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ABSTRACT
The DYPSA algorithm detects glottal closure instants (GCI)

in speech signals. We present an improvement in the
algorithm in which a voiced/unvoiced/silence discrimination
measure is applied in order to reduce the spurious GCIs
detected incorrectly for noise and unvoiced speech. Speech
classification is addressed by formulating a decision rule for
the glottal closure instant candidates which classifies the
candidates as voiced or non-voiced on the basis of feature
measurements extracted from the speech signal alone. The
technique ofDynamic Programming is then employed in order
to select an optimum set of epochs from the GCI candidates.
The algorithm has been tested on the APLAWD speech
database with 87.23% improvement achieved in reduction of
spurious GCIs.

Index Terms-Close Phase, Glottal Closure, Speech
Classification, Speech Processing.

1. INTRODUCTION
T HE classical model of human speech production system is

generally represented by a linear source tract model
excited by a quasi-periodic signal or a noise like

waveform. In several important applications of speech
processing, it is advantageous to work with the vocal tract and
the excitation signal independently. Separation of the vocal
tract from the source is based on accurate estimations of glottal
closure instants (GCIs). Having the ability to identify the
instants of glottal closure enables the use of larynx
synchronous processing techniques such as closed-phase LPC
analysis [1] and closed-phase glottal inverse filtering [2].
These techniques make it possible to separate the
characteristics of the glottal excitation waveform from those of
the vocal tract filter and to treat the two independently in
subsequent processing. Applications include low bit-rate
coding [3] [4], data-driven techniques for speech synthesis [5],
prosody extraction [6], speaker normalization and speaker
recognition. The DYPSA algorithm is a recently proposed
technique for identifying GCIs and will be discussed in the
following section. In this paper, we describe a modified
version of the algorithm which maintains all the advantages of
DYPSA's high accuracy in voiced speech but overcomes the

problem of erroneously detected spurious GCIs for unvoiced
speech encountered in the current form of the algorithm. The
approach will involve defining 3 classes of speech as voiced,
unvoiced and silence. In practical applications, true silence is
always disturbed by the presence of noise. Therefore, we use
the term 'silence' in this paper to mean the absence of speech,
such as occurs outside speech endpoints or during short
pauses.

2. REVIEW OF THE DYPSA ALGORITHM
The Dynamic Programming Projected-Phase Slope

Algorithm (DYPSA) is an automatic technique for estimating
GCIs in voiced speech from the speech signal alone [7].
DYPSA involves the extraction of candidate GCIs using
phase-slope function as presented in [8]. The GCIs are
identified from this phase-slope function as positive-going
zero-crossings (PZC). DYPSA also involves identification of
additional candidates, which may have been missed if the
phase-slope function fails to cross zero appropriately. An
optimum set of epochs is then selected by minimizing a cost
function using N-best Dynamic Programming (DP) technique
as presented in [9] [10]. The cost function comprises of speech
waveform similarity cost, pitch deviation cost, projected
candidate cost, normalized energy cost and the ideal phase-
slope function deviation cost.
The accuracy of DYPSA has been tested on the APLAWD

speech database [11] with the reference GCIs extracted from
the EGG signal. A comparative evaluation of DYPSA with the
previous techniques such as [12], [13] and [8], has shown
significantly enhanced performance with identification of
95.7% of true GCIs in voiced speech.
However DYPSA, in its current form is not able to

distinguish when voiced speech is present and the algorithm
detects spurious GCIs for unvoiced speech. For DYPSA to
operate independently over speech segments containing both
voiced and non-voiced speech, we need to detect the regions
of voicing activity. This is viewed as a classification problem
between voiced and unvoiced speech. The solution involves
incorporating a voicing decision for the GCI candidates within
the algorithm. The GCI candidates identified as occurring in
the unvoiced speech segments are then removed.
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2.1 Identification of GCI Candidates
The speech signal with sampling frequency 20kHz is passed

through a Ist order pre-emphasis filter with a 50 Hz cut-off
frequency and processed using autocorrelation LPC of order
22 with a 20 ms Hamming window overlapped by 50%. The
pre-emphasized speech is inverse filtered with linear
interpolation of the LPC coefficients for 2.5 ms on either side
of the frame boundary. Given the residual signal u(n), and
applying a sliding M-sample Hamming window w(m), as
defined in [7], we obtain frames of data as:

{w(m)u(m + n), m=O....,M-1
Xn(M) = (1)

) 0, otherwise

The discrete-time Fourier transform of xn (m) is:
00

Xn(W) = Exn(m)e ica (2)
m=O

The phase slope function was defined in [8] to be the
average slope of the unwrapped phase spectrum of the short
time Fourier transform of the linear prediction residual. The
phase slope function defined in [7] is:

'Fn (0 =d arg( Xn W) (3)

DYPSA identifies the instants of glottal closure as the
positive-going zero-crossings of the phase slope function. In
studying the phase slope function it is observed that GCI
events can go undetected because the phase slope function
fails to cross zero appropriately, even though the turning
points and general form of the waveform are consistent with
the presence of an impulsive event indicating a GCI. To
recover such otherwise undetected GCI candidates, DYPSA
relies on a phase-slope projection technique. In this method,
whenever a local minimum is followed by a local maximum
without an interleaving zero-crossing, the mid point between
the two extrema is identified and its position is projected with
unit slope onto the time axis. This technique is presented in [7]
and draws on the assumption that, in the absence of noise the
phase slope at a zero-crossing is unity. The final set of GCI
candidates is defined as a union of all positive-going zero-
crossings and the projected zero-crossings.

2.2 Dynamic Programming
The selection of true GCIs from set of voiced candidates is

performed by minimizing a cost function using N-best
dynamic programming [9][10]. The procedures maintain
information about N most likely hypothesis at each step of the
algorithm. The value of N is chosen as 3 following the
approach in [7]. Cost function to be minimized is defined as:

IQI
minm ATC (r) (4)

r=l

where Q is a subset of GCIs selected from all GCI candidates,
Q is the size of Q, r indexes the elements of Q, [.]T

represents transpose and 2 is a vector of weighting factors
defined from [7] as:

i=IAAv P vJvIFvS ]T = [0.8,0.5,0.4,0.3,0.1]T (5)

The elements of the cost vector evaluated for the rh GCI are:

CQ (r) = [CA (r), cP (r), cJ (r), CF (r), cS (r)]T (6)

where CA (r) represents the speech waveform similarity cost,

cp (r) represents the pitch deviation cost, cf (r) represents

the projected candidate cost, CF (r) represents the normalized

energy cost and Cs (r) represents the ideal phase-slope
function cost. The elements of the cost function all lie in the
range [-0.5, 0.5] and a low cost indicates a true GCI. The
advantage of using the DP cost function is that it effectively
penalizes GCI candidates in a way that in most cases all but
one candidate per larynx cycles is rejected. For further details
the reader is referred to [7].

3. VOICED, UNVOICED, SILENCE
CLASSIFICATION

Segments of speech can be broadly classified into three
main classes: silence, unvoiced and voiced speech. Silence is
the part of signal where no speech is present and is generally
encountered in the beginning or ending of speech recordings
and between talk spurts. The technique adopted for speech
classification takes into consideration the statistical
distributions and characteristics features of the three classes.
The main components of the classifier as represented by Fig. 1
are (1) feature extraction, (2) Gaussian mixture modeling and
(3) the decision algorithm.

Speech

Voiced-
Uimojied-
Silence
Deci'sion

Figure 1: Block diagram of voiced-unvoiced-silence detector.
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3.1 Feature Extraction
Prior to analysis, the speech signal is high-pass filtered at

approximately 200 Hz to remove any dc or noise components.
Frames of 10 ms duration are then defined centered on each
GCI candidate found for DYPSA as described in section 2.1.
For every frame a set of features are extracted. The choice of
the features set is based on experimental evidence of variations
between classes and from the knowledge of human speech
production model. The five features used in implementing the
classifier, based on [14] are:

1) Zero-Crossing Rate: Voiced speech usually shows a low
zero-crossing rate while unvoiced speech has a concentration
of energy at high frequencies and typically exhibits a high
zero-crossing rate. The zero-crossing count for silence varies
from one speaking environment to another based on the
background noise.

2) Log Energy is defined as:

Es =10 * logi + Es2 (n) j (7)

where £ = 10-5, is a small positive constant added to prevent
computing log of zero. The energy of voiced sounds is much
higher than the energy of silence. The energy of unvoiced
sounds is usually lower than for voiced sounds, but often
higher than for silence.

3) Normalized Autocorrelation Coefficient is defined as:

N

Z s(n)s(n -1)
rX n=1
C1 - nl;;;;1 Es2(nN- (8)

Ks2 n2KZs2(n)2
n=1 n=O

Parameter C1 correlates adjacent speech samples and varies
between - 1 and + 1. As adjacent samples of voiced speech
waveform are highly correlated therefore C1 is close to unity.
On the other hand, the correlation is close to zero for unvoiced
speech.

4) First Predictor Coefficient from Linear Predictive
Analysis: It was shown by Atal [14] that the first predictor
coefficient is identical (with a negative sign) to the cepstrum of
the log spectrum at unit sample delay. Since spectra of the
three classes-voiced, unvoiced and silence differ considerably,
so does the first LPC coefficient and thus the first predictor
coefficient is used as a discrimination measure between the
three classes.

5) Normalized Prediction Error: A by-product of the Linear
Predictive analysis is the prediction error signal defined (in
dB) [15] as:

where E, is the log energy defined in (7) and
IN,

04(i,k) = - s(n - i)s(n - k) is the (i, k) term of the
nl=1

covariance matrix of speech samples. Round off errors may
yield a small negative value and 10-6 is added to prevent
computation of log of a negative number. The normalized
prediction error is considered as a measure of the uniformity of
the spectrum. The spectrum of voiced speech has a well-
defined formant structure which results in higher prediction
error as compared to unvoiced speech or silence.

Out of the five parameters discussed above, none are
sufficiently reliable to give robust classification in the face of
noise, speaker variation, speaking style and so forth as
confirmed by earlier studies [16]. Therefore our decision
algorithm makes use of all five features to optimally combine
their contributions in differentiating between the three classes.

3.2 Gaussian Mixture Modelling
It is assumed that the features for each class are from a

multidimensional Gaussian distribution where each class is
modelled as a Gaussian-shaped cluster of points in feature
space (in our case, 5-dimensional space). This assumption has
the advantages of computational simplicity as the decision rule
is determined by the mean vector ,U and covariance matrix C

estimated from the feature vector itself. In order to estimate the
parameter set we employ the K-mean clustering algorithm
followed by iterations via Expectation Maximization (EM)
algorithm proposed by Dempster [17]. The K-mean Algorithm
partitions the points of a data matrix into K clusters by
minimizing the distance to the nearest cluster centre (centroid).
This process is repeated till the cluster centers converge [18]
[19]. The EM Algorithm then maximizes the log likelihood
from incomplete data in order to estimate the parameters of the
distribution [20]. For simplification of computation the
individual clusters are not represented with full covariance
matrices, but only the diagonal approximations. Our
experiments have shown that no significant improvement is
obtained from using full covariance matrices in this context.

3.3 Decision Algorithm
We assume that the joint probability density function of the

possible values of the measurements for the ih class is a
multidimensional Gaussian distribution, where i= 1, 2, 3
corresponds to the voiced, unvoiced and silence classes
respectively. Let x be a d-dimensional column vector (in our
case, d=5) representing the measurements. Then the d-
dimensional Gaussian density function for x with mean vector

Pi and covariance matrix Ci is given by:

gi(x) =(2)-d2 C-1/2 exp1-(x-,Ui ) C1(x AiCi 2 (
(10)p

E =E -10*loglo 1076+1 ako(O, k) +0(0,0) (9)p s

k=l
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where C1 1 is the inverse of the matrix Ci, C is the

determinant of Ci. We define the normalized voicing measure
as:

y = g1 (x)
g1(X) + g2(X) +g3(X)

(1 1)

From the definition in (11), the GCI candidates occurring in
the voiced segments of speech get assigned a higher score. To
simplify computation, taking the natural log on both sides of
(10) we obtain:

d 1I
ln(g i (x)) ln(2z) - In|Ci -[[(x-f)tCi(X-fi)]

2 2 2

(12)
We define:

ln(TP, ) = ln(g, (x)) - ln(g, (x) + g2 (X) + g3 (X))

(13)

The candidates in the voiced regions are assigned a high
score whereas for the unvoiced speech and silence we obtain a

low score (close to zero). The question now remains as to the
choice of a threshold value for the voicing score. The
threshold of 0.1 has been chosen by empirically as suitable for
the APLAWD database. GCI candidates with scores below this
threshold are excluded from further processing. This avoids
DYPSA from giving spurious GCls during unvoiced speech pr

silence and also simplifies the computation required for the DP
routine within DYPSA.

4. EXPERIMENTS AND RESULTS
For the performance evaluation of DYPSA we require
reference GCls which are obtained from the EGG signal. The
speech and the EGG signal are first time-aligned and reference
GCls are then extracted from the EGG signal using HQTx
algorithm [21]. The performance comparison is carried out
based on the HQTx markers (indicating 'ground truth' GCls in
the speech waveform) and the GCls obtained from DYPSA by
the dynamic programming technique. In order to access the
performance of the DYPSA algorithm, we define with
reference to Fig. 2 [7]: Identification rate-The percentage of
larynx cycles for which exactly one GCI is detected; Miss rate-
The percentage of larynx cycles for which no GCI is detected;
False alarm rate-The percentage of larynx cycles for which
more than one GCI is detected; Identification error, ; -The
timing error between the reference GCls and the detected GCls
in the cycles for which exactly one GCI has been detected;
Identification accuracy, c - the standard deviation of ~.

These metrics give us a measure of the performance of
DYPSA for the instances of glottal closures in only voiced
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Figure 2: Definition of evaluation metrics. The dotted lines
depict a frame defined around each reference GCI marker to
indicate a larynx cycle (after [7]).

speech. We define a metric for the non-voiced regions of
speech by considering the number of GCls that are detected
incorrectly in unvoiced or silence regions per second of
unvoiced speech and silence. The improvement of the
modified algorithm over the original DYPSA for the spurious
GCls in non-voiced speech is defined as

Q= Vorig x1O where Vorig and Vmod are the number of
orig

spurious GCls detected in unvoiced and silence periods of the
signal by the original DYPSA algorithm and the modified
algorithm respectively.

Fig. 3 depicts an example of the modified DYPSA's
operation. For this utterance extract, the dashed lines marked
with C indicate the true GCls from the HQTx, the solid lines
marked with x indicate the GCls from the original version of
the algorithm and the lower lines marked with o indicate the
GCls from our modified DYPSA algorithm. It is observed that
DYPSA's GCIs match well with the EGG-derived GCIs at the
start and end of the extract. The original algorithm generates
spurious GCIs during the unvoiced speech. It can also be seen

that our modified algorithm generates more candidates than the
HQTx at the boundary from voiced to unvoiced speech
transition between 3.50 and 3.55s. This is attributed to the
uncertainty in voiced/unvoiced classification at the transition
boundaries and, in any case, can be controlled by adjustment
of the classification threshold in our method. For this example
the improvement of modified DYPSA over original DYPSA is
87.7%.

I T I
A v

5M

Authorized licensed use limited to: Imperial College London. Downloaded on January 4, 2010 at 08:41 from IEEE Xplore.  Restrictions apply. 



ii:~ ~ ~ ~ L

Speech Waveformn
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Table 1: Performance comparison

voicing discrimination.

for GCI detection with

Figure 3: GCI detection with modified DYPSA.
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Figure 4: GCI detection with modified DYPSA comparing

pre- and post- processing.

It is also observed that introducing the voicing decision prior

to the DP step reduces the identification rates as DYPSA

misses GCIs near the onset of voiced regions due to the use of

consistency measures in the cost function. From the cost

functions presented in [7], the pitch deviation cost and the

speech waveform similarity cost have been defined as

functions of the current and previous GCI candidates under

consideration by the DP. Pre-processing rejects the GCI

candidates that occur in the non-voiced regions; hence we

obtain misses at the beginning of voiced segments. In order to

improve the detection rates, implementing the voicing decision

as a post-processing (instead of pre-processing) step was

investigated. Once the DP has identified a set of GCIs (for

both voiced and non-voiced speech), we compute the

logarithmic voicing score for each of the GCIs. The GCIs

identified as occurring in the voiced speech are selected as

being the true GCls. Fig. 4 illustrates an onset of voiced

speech. GCls from HQTx are shown by the dashed lines

marked with . The solid lines marked with o show the results

from our modified algorithm when the voicing decision is

applied before the DP. The solid lines marked 0 show the

results when the voicing decision is applied as a post-

processor, for which improved detection can be observed.

Table shows comparative results on the APLAWD database

for identification rate, miss rate, false alarm rate and the

improvement over the original DYPSA with the voicing

decision implemented as pre- and post-processing. We observe

an improvement of 87.23% in reduction of spurious GCls by

pre-processing. Post-processing gives us reasonably close

performance and the improvement in reduction of GCls is

85.23% over the original DYPSA. We also note an increase in

miss rate which is attributed to occasional misses within the

voiced speech due to mixed voiced/unvoiced phonemes and

misses at voicing onset/endpoint boundaries. However the

transition areas are normally less problematic as the speech

data at the voiced non-voiced boundaries is less useful for

speech analysis.

5. CONCLUSION

We have presented a modification of the DYPSA algorithm

to include voicing discrimination that reduces the number of

spurious GCls detected in unvoiced speech or silence. The

improvement in non-voiced speech is conditioned by the need

to maintain the performance of DYPSA for the voiced speech

segments. The technique adopted classifies a speech segment

as voiced, unvoiced or silence on the basis of feature

measurements extracted from the speech signal alone. For each

of the candidates we obtain a normalized voicing score and

identify the voiced GCI candidates. Having identified a subset

of voiced GCI candidates the technique of Dynamic

Programming is used for the selection of true GCls. Having

identified a subset of voiced GCI candidates, DP is used for

the selection of true GCls. Incorporating the voicing

discrimination improves the detection of spurious GCIs in

Voiced Unvoiced
Ident. Miss False Improvement
Rate Rate Rate Q

DYPSA 95.6 1.8 2.6 0

DYPSA(Pre 93.8 4.2 2.0 87.2
processing)

DYPSA(Post 94.3 3.5 2.2 85.2
processing)

n I c 1 1 1 I

-1p .P.
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unvoiced segments by approximately 87% while the
identification rate for voiced segments is only reduced by 1 to
2%, with most of the errors occurring in the regions of voicing
onset and endpoints. Application of the voicing discrimination
as both a pre- and post-processor to the DP has been studied.
The post-processing approach shows slightly better
identification rate for voiced speech but with slightly less
improvement in the rejection of spurious GCls in unvoiced
speech. The enhanced robustness of the modified algorithm,
which reduces the number of spurious GCls, enables the use of
DYPSA autonomously over entire speech utterances without
the need for separate labelling of voiced regions. The ability of
DYPSA to correctly identify the glottal closure instances
enables the use of speech processing techniques such as close-
phase LPC analysis and closed-phase glottal inverse filtering
with many diverse applications in speech processing.
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