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ABSTRACT 

Subband adaptive filters suffer degraded performance when high 
input energy occurs at frequencies coincident with subband bound- 
aries. This is seen as increased error in critically sampled systems 
and as reduced asymptotic convergence speed in oversampled sys- 
tems. To address this problem a dynamic frequency decomposition 
scheme is presented which aims to control the frequency of sub- 
band boundaries such that they avoid spectral regions of high input 
energy. An efficient structure for this is described, which maintains 
the low complexity advantage of subband systems. Simulation re- 
sults show reductions in MSE of around 5-lOdBs in the critical 
case and convergence improvement in the oversampled case, in 
addition to increased robustness to coloured inputs in both cases. 

1. INTRODUCTION 

Subband adaptive filters (SAF) are used in system identification 
applications such as acoustic echo cancellation where the unknown 
system can be of the order of several thousand taps. They have the 
main benefits of reduced complexity and possible increased con- 
vergence speed due to reduction of eigenvalue spread in the sub- 
band signals [ 11. Errors in both critically and oversampled SAFs 
can be shown to be related to signal components around subband 
boundaries. In the case of critical sampling this manifests itself 
as dominating peaks in the final error signal around the subband 
boundaries 121. In the case of oversampling, slow asymptotic con- 
vergence is observed [3]. 

Our approach is to use non-uniform dynamic frequency-subban 
decomposition (NDS) to substantially reduce these errors. The al- 
gorithm chooses the decomposition so as to avoid high-energy sig- 
nal components around subband boundaries, whilst retaining high 
decimation factors when possible so as to keep complexity low. 

Previous work in [4][5] has been extended in this paper by in- 
troducing a filterbank structure appropriate for efficient NDS and 
examining the exact sources of error in uniform SAFs. These are 
crucial issues, as no suitable dynamic structure has been previously 
suggested and if complexity is not taken into account, improve- 
ments in performance cannot be evaluated consistently. Secondly, 
knowledge of the sources of error is essential for correct choice 
of decomposition. The following sections present a general filter- 
bank structure that will allow the dynamic alteration of subband 
frequency decomposition, and a control algorithm for the dynamic 
structure that reduces errors in SAFs around subband boundaries. 
Simulations are presented for both the critically and oversampled 
cases to demonstrate the effectiveness of the scheme. 
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Fig. 1. General structure for dynamic filterbank 

2. DYNAMIC FILTERBANK STRUCTURE 
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In our approach a non-uniform filterbank (NUFB) is obtained by 
merging the subbands of a k-channel uniform filterbank (UFB) 
and then decimating each of the resulting K (5 K )  subbands by 
an integer factor Mk [6]. This structure is modified to provide 
an efficient method of NDS. The structure has the general form 
of Figure 1, where z(n)  is the fullband input signal, E,(J) are 
polyphase components of a prototype lowpass filter P ( z ) ,  M is a 
modulation matrix, S ,  is a time-varying summation matrix con- 
sisting of ones and zeros, and ~ ( n )  are the k subband signals. 
The first stage of decimation is by a constant integer, A4, whilst 
the second stage is by a time-varying integer, Mk,,/@, for the 
k" subband. Strictly, IC should be denoted L, since it is time- 
varying, however this is usually dropped for clarity. M represents 
the lowest decimation factor in the structure and therefore defines 
the largest subband channel bandwidth, decided by the application 
and as the greatest common denominator of all possible A4k,,  

A 

A 

h 

Ai' = gCd (hfk,n) v k ,  n (1) 

to provide maximum decimation. 
In Figure 1 Block A is an oversampled UFB and Block B is a 

subband merging section. This structure is preferred since A can 
be implemented efficiently using fast transforms of the outputs of 
a decimated polyphase network [7] and B consists solely of adders 
and decimators. The structure also allows NDS by changes in B 
only, without the need for intermediate upsampling/downsampling. 
The synthesis bank will be the mirror of Figure 1. 

Disregarding for the moment important implementation de- 
tails to be discussed, which additionally specify Block A, the struc- 
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ture can be viewed as a generalisation, via the Noble identities 
[7], of the static structures in [6][8]. Near-perfect reconstruction 
is achieved for NUFBs derived from UFBs in this way, iff the fol- 
lowing condition is met [8] 

l k = O k n k ,  k = O , 1 ,  . . . ,  K - 1  ( 2 )  

where the summation of l k  bandpass filters, whose passbands ex- 
tend from n , k r / k  to ( n k  + l k ) r / K ,  form the analysis filter 
and f f k  is any positive integer. 

,. 

2.1. Critically sampled implementation 

Block A is an oversampled, uniform, modulated filterbank. In the 
case of a critically sampled NUFB, Block A can be implemented 
in a standard way, for ex:mple as a cosine-Fod$ted filterbank 
(CMF) by setting C = 2K and M to be a (KxK)  cosine modu- 
lation matrix combined with a complex-conjugate summation ma- 
trix [7]. 
satifies ( I ) .  Implementing the modulation using a fast DCT [9] 
gives an overall computational complexity for Block A, in terms 
of real multiplies per fullband sample period (rmfp), 

This will produce the desired subbands as long as 

(l/lG)(L, -t ((k/2) log, E + k) )  (3) 

where L,  is the length of the prototype filter P ( z ) .  Since for 
this structure 6 5 k, the computational cost of the filterbank is 
slightly greater then for a classical non-dynamic filterbank. How- 
ever, this computational penalty can be compensated for by reduc- 
ing the subband complexity whilst maintaining significant perfor- 
mance advantages over equivalent complexity static structures, as 
shall be seen. 

2.2. Oversampled implementation 

In the oversampled case thejmplementation of Block A is less 
straightforward. Let N k  := K / M k  be the oversampling ratio for 
the kLh subband. If N k  is an integer, C = K or C = 2K (for a 
DFT filterbank or a CMF respectively) and 6 satisfies (I) ,  then 
the polyphase components E , ( Z ~ ' ~ )  are expressed in terms of 
integer powers of 2. If N k  is not an integer, then c/lG cannot 
always be an integer unless A4 = 1, in which case all Block A 
operations will be camed out at the fullband rate, even if N k  = 1, 
otherwise fractional delays are required. 

There are several options for efficient use of fractional over- 
sampling ratios [ IO]. Our preferred implementation is where all 
subbands are complex-valued and arranged such that processing 
of only half the number of subbands is necessary (the others be- 
ing complex-conjugates), allowing N k  N l and making the over- 
all computational complexity almost equivalent to real-subband 
processing. To achieve this, C is the least common multiple of 
(2,h') and M = W c ( e J " )  = (CxC) DFT matrix (which in- 
cludes redundant terms), ensuring that the delays in the E,(z) 
terms are integer-valued and that the polyphase outputs are cor- 
rectly modulated. Further factorisation of M enables Wc(e3") to 
be implemented by a k-length FFT giving a computational com- 

,. h 

h 

h 

plexity [ 101, 

(l/fi)(L, + (2Zl0g2 k + 2 3 )  (4) 

Importantly, if the prototype filter P ( z )  is designed to have the 
stopband beginning at r/ m a x ( M k )  then the condition ( 2 )  can be 
ignored, since aliasing is limited to the stopband attenuation of 
P(z) .  This allows more flexibility in the choice of decomposition. 

3. CONTROL ALGORITHM 

The use ofNDS schemes for SAF is suggested? two cases below. 
Both using the same basic approach: KO = K ,  i.e. all subbands 
have minimum bandwidth at n = 0, giving the greatest resolution 
for merging decisions. The adaptation then proceeds in a block- 
wise fashion, in which merging decisions are made at the end of 
each block based on the criterion for the two cases. Smaller band- 
width subbands are retained where possible, as they provide the 
highest efficiency. The subband complexity (rmpf) for the NLMS 
algorithm is 

where Ltotal is the total number of taps in the structure. Subband 
merging is done binary-tree-wise, with two adjacent subbands be- 
ing merged at a time. This satisfies (2) and provides an efficient 
implementation - however the structure or criterion given are not 
limited to this merging scheme. 

Csub = 2 ~~~'(&at/Mk") (5) 

3.1. Critically sampled case 

Inband aliasing degrades the performance of critically sampled 
SAFs around the subband boundaries [2]. Consider, without loss 
of generality, a 2-band QMF SAF system with prototype P(z) ,  
unknown system S ( z )  and input X ( z ) .  The fullband error of this 
system is given by [ 1 I ]  

whereX(z) = [ X ( z )  X ( - z ) ] .  Theerrormainlycomprises aliased 
input at the subband boundaries [ 2 ] .  The motivation for NDS is to 
remove the subband boundaries which contribute most to E ( z ) ,  
thereby reducing the overall error. Hence in the bth (length B )  
block of samples the mean square input power for each subband 
? k , b  is calculated as 

(7) 

which is assumed to be proportional to the error it induces in (6) 
and hence adjacent subbands are merged if F k , b  is higher than the 
mean over all subbands. It cannot be guaranteed that simply reduc- 
ing the number of subbands uniformly or using a different static 
decomposition would reduce these boundary effects, since they are 
dependent upon X ( z )  and to a lesser extent S ( z ) .  

3.2. Oversampled case 

In the oversampled case inband aliasing is limited to the stopband 
attenuation of the filterbank. This is typically large enough such 
that the error source identified in (6) is practically eliminated. In 
this case, the use of NDS addresses the slow asymptotic conver- 
gence [3]. The MSE E k , ,  in the ICth subband, at time n, can be 
expressed as [3] 
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which is truncated to the length of the new subband adaptive filter. 
In practice I O J ( Z )  are non-ideal and hence an approximation of 
e01 ( z )  is used, however no significant degradations are observed. 

If the subbands are formed through purely real operations (e.g. 
the CMF) band-position must be taken into account, as this will de- 
termine whether the subband signal contains the positive or nega- 
tive frequency spectrum part of the input. When & ( z )  differs in 
thiswithrespectto6$(z),cl(z), itmustbeshiftedbyr. Thiscan 
be seen by considering the critical decimation of a real bandpass 
signal. The reinitialisation of merged subband filters in this case 
can be written as 

1, otherwise 
h (12) 

where C;,k*l(ej") = I o ( * ~ ) ~ I , ( z ~ )  + I~(*z)(?I,*I(z ') ,  is 
the number of constituent subbands and Zi is as in (2). Conditions 
for other merging schemes are derived from similar consideration 
of critical decimation of real bandpass signals. Figure 2(b) shows 
an example of reinitialisation of SAF taps after merging using this 
scheme (solid line) compared with a simple reinitialisation to zero 
(dashed line), which causes transients in the error. 

Fig. 2. (a) Subband merging (b) simulation showing result for two 
different reinitialisation schemes 

5.1. Critical case 

5. SIMULATIONS 

To test the performance of NDS a coloured input z(n.) has been 
chosen, generated by filtering a Gaussian white noise (GWN) pro- 

and the UtlknOWll System IS s ( Z )  = Z-1023. This is an insightful 
case since the input spectrum has a peak which, in certain cases, 
falls at a subband boundary and s(z) is realistic in length and has 
a flat  spectrum ensuring performance h differences A are due to z (n )  
only. Five NDS systems with K = 16 and M = 4 are compared 
with five uniform SAFs with K = 8,7 ,6 ,5 ,4 ,  where the max- 
imum overall complexity (including the filterbanks1 of the NDS 
systems is set to the complexity of each of the uniform systems. 
Figure 3(a) shows the results from the uniform SAFs to be highly 
variable. For K = 8, there is little convergence because of the 
spectral peak in the input exactly at a subband boundary. The 
K = 4 system performs best, as it has the peak exactly in the 
centre of one of its subbands. The systems K = 7 , 6 , 5  perform 
at various levels and computational complexity does not govem 

where ck is the length L Wiener-Hopf solution in the subband 
and c$:,~ and Xk, l  are the eigenvectors and eigenvalues, respec- 
tively, of the (LxL) subband autocorrelation matrix RI, =E{XI,X;}, 
where xk is the k th  subband input. It has been shown that the 
most significant t e m s  of (8) are due to energy around the subband 
edges [3]. The objective then is to remove boundaries where the 
subband input or subband desired signal is large, increasing the 
convergence rate. Hence the mean-square_d-value of the subband 
input ? I , &  and the subband desired signals d k , h  are calculated as in 
(7) and adjacent subbands are merged if TI,,,, + &,h is larger than 
the mean-value over all subbands. 

cess with F ( z )  = 0 5 0.34z-I 0.42-' lt.z76z-l +~s81 , -2  (tnincated to 1024 taps), 

4. SUBBAND MERGING 

In this section we address the details of subband merging of adap- 
tive filters. This may be viewed as in Figure 2(a) for the binary- 

h 

tree merging mentioned previously, where CO, (2) results from the 
merging ofsubband filters e ~ ( z )  and ?I ( z ) ,  l o , l ( z )  are ideal low 
and highpass filters respectively with cutoff at x / 2 ,  and uo,l(n) 
arc subband signals from Figure I .  Yo1 ( 2 )  and Y o l ( z )  are given 
by (ignoring aliasing terms due to decimation since I o , ~ ( z )  are 
ideal) 

performance, as we have increasing error for K = 7,6,5.  Figure 
3(b), shows that the performance of each NDS system is approxi- 
mately equal and that the error increases with decreasing complex- 
ity ( K  increasing). The dynamic frequency decomposition can be 
seen to be converging during the first 2000 iterations to solutions 
that avoid placing a subband boundary in the spectral region with 
high input energy. 

I A 

Y O l ( Z )  = I o ( z ) c o ( z 2 ) 1 ~ " ( Z ~ )  + f l ( 2 ) 6 ( Z 2 ) u l ( z ~ l  ) (9) 5.2. Oversampled case 

= ~ , , l ( z ) ~ o ( 2 , \ ~  I -  ) + ~, l l (z ) [~ l (2h)  (10) To demonstrate the MSE behaviour in @), z(n,) is chosen to be 
h 

GWN and the unknown system to be F ( z ) .  Five NDS systems 
have 2 = 32 bands (only 1?/2 are processed) and minimum over- 
sampling ratio N N D S  = 8/7. These are compared against 5 uni- 
form systems of increasing complexity, with K = 16, 14, 12, lo,$, 

If we equate (9) and ( I O ) ,  using 11 (2) = l ~ ( . - z ) ,  then C O ~ ( Z )  is 

h n 

COI(2) = 10(*)CO(2) + ( I  1 ) 
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Fig. 3. Uniform and adaptive critical SAF systems - (a) uniform 
fixed decomposition (b) NDS with fixed maximum complexity 

Fig. 4. Uniform and adaptive oversampled SAF systems - (a) uni- 
form fixed decomposition (b) NDS with fixed maximum complex- 
ity 

with oversampling ratios NU Y 8/7. Again the maximum overall 
complexity of the NDS systems was set to that of the correspond- 
ing uniform system. Figure 4(,a), shows a variation of convergence 
speeds and no consistent relation between complexity and perfor- 
mance, for the uniform fixed systems. In Figure 4(b), there is sig- 
nificantly less variation and no situation when an increase in com- 
plexity results in a decrease in performance, for the NDS systems. 

6. CONCLUSIONS 

This paper has presented a dynamic non-uniform filterbank struc- 
ture that reduces performance limitations of static subband adap- 
tive systems with coloured inputs. Analysis of the complexity of 
the structures and of merging of subband adaptive filters is given. 
Simulations show that the robustness of NDS to highly coloured 
inputs yields improvements of around 5-l0dBs in MSE in the crit- 
ical case without increasing complexity. In the oversampled case, 
corresponding improvements in convergence speed are particu- 
larly significant. The dynamic system overcomes the problems of 
static systems by finding a subband decomposition that avoids sub- 
band boundaries in spectral regions with high input power andor 
high unknown system gain. The oversampled structure is preferred 
since, in the critical case, the constraints on subband decomposi- 
tion limit flexibility. 
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