBP, LOG-CR,
LOG-DR, and GED when is reduced to zero for

and the other parameters remain the
same including those for . In this case, the log
algorithm cannot compute after a few iterations and
fails to separate the signals. To improve the algorithm in such a
situation, a constant regularization and a dynamical regulariza-
tion are needed to prevent the divergence of the algorithm.
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Fig. 3. Mean performance indices of BP , NBP , LOG,
LOG-CR, LOG-DR, and GED obtained from the mixtures of two nonstationary
AR2 source signals with one source signal having zero variance for a certain
period of time.

The LOG-CR algorithm has solved the in-
vertibility problem of by adding to all its diagonal el-
ements a positive constant enabling the algorithm to con-
verge to the result obtained from GED. A more efficient tech-
nique for solving the invertibility problem of is to em-
ploy a dynamical regularization. It can be seen that LOG-DR
provides performance comparable with NBP. This comparable
performance of LOG-DR and NBP is nearly as good as that ob-
tained in Case 1. In addition, we investigate the computational
complexity of the NBP and LOG-DR algorithms. It is found that
NBP requires oper-
ations, which is more than operations
required by LOG and opera-
tions required by LOG-CR. However, only LOG-DR provides
performance comparable with NBP. We thus need to investigate
further the computational complexity of the dynamical regular-
ization parameters used in LOG-DR. The dynamical regulariza-
tion exploits the exponential function, which can be computed
using [33]

(49)

By use of (49), the LOG-DR algorithm requires
additional operations and amounts totally to

operations. We see that
both NBP and LOG-DR have the complexity of , but the
complexity of LOG-DR also depends on the choice of . In
this experiment , the computational complexity
of NBP will be more than LOG-DR when is set to be less
than 23. However, small values of are not sufficient to
estimate (49) accurately, especially when the absolute value of
the exponent term is large. It can therefore be said
that NBP is more preferable for the BSS problem when
and are small, whereas LOG-DR is more computationally

Fig. 4. Mean performance indices of BP , NBP , LOG, and
GED obtained from the mixtures of two nonstationary AR2 source signals in
noisy environments.

efficient when the problem becomes more complicated and
the absolute value of the exponent terms used to compute in
the dynamical regularization are small as this requires smaller
values of .

Case 3 Noisy Environments: We investigate the performance
of algorithms when performing BSS in noisy environments. The
instantaneous mixing model in the presence of additive noise is
defined by

(50)

where is an addi-
tive noise vector, whose elements are drawn randomly from a
normally distributed random process.

The source signals parameters are set as in Case 1. Fig. 4
shows the mean of all algorithms converging to those obtained
from GED at various levels of signal-to-noise ratio (SNR). The
result also indicates the deterioration in performance of all al-
gorithms in the presence of noise with comparable performance
between NBP and LOG.

B. Online Algorithms

In the last but more realistic experiment, the OP and NOP al-
gorithms, which employ both the nonstationarity and nonwhite-
ness properties, and the stochastic relative gradient (SRG) al-
gorithm [19], which employs the nonstationarity property only,
are compared. Additionally, we also modify the log algorithm
to suit online application by using the following update:

off (51)

where is an instantaneous estimate of
the output signals correlation matrix which produces a positive
definite matrix required by the use of logarithmic function and
Oppenheim’s inequality.

In order to separate nonpersistently active signals which, in
this experiment, are speech signals, the above online log algo-
rithm needs to be used together with a dynamical regulariza-
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Fig. 5. Speech signals.

Fig. 6. Performance index of OP, NOP, online LOG-DR, and SRG obtained
from the mixtures of two speech signals.

tion and is referred to as online LOG-DR. The speech signals.3
are shown in Fig. 5 and the mixing matrix whose elements are
randomly drawn from a normally distributed random process is
given by

We set the forgetting factor for OP, NOP, and
SRG, and for OP and NOP. The step-size , the
scaling factor , and the regularization parameters and
are shown in the figure.

In Fig. 6, we can see that all NOP cases give
the results that are more robust to gradient noise than OP, SRG,
and online LOG-DR, which is due to the use of normaliza-
tion term that solves the gradient noise amplification problem.
The OP, SRG, and online LOG-DR algorithms all suffer from
excessively large gradients during the separation causing high
values of performance index. Also, it can be seen that, as is

3Available: http://www.bsp.brain.riken.jp/ICALAB/ICALABSignal-
Proc/benchmarks/Speech4.mat.

increased, NOP tends to converge more slowly. This can be ex-
plained by the fact that, as is increased, NOP has to deal with
more correlation matrices, which causes a slower convergence
rate. However, the better performance of NOP, as indicated by
its lower values of performance index, is achieved when is in-
creased because more information about the nonwhiteness prop-
erty is included. Inevitably, this better performance of NOP is
achieved at the cost of higher computational complexity. It is
thus worth comparing the computational complexity of NOP to
that of online LOG-DR. Like LOG-DR, the online LOG-DR
algorithm also requires sufficiently large to compute accu-
rately the exponential function in (49) particularly when the ab-
solute values of its exponent are large. By using the complexity
in Table I and the previous section, NOP is more computation-
ally efficient than online LOG-DR in the case where and
are small, whereas online LOG-DR is more suitable for solving
the problem that has large and and that employs large ab-
solute values of the exponent in the dynamical regularization.

VII. CONCLUSION

A class of Frobenius norm-based algorithms using penalty
term and natural gradient for blind signal separation which con-
sists of the offline/block processing (BP), the online processing
(OP) algorithms, and their normalized versions has been devel-
oped in this paper by using the nonstationarity and the non-
whiteness properties. We show that the global minimum cor-
responding to the desired demixing matrix exists in the region
defined by the penalty function. Associated with both BP and
OP is the gradient noise problem. We thus develop a normalized
version of the BP and OP algorithms so as to mitigate gradient
noise. By applying the minimal disturbance principle to the BSS
problem, we obtain the normalized BP (NBP) and the normal-
ized OP (NOP) algorithms which exhibit fast convergence and
robustness to gradient noise.

The proposed Frobenius norm-based algorithms have been
compared with the logarithm-based algorithms. All proposed
offline algorithms, when separating persistently active signals,
converge to the desired solution, though having a slower con-
vergence rate than the logarithm-based algorithm. The superior
performance to the logarithm-based algorithm with and without
regularizations is achieved by NBP when separating nonper-
sistently active signals, which has confirmed the capability of
the proposed normalized algorithm to solve the gradient noise
problem. When separating speech signals using online algo-
rithms, the NOP algorithm performs better than the online log-
arithm-based algorithm with dynamical regularization and the
stochastic relative gradient algorithm as it employs the normal-
ized term to cope with gradient noise amplification.

The proposed normalized algorithms, although they require
higher computational complexity than the logarithm-based al-
gorithm without regularization, are more computationally effi-
cient than the logarithm-based algorithm with dynamical regu-
larization, which requires high complexity to compute its expo-
nential function, especially for the BSS problem having small
numbers of signals, blocks, and nonzero time lag.

Future research will focus on applying the proposed algo-
rithms to solve convolutive BSS problem in the frequency
domain.
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APPENDIX

A. Proof of Prerequisites 1

To prove the necessity of the Prerequisites 1, we employ the
Jacobi rotation to transform an unknown mixing matrix and
a source signals vector into a different unknown mixing
matrix and a different source signals vector , whose
observed signals vector possesses the same
second-order statistical property as .

1) Let us assume that, for a given and are lin-
early dependent such that . Then, consider two
unknown mixing matrices and

with and defined by

where and are vec-
tors. Also, consider two source signals vectors

and
with and given

by

Due to the use of Jacobi rotation, we obtain
. Accordingly, it follows that

. Next, we consider the second-order
statistics of and . Since the source signals are
uncorrelated to each other and , we thus
have . Also,
it can be shown in a similar fashion that
and . Accordingly, it follows that

.
Now, we can see that the second-order statistical relation be-

tween and using a set of local time-average correla-
tion matrices is similar to that of and , even though
these two pairs of relations originate from different source sig-
nals and different mixing matrices. Hence, it can be concluded
that it is not possible to perform BSS using a set of local time-av-
erage correlation matrices in the case that and

, are linearly dependent. In addition, this prerequi-
site generalizes the separability condition found in Proposition
1 of [32], where two correlation matrices of nonstationary sig-
nals at zero time lag obtained from two different time intervals
are considered.

2) Let us similarly assume that, for a given ,
which is the case of linear dependence between and

. Consider again the above-defined mixing processes
and . It can be readily

seen that . For the second-order sta-
tistics of and , since , we obtain

. Likewise, it
can be shown that and .
Accordingly, it follows that .

We readily see that the second-order statistical relation be-
tween and is similar to the relation obtained from

and no matter what time lag is chosen. Therefore, it
can be concluded in a similar fashion as 1) that it is not possible
to perform blind signal separation using a set of local time-av-
erage correlation matrices whenever and

, are linearly dependent.
This prerequisite, when the local stationarity property is ex-

tended to the whole set of samples, can be viewed as a general-
ization of the separability condition on the normalized spectra
of stationary but nonwhite source signals in [1], which utilizes
variance normalization by considering

and as a special case of the condition found in [34] when a
cycle frequency of the th and th cyclostationary source sig-
nals is zero. In addition, the nonwhiteness separability condition
with proof for stationary but nonwhite complex signals is given
in [35].

B. Proof of Proposition 1

1) is immediate. For 2), every matrix is full rank by
Definition 1 and thus has independent rows and columns with
at least one nonzero entry in each row and column. By using 1),
an appropriate permutation and scaling of the rows of a matrix

gives a matrix whose properties satisfy . Accordingly,
is a case of 1) and hence is a subset of .

C. Proof of Lemma 1

Using defined in (9) and making use of (12), we can
express the natural gradient as

off (52)

First, if , then it is straightforward that is a
zero matrix and, second, if , then the
term off is equal to a zero matrix for all and, as
a result, is also equal to a zero matrix.

Conversely, if , we can rewrite (52) as

off (53)

Expanding the term off using the relation
off and rearranging (53),
we obtain

(54)

Using (8), we see that (54) holds, when either , which
also results in , or is a diagonal matrix. The
latter case is the case where . We
therefore conclude that if , then or

.
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D. Proof of Theorem 1

By using the first-order conditions from (12) and (14), we
obtain the following stationary points of : 1) ; 2)

, and 3) but
.

To examine whether these points are a maximum, minimum,
or saddle point, we follow [36] to investigate the effect of a small
perturbation . In practice, the small perturbation

can be achieved by setting and to be sufficiently small.
At the perturbed point , we obtain

off

(55)

(56)

For sufficiently small , the quadratic term
in (55) can be neglected. The difference

at the stationary point 1) thus
becomes

(57)

The approximation in (57) results from dropping the
small quadratic term . Similarly, the difference

is of the
form

(58)

It is clear that (57) is equal to (58) except for the sign. Therefore,
we conclude that the stationary point 1) is a saddle point of .

By using Proposition 1 and Lemma 1, the stationary point
2) is nothing but . We now drop the quadratic
terms and . As a result, the differences

and at the stationary point 2),
respectively, become

off

(59)

off

(60)

From (60), we conclude that the stationary point 2) is the min-
imum of .

The stationary point 3), by Lemma 1, is not a desired
demixing matrix but is the point that causes an unde-
sired solution to the problem. By using (53), (14), and

, the stationary point 3) is the point that
satisfies

off

(61)

Next, we consider the neighborhood of , where the diag-
onal elements of are defined as with being
a small perturbation and . Since both
and are always positive by setting, we see that all the diag-
onal elements of the first and the second terms on the left-hand
side of (61) are always positive. Accordingly, (61) is not equal
to a zero matrix when is the diagonal elements of
and , which means that is in the neighborhood of

. Therefore, it can be said that the stationary point 3)
does not exist in the vicinity of .

Since is a nonnegative function, and at the sta-
tionary point 2), we therefore conclude that is, by
Definition 1, the desired demixing matrix as well as the global
minimum of in the neighborhood of a matrix whose diag-
onal entries are all equal to unity.
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