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ABSTRACT Section 3.2, we introduce the forced spectral diversity (FSD) con-
cept for addressing the detrimental effects of near-common zeros onThe common zeros problem for Blind System Identification aatv S loihs h S ocp mly obnto

(BSI) has been well known to degrade the performance of clas- adpiv -Saloihs h S ocp mly obnto

(icBSI) has beenhmswellknothefored ithperformance of clas-quet of spectral shaping filters and effective channel undermodelling tech-sic BSI algorithms and therefore limits performance of subsequent niue whc intr. mrv h efomneo h MFM9 niq~~~~~~~~~~~mues which in turn improve the performance of the NMCFLMSspeech dereverberation. Recently, we have shown that multichannel algorithm. The performance of the proposed approach is illustrated
systems cannot be well identified if near-common zeros are present. in Section 4.
In this work, we further study the near-common zeros problem us-
ing channel diversity measure. We then investigate the use of forced
spectral diversity (FSD) based on a combination of spectral shap- 2. THE NEAR-COMMON ZEROS PROBLEM IN BLIND
ing filters and effective channel undermodelling. Simulation results SIMO SYSTEM IDENTIFICATION
show the effectiveness of the proposed approach.

Index Terms- blind system identification, near-common zeros, 2.1. Review of the NMCFLMS algorithm
channel identifiability condition, forced spectral diversity Consider a typical acoustic environment with one talker and mul-

tiple microphones. This system can be modeled as a linear SIMO
1. INTRODUCTION system where the relationship between the source signal s(n) and

mth output xm (n) is given by
Blind System Identification (BSI) has attracted significant interest
due to its potential applications in several areas. Since the pioneer- xm (n) = Hm(n)s(n) + bm (n), m 1, 2, .. . M (1)
ing work by Tong et. al. [1], many second-order statics (SOS)-based
methods have been proposed, among which are the subspace [2] and where M is the number of channels, xm (n) [xm (n) xm -
the cross-relation [3] algorithms. Recently, these methods have been 1) ... xm(n - L + 1)]T and s(n) [s(n) s(n -

adopted from communications into the domain of acoustic signal 1) ... s(n - 2L + 2)]T. The vector bm(n) [bm(n) bm(n -
processing such as for acoustic dereverberation and speech source 1) ... bm(n - L + 1)]T denotes the additive noise and hm (n) =
separation. Both closed-form [4] and adaptive [5] algorithms have [hm,o(n) hm,i(n) ... hm,L-1 (n)]T is the vector of channel im-
been proposed to identify room impulse responses of length up to pulse response of length L, from which the L x (2L - 1) channel
hundreds of taps for acoustic dereverberation. matrix is given as

Most SOS-based BSI methods, such as [2][3][4][5], rely on the
channel identifiability conditions [3] from which one of the condi- [ hm,O((n) ... hm,L-1 (n) ... 0 1
tions is that the channels must be co-prime, i.e., no zeros being com- Hm (n) ..
mon across all channels. This is because when common zeros exist,
the BSI algorithms do not have sufficient information to distinguish 0 hm,o(n) hm,L_1(n)
the common zeros of the channels from ones due to the source sig-
nal. Unlike algorithms for communications applications where vari- with [*] T being the transpose operator. A system equation can then
ous pre-processing techniques, such as linear precoding, can be ap- be derived by concatenating all M outputs of (1) as follows:
plied to induce specific statistical properties, algorithms for acoustic
signal processing in speech dereverberation do not share the similar x(n) = H(n)s(n) + b(n), (3)
flexibility. A common way to mitigate the common zeros problem
is therefore to increase the number of microphones, which is com- where x(n) [xT(n) X2 (n) ... xm (n)]T,
putationally expensive and practically limited. More recently, the b(n) [bT(n) b T(n) ... bT((n)]T and H(n)
problem of near-common zeros (NCZs) has been addressed in [6][7] [HT(n) H T(n) ... HT(n)]T is the ML x (2L - 1) global
where results presented showed that the performance of SOS-based channel matrix.
BSI algorithms can degrade as zeros of different channels become As we are concentrating on the common zeros problem, hence-
close to each other. forth we consider only the noise-free case in this paper. In the ab-

In this paper, we first review blind single-input multiple-output sence of noise, a multichannel system can be identified using the
(SIMO) system identification in Section 2, where the problem of cross-relation between the ith and jth channel outputs [5], for i 7&
NCZs is discussed and illustrated. We then show experimentally, j, given by x[(rn)h3 (n) =xf(n)hi(n) for i, j =1, 2, ... ., M.
in Section 3.1, the relationship between the channel characteristics An error function can then be defined, for i 7&j
and the performance of the BSI algorithms such as the normalized
multichannel fast least-mean-square (NMCFLMS) algorithm [5]. In ei (n) =x[(rn)fi3 (ni- 1) -xT(n)fii(ri- 1), (4)
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Fig. 1. An illustrative example of two NCZ clusters for a three-channel
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250 . GMC-ST Fig. 3. Performance variation of NMCFLMS [5] with different number of
o ' channels using WGN input and simulated impulse responses.
a,200- M =2 ,

Z'150o set of 100 SIMO systems are generated by placing this source-sensor
100 configuration in different positions of the room. Finally, results are

z obtained by averaging across all systems.
Two generalized multichannel clustering (GMC) algorithms, the

7 '-M= 8 GMC-DC and GMC-ST proposed in [7] were employed to compute
0 1 2 3 4 5 6 the number of NCZs over the generated impulse responses. Fig-

Pairwise tolerance x 10-' ure 2 shows the average number of NCZs clusters, denoted as ct,
against the tolerance d with different number of channels M. To

Fig. 2. Number of clusters, ct, found using the GMC-DC and GMC-ST [7] show the corresponding performance variation of the BSI algorithm
algorithms against tolerance d with different number of channels M using againt cZs,owethe empoyednteNMCFLMS orithm [5]owithsiuae* mulersoss agyainst NCZs, we then empDloyed the NMCFLMS algorithm [5] withsimulated impulse responses. '-<

a step-size of 0.5. The signal-to-noise ratio (SNR) is set 60 dB to
avoid the misconvergence problem [9]. We use the normalized pro-

where h2i(n) is the estimated impulse response for the ith channel. jection misalignment (NPM) [10] to quantify the BSI estimation er-

the NMCFLMS algorithm [5] is derived by minimizing ror. In Fig. 3, performance variation of the NMCFLMS algorithm
Usi (4), with different number of channels is shown, where Ct is found forthe cost function -= 6 x 10-3. As can be seen from Fig. 2 and Fig. 3, the num-

M-1 M ber of clusters decreases when M increases, which results in better
J(n) =E (n), (5) NPM performance. We also note from Fig. 2 that for all sample

h1(n) 2 i=1 j=i+l systems, there exist no exactly common zeros, i.e., no NCZ clusters
were found for d = 0.

where h(n) = [hT(n) hT(n) ... h7T (n)]T is the channel vector
for estimated impulse responses and 112 denotes 12-norm. Our ob-
jective is to estimate hm (n) by employing only observations xm (n) 3. CHANNEL AND SPECTRAL DIVERSITY WITH
for m = 1,2, ... , M. Note that in this work the channel length L is EFFECTIVE UNDERMODELLING
assumed to be available.

It has been shown in Section 2 that the presence of NCZs results in
the performance degradation of the NMCFLMS algorithm. In addi-

2.2. Effect of near-common zeros on the NMCFLMS algorithm tion, increasing spatial diversity using more microphones is compu-

For an M-channel SIMO system, the channels are said to be co- tationally expensive. In this Section, we show that spectral diversity
prime if they do not share the same zeros. However, NCZs are clus- can be utilized to reduce the number of NCZ clusters. We propose
ters of zeros that satisfy the following conditions [7]: (i) each cluster to obtain such extra diversity for a SIMO system with NCZs via the
contains only M zeros with each channel contributing to a zero, and use of spectral shaping filters and effective channel undermodelling,
(ii) the Euclidean distance between any pair of zeros in a cluster lies to which we refer as the FSD concept.
within a pairwise tolerance d where d > 0. We note that given these
two conditions, any zero can be included in more than one cluster. 3.1. Channel diversity for SIMO systems
Figure 1 shows an example of two clusters for a three-channel sys-
tem where the zeros from each channel are represented by triangles, Consider a M-channel SIMO system defined in Section 2, if the
squares and circles. multiple channels do not share exactly common zeros, the global

To illustrate the number of NCZ clusters in SIMO acoustic sys- channel matrix (3) is of full rank [2], i.e., Rank(H(n)) = 2L - 1.
tems, a set of impulse responses was simulated using the method of This indicates that the smallest singular value of H(n), denoted as
images [8] with a linear array of M =8 microphones in a room of v2L-1 (H(n)), is non-zero. If exactly common zeros exist, H(n)
dimension 10 x 10 x 3 m. The source is located 1 m in front of the becomes rank deficient and leads to (J2L-1 (H(n)) =0. According
microphone array with uniform spacings of 8 cm. The sampling rate to [11l], the minimum non-zero singular value of the global channel
was 16 kHz with each channel impulse response having 512 coeffi- matrix, i.e., Amin = 2L-1 (H(n)) can be used as a measure of
cients and White Gaussian Noise (WGN) is used as source signals. A channel diversity of H(n).
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Fig. 4. Variation of Amin against the number of channels M for simulated filters
impulse responses used in Fig. 3.

Fig. 5. Schematic for a two-channel FSD SIMO system.

To show that such measurement can also be used for systems co 0 -

with NCZs, Fig. 4 depicts the variation of Amin against differ- a, - LPF
ent number of channels over impulse responses used in generating HPF
Fig. 3. The number of NCZs found using the GMC-ST algorithm [7] o-1001o*|
for each data point is also shown for d = 6 x 10-3. As can be seen, 0 0.1 0.2 0.3 0.4 0.5
the channel diversity increases with M. This indicates that as chan- Normalised frequency (x27: rad)
nel diversity increases, the NPM performance of the NMCFLMS
algorithm can improve correspondingly since the number of NCZs Fig. 6. Frequency responses of the spectral shaping filters.
reduces with M. It is also noted from the figure that for simulated
acoustic SIMO systems, the value of Amin is small, which can be
expected to result in a large condition number for H(n) and to fur- However, the channel length employed within the NMCFLMS algo-
ther degrade the performance of channel inversion algorithms, such rithm is fixed at L and therefore it is equivalently "blind" to such fil-
as the MINT algorithm [12], over acoustic SIMO systems. tering process. This results in an effective channel undermodelling,

i.e., the channel estimates produced by the NMCFLMS algorithm,
3.2. Spectral diversity with effective undermodelling denoted as hm (n), actually correspond to an undermodelled SIMO

system of length L.
Channel undermodelling was introduced for blind identification of For acoustic SIMO systems, the room impulse responses have
microwave radio impulse responses with small leading and tailing small tailing taps due to the reverberation tail that still exist after
taps in [ 1], where it was shown that the m-order least-squares (LS) being filtered by spectral shaping filters. This characteristic is similar
method [3] or subspace method [2] can estimate impulse responses to the microwave radio impulse responses shown in [11]. Therefore,
that are close to the m-order "significant" part of the full impulse we propose to effectively undermodel hm (n) by removing the last
responses which is obtained by removing small leading and tailing LP- 1 taps of hm (n), i.e.,
taps. This can only be achieved when the undermodelled system n Uh n M 1 2 9
offers sufficient diversity. The attempt of modelling full-length im- m(n) m ( ) m
pulse responses, however, can result in much worse estimation per- where U = [ILXL, OLX(L..-1)I with ILXL and OLX(L -1) being
formance. a L x L identity matrix and a L x (LP- 1) null matrix. As will be

Inspired by results in [11], our proposed FSD concept includes shown in Section 4, the combination of spectral shaping filters and
the use of spectral shaping filters and effective channel undermod- the effective channel undermodelling can result in increased channel
elling. For clarity of presentation, FSD in this paper is based on a diversity and reduced the number of NCZ clusters.
two-channel system case and a schematic for a two-channel SIMO Finally, we note that the original system can be recovered in
system is shown in Fig. 5. As can be seen, the microphone signal principle since the characteristics of the spectral shaping filters are
xm (n) is pre-processed using a pair of spectral shaping filters, e.g., known and could be inverted. In practice, effects of noise ampli-
a pair of high- and lowpass filters (LPF and HPF), the resulting filter fication in the inversion process will limit accuracy. However, an
outputs X/m (n) are then given as estimate of s(n) can be obtained without the need to "undo" the ef-

fect of the spectral shaping by inverting hm (n) using, for example,
Xm (n) =1§iHm (n)s(n) (6) the MINT algorithm [12]. Similar practical limitations apply but

we have found in our tests that such limitations are more than out-
fotrimx 1 2, wheen m denote th m p a i l weighed by the advantages obtained in the BSI due to the increased

matrix of dimension L x (L + L~ - 1), channel diversity, resulting in an overall improvement in our ability
[ frn,o fm,Lp-1 o 1 to equalize channels containing NCZs.fm,o fm,L I

j (7)Sm = . . .. . 7 ( ) ~~~~~~4.SIMULATIONS
fm,o fm,Lv- I

In this section, we further demonstrate the effect of FSD using the set
and fm [fm,0, fm,i,... fm,L__ l'T is the impulse response of of two-channel SIMO systems obtained from the impulse response
the mth filter of length LP. According to Fig. 5, xm (n) can be library that has been used throughout this paper. A pair of high- and
considered as the linear convolution between s(n) and an equivalent lowpass shaping filters of length LP 32 was generated with their
SIMO system of length L + LP-1, i.e., magnitude responses shown in Fig. 6.

To demonstrate the effect of FSD on SIMO systems with NCZs,
hm(T) =~F hm(n), m 1, 2. (8) we first measure the channel diversity over the set of two-channel
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Fig. 7. Variation of channel diversity Amin for the original system hm n Fig. 9. Performance comparison for the NMCFLMS algorithm between the
and the FSD system h' (n) for different simulated impulse responses. iginal semfhmm(nc) andsth fSD teN F ( rm).m original system hm (n) and the FSD system h' (n).
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