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ABSTRACT 
Partial-update algorithms reduce adaptive filter 
complexity by updating only a subset of taps at each 
iteration. However, they suffer a processing overhead in 
tap selection that can substantially reduce the 
computational advantages of partial-update schemes. 
Short-sort M-Max NLMS (SM-NLMS) addresses this 
problem by having the advantages of other partial-update 
schemes but with very low computational overhead in tap 
selection. SM-NLMS uses a low-complexity Short-sort 
procedure to perform tap selection and updates the 
selection periodically. We show a performance analysis 
based on contraction mapping for SM-NLMS using a 
time-varying unknown system and quantify its 
characteristics. Simulation results and the performance 
analysis show that SM-NLMS performs almost as well as 
NLMS but with substantially lower computational cost 
involved in tap selection and updating compared to other 
schemes. The straightforward structure and low 
complexity of SM-NLMS make it well suited to real-time 
and high-density applications such as echo cancellation 
and equalization. 

1. INTRODUCTION 
Partial-update algorithms can be suitable for adaptive 
filtering applications requiring real-time andlor high- 
density implementation [ I]. Typical examples in 
telecommunications are echo cancellation and 
equalization. In such applications there is a trade-off to be 
made in terms of the choice of the number of taps. The 
adaptive filter should be long enough to model the 
unknown system adequately. However, shorter filters 
normally converge more quickly and are computationally 
less demanding. The use of partial-update algorithms is a 
good approach to this trade-off in which sufficiently long 
filters can be employed but only a subset of the 
coefficients is adapted at each iteration. 

Partial-update algorithms can be seen to exploit 
sparseness in two ways. When the unknown system's 
impulse response is sparse, such as in echo cancellation 
for network echo and in VoIP, many of the adaptive 
filter's taps can be approximated to zero [2j. 
Alternatively, sparseness may be present in the tap update 
vector as a consequence of the distribution of the input 

samples in the (N x 1) regressor vector 
x, = [z(n) ,z(n - 1) ,..., z(n - N + 1)p. In both these 
cases, exploiting the sparseness properties can reduce 
complexity and improve performance [3]. 

The computational complexity of an adaptive 
filter comprises [4]: (i) convolution of the regressor vector 
xTb and coefficients h,, = [ho(n),h~(n),  ..., hN_l(n)lT at 
each time instant, n ; (ii) filter coefficient updates; 
(iii) other processing overhead and housekeeping. Partial- 
update algorithms reduce the cost of (ii) but with an 
addition penalty in (iii) due to the requirement to select 
the sub-set of taps to update - a task involving a sort 
routine or other processing overhead. 

This highlights the main problem we are 
addressing here which is that the computational saving 
due 'to the partial updating is offset (or possibly even 
exceeded) by the additional cost of tap selection. This 
motivates our study of partial-update algorithms that use 
efficient tap selection procedures to minimize the 
processing overhead. We present the Short-sort approach 
in the context of an NLMS-based algorithm although it 
can be generally applied to other adaptive filters. 

Some of the first work on partial-update 
algorithms was done by Douglas [I] including the 
periodic and sequential updating schemes and Max- 
NLMS algorithm [1,5]. The concept was developed 
further by Aboulnasr leading to the M-Max NLMS 
algorithm and supporting convergence analysis [3,6]. A 
block-updating NLMS scheme was studied by Schertler 
[7j. More recent work has 'been published by Dogancay 
and Tanrikulu who have considered both NLMS-based 
schemes and Affine projection algorithms [8]. Further 
consideration has been given to network echo cancellation 
algorithms and the use of proportionate NLMS schemes 
[9j. Partial-update schemes have also been applied to 
array processing, equalization and other applications of 
adaptive filters. 

2. SHORT-SORT M-MAX NLMS 
In partial-update schemes such as M-Max NLMS, a sort 
procedure is employed to determine the largest amplitude 
samples in the regressor vector and subsequently only'the 
taps corresponding to the largest samples are updated. In 
this way, algorithms of  this class employ a sparse 
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approximation to the regressor vector and hence to the 
corresponding tap update vector. 

The key feature of SM-NLMS is that it is able to 
maintain the advantages of such partial-update schemes 
but with a substantial reduction in the computational cost 
of determining the sparse approximation. This cost 
reduction is achieved in SM-NLMS by using the Short- 
sort procedure. The Short-sort operates by considering 
two regions of the impulse response. In Region I ,  length 
S (< N ) ,  all the taps are updated at each iteration. In 
Region 2, length (N - S) , a partial update is performed 
using an efficient approximation of M-Max NLMS. This 
approach i s  particularly suited to echo cancellation but 
also relevant to some other applications of adaptive filters 
including equalization. For example, in echo cancellation 
Region 1 corresponds approximately to the 'early 
reflections', which are large in amplitude and due to direct 
coupling and strong reflections. Region 2 corresponds 
generally to the decaying 'tail' of the response. 

The SM-NLMS algorithm is shown in Table 1. It 
operates by selecting A out of S taps in Region 1 
corresponding to the A largest samples in 
[z (n) , z (n  ~ l), ..., z(n - S +I ) ] .  The tap selection is 
performed by an efficient insertion sort [ I O ]  that we refer 
to as the Short-sort as presented in Table 2. The Short-sort 
is used to update this tap selection every S sample 
periods. The tap selection tracks the largest samples in the 
memory of the filter as they move through Region 2. The 
mean number of taps adapted by SM-NLMS at each 
iteration is 

L =  S + - ( N - S )  I s  " I  
The worst-case computation load of the Short-sort routine 
is ( A  + A(S  - A)) comparisons per S iterations 
compared to S(210gs(N) + 2) for the SORTLINE 
routine [ I  11 used in M-Max NLMS. 

The key assumption in SM-NLMS is that the set 
of A largest samples in xn is a good approximation over 
Region 2 to the set of largest samples in x " + ~ .  The 
validity of this assumption depends on the properties of 
the input signal { z ( n ) }  and also on 4 (4 < N )  and 
will be demonstrated by simulations described below. 

3. ANALYSIS 
This analysis considers SM-NLMS as a combination of 
NLMS applied to the first S taps and an approximate 
M-Max NLMS updating L = N A / S  of the remaining 
taps. The analysis of NLMS is given in [4]. We describe 
here a new analysis of M-Max NLMS for a zero-mean 
Gaussian noise input. 

The tap update in SM-NLMS is written 

where F, = diag(fo(n),fi(n), ..., jn-l(n)) is the tap- 
selection matrix and f , (n) is binary and tme if tap i is a 
selected tap at time n .  We denote the misalignment 
vector vn = h, - h,L and the error signal 

e(n) = w(n) - xav, where h,, is the optimal system 
and w(n) is the measurement noise. Samples 
corresponding to selected taps have variance tc. To 
introduce a time varying system model we employ a first- 
order Markov process [I21 

(3) 

(4) 

h,+1 = ah, + G s ,  

E[h,ha] = E[s,sf] = u:I. 

0 < \\E\' - fi(n)F,x,xf]\\ < 1 

Convergence in the mean can he derived using a 
contraction mapping approach [ 131: 

( 5 )  
which implies for z(n) i.i.d. 

For convergence in the mean square, we consider the trace 
of the autocorrelation matrix ofthe misalignment [13]: 

" " + , = h " + ~ - h , ~ + ~ = h , , ~ ( a h , + \ / 1 - a 2 ~ , ) + r , x , e ( n )  

= h, - h" + h, ~ ah, - \ /1-a2sn + rnxne(%) 

= [ I  - r,x,x: I", + r,axnuj(n) + (1 - a)h, - .jl-a2~, 

R,n+i  = E[vrz+~C+; , , ]  

= Rv.n - E [ ~ A ~ ] R , ,  - R,,E[x,x:r:] 

+E[ r,~x,x:v,vFx,x:r:] 

+ E [ r , , x d r :  Id 
+(1- a)2E[h,hz] + (1 - ~u~)E[s ,~sZ]  

and proceed to evaluate t r  { R,.,+l } using 

leading to 
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Applying the contraction mapping concept we can show 
convergence when 

which is satisfied by 
0 < /I < N/( N + 2 ) .  (7) 

We can then determine the excess MSE in SM-NLMS, < ,  
by approximating the mean misalignment vector, 7 ,  in 
the steady state by the weighted sum of contributions from 
NLMS and M-Max NLMS: 

giving < = U:? 

2 (l-a)N2o.:U:(S/N+-cTi) ( N - S )  

( 9 )  ~ PUw + Lk -- 
4 a d  

w h e r e $ = l P p ( ( N + 2 ) / N )  

4. EVALUATION 
Evaluation results are presented for SM-NLMS, M-Max 
NLMS and NLMS for a system length of N = 64.  SM- 
NLMS was tested using (A) 36 and (B) 15 tap-updates per 
iteration, so that { L: S, A, N }  takes values { 36,8,4,64} 
and {15,8,1,64} respectively. M-Max NLMS was tested 
choosing numbers of tap-updates that result in 
computational costs equivalent to SM-NLMS in cases (A) 
and (B). The computational cost of tap selection is 14,2.5 
and 1 comparisons per iteration for M-Max NLMS, SM- 
NLMS(A) and SM-NLMS(B) respectively. 

Mean square error (MSE) convergence tests are 
shown in Figure 1 using 100 trials, white Gaussian noise 
input, a stationaty unknown system of length 64, step-size 
of 0.1 and measurement noise at 40 dB SNR. The 
convergence speed obtained for.NLMS and case (A) for 
both partial-update methods is similar. In case (B), the 
convergence speed of SM-NLMS is substantially better 
than M-Max NLMS for the same overall complexity. 
Figure 2 shows SM-NLMS performance in an echo 
cancellation application in terms of echo return loss 
enhancement (ERLE) for a sentence of speech. The 
unknown system is a synthetic office impulse response of 
length 2048. Performance for SM-NLMS(A) is similar to 
NLMS with 64 taps. SM-NLMS(B) performs around 2 to 
5 dB below NLMS during periods of speech activity, but 
has only one quarter the cost of tap updates. 

Con~rgence 
5 7 -  ~ ~ ~T 

1 SM-NLMS(A) and M-Max NLMS(A) 

a 5 L L  Pi -A..- ~ ~ I -  A.. --I 
0 500 1000 1500 2WO 25W 3WO 35W 4W0 

Figure 1, Convergence behavior for 40 dB SNR, Gaussian 
noise input, 64 tap unknown system. 

~, - 

10' Samples 

Figure 2. Echo Retum Loss Enhancement for speech data 

S. CONCLUSIONS 
This paper has presented the SM-NLMS partial-update 
algorithm and its convergence analysis. The main 
advantage of SM-NLMS over other partial-update 
methods is its low complexity tap selection. Tap selection 
cost in SM-NLMS scales with the number of taps to be 
updated, unlike M-Max NLMS in which the cost depends 
on the filter's total taps. Performance of SM-NLMS and 
M-Max NLMS are roughly equal when updating more 
than about half the filter's taps. However, SM-NLMS out- 
performs M-Max NLMS when the overall complexity is 
reduced below this level, making SM-NLMS a good 
choice for high-densityilow-complexity applications. 
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Parameters 
N number of taps 
p adaptation gain 
E small positive constant 
S 
A 
Signals 

d(n) = desired respo~~se 

sort window length (< N )  
number of selected samples (< S) 

Xa = [s(n) .z(n-I)  ,..., r ( n - N + 1 ) ] T ,  

h,, = [$(.),hi(.) I - 3  h ~ - i ( n ) l  
F, = dmg(f,(nl,f,(n), ..., f~ . l ( f~) )  

e(.) = error signal 

Initialisation 
- 

F., = n. h., = n 

if (n mod S) = 0 
for i = n,i, ..., s - I 

I, if z(n - c) is one of the A largest values of x , ~  

Table I .  SM-NLMS Algorithm 
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Parameters 
S : sort window length (< N )  
A : # samples to select (< S) 

Signals 

m : smallest pi, i = 0 , l  ..., A ~ 1 
mi : index in (I of srriallest siuriule 

¶ = [oo,P1;-...YA-II: storage 

Ugorithm 
for n = 0:1,2, ... 
c = nmodS 
if (c = 0) then 

endif 
if (c < A) then 

m = m  

Pr = c 
if m > Iz(n)I then 

m = 1z(n)I 
mi = qr 

endif 

if m < Iz(n)I 
else 

U",* = c 
m = min value in [z(n - q.)]. i = 0 , l  ..., A - 1 
mi = value of i for [z(n - si)] = m, i = 0,1, ..., A - 1 

endif 
endif 
Table 2. The Short-sort Algorithm 
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