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Recent publications in adaptive filtering have shown great 
interest in the use of nonlinear structures. In particular the 
quadratic Volterra adaptive filter has proved very popular. 
In this paper we start by demonstrating the need for 
nonlinear adaptive filters. Subsequently we present a 
method for the estimation of the level of nonlinearity of a 
system so as to be able to select the appropriate adaptation 
algorithm. Lastly, we apply the nonlinear measure to 2 
examples from the open literature. 

1. INTRODUCTION 

The ideas of linearity permeate throughout adaptive 
filtering, and signal processing in general, despite the well 
known fact that real systems and signals often contain 
significant amounts of nonlinearity. Nevertheless this 
linear assumption has proved quite successful over the last 
four decades. However, as the need for greater 
understanding and accuracy increases so nonlinear 
techniques are being seriously studied as a practical 
alternative to more established (linear) methods. 

The major drawback to more widespread use of nonlinear 
techniques has been their mathematical and computational 
tractability. Much of the theory is defined in terms of 
integral operators which can only be solved using iterative 
approximations. Most of the present interest is directed 
towards Volterra type structures. The reasons for this are 
that not only can it represent a large class of systems but, 
more importantly, its output is still linear with respect to 
its system kernels. This enables many of the ideas of 
linear filtering to be retained as the only change in the 
structure of the filter is that a linear filter is replaced by a 
non-linear one. Indeed the linear filter can be shown to be 
the special case of the non-linear Volterra filter of order 
one. 

Since the structure of the Volterra adaptive filter is a direct 
translation of the linear adaptive filter to the non-linear 
domain it is reasonable to expect them to have similar 
adaptation schemes. Consequently, most adaptation 
algorithms presently in use employ the LMS concept. 

In section 2 some basic theory behind Volterra Filters is 
outlined, including the commonest adaptation algorithms. 
The main purpose of this section is to assess the viability 
of non-linear adaptive filtering. In particular a system 
identification scheme is used to demonstrate our ideas. As 

a means of comparison the linear LMS and NLMS 
algorithms are also used. Both the noise free and additive 
noise cases are dealt with. 

In section 3 we discuss the problem of finding a technique 
to measure the level of nonlinearity present in a system. 
We outline a new measure which is applicable to not only 
Volterra structures but to any separable nonlinear 
structure. Conclusions are drawn from this study in 
section 4, followed by some relevant references. 

2. THE NEED FOR NONLINEAR 
ADAPTMIFILTERING 

The issue of demonstrating the need for nonlinear 
structures is approached using the system identification 
set-up where the system to be identified is the sum of an 
8th order linear MA section and a single quadratic 
nonlinearity. That is, the desired signal input to the 
adaptive filter can be described as 

d ( k )  = Linear Part + Quadratic Part 
= H ( z ) x ( k )  i a x 2 ( k )  (2.1) 

where H(z) is the z-domain transfer function of an 
MA(8) system [4], r(k) is the adaptive filter input, and 
a is a controllable constant which is used to alter the 
nonlinear contribution to the desired signal d(k). 

2.1 Adaptation Rules 

The performance of the adaptive filter is evaluated using 
the linear and nonlinear adaptation rules described in 
Tables 2.1-22. Further details of these algorithms can 
be found in [2], [3], [SI, [6 ] .  Notice that only the 
weight update formulas, for algorithms other than the 
linear and nonlinear LMS, are outlined, since all other 
equations remain unchanged. 

The first adaptation scheme outlined in Tables 2.1-2.2 is 
the well-known LMS routine. Although it is easy to 
implement and is computationally attractive some form 
of normalisation is usual when working with real 
signals. The most basic form of normalisation possible 
is to normalise with respect to the input signal. The 
resulting algorithm will be referred to as the Standard 
NLMS algorithm. This is one of the commonest 
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LMS Algollthm 
Initialization: w ( 0 )  - 0 
Adaptive Filter : y ( k )  - w T ( k ) x ( k )  
EnurEquation: e ( k )  - d ( k )  - x ( k )  
Weight Update : w(k + I )  - w ( k )  + px(k )e* (k )  

Standard NLMS Algorithm 
WeightUpdate:w(k+I) = w ( k )  + bx(k )e ’ (k )  

Y +x’ (k )x (k )  

Power NLMS Algorithm 
Initialization: p ( k )  = 1 
Powerupdate: p ( k + l )  = A p ( k )  + ( l - A ) x z ( k )  

O<b<2,  O < < A  < I  - 
Table 2.1 Linear Adaptation Schemes 

stochastic gradient techniques used in practice, 
however, closer examination will show a number of 
problems. Firstly, there exists no universal rule for 
the correct selection of the denominator constant y 
in the weight update equation(s). It should 
“obviously” be small with respect to the level of 
input power, however, what is the definition of 
“small”. In practice the choice tends to be empirical 
or based on a priori knowledge of the input signal. 
Our experience has been that even small variations 
in the choice of y can produce dramatically differing 
results. 

Another problem with the Standard NLMS is that 
the normalisation is dom with respect to the overall 
signal power, even though the power flow in each 
filter tap is unequal. In the Power NLMS this is 
overcome by normalising each filter tap by the 
power flowing through it. This is achieved by 
recursively estimating the normalisation factor. The 
lowpass filtering operation which is inherent to this 
estimation acts also to introduce a smoothing effect. 

The exponential forgetting factor h used in the 
Power NLMS performs a similar role to the 

forgetting factor h in the RLS 

LMS Algorithm 
Initialization: w I ( 0 )  - 0, wz(0,O) - 0 

Adaptive Filter: y ( k )  - w:(k )x (k )  + wF(k.k)xT(k)x(k)  
ErrorEQuation: e ( k )  - d ( k )  - x ( k )  
Weight Update : w l ( k  + I) - w, (k )  + p ,x (k )e* (k )  

Standard NLMS Algorithm 
b1x(k )e8 (k )  

Y 1  + x T ( k ) x ( k )  
Weight Update : w,(k + I )  - w,(k)  + 

O < G l , G Z  <2, I Y f ( * I Y 2 ( < < 1  

Power NLMS Algorithm 
Initialization: p I ( 0 )  - I ,  pZ(0,O) - I 

Powerupdate: p l ( k + I )  = A p l ( k )  + ( 1 - A ) x 2 ( k )  

p z ( k  + I,k + I )  = A p z ( k )  + ( l - A ) b T ( k ) x ( k ) 1 2  

0 < G I ,  pz < 2, 0 << AI.AZ I 

Table 2.2 Nonlinear Adaptation Schemes 

alg&ithmy Indeed it can be shown [5 ]  
that the Power NLMS and the RLS 
alerelated. 

2.2 System Identification 

For the simulations presented the 
input signal in each case was a white 
Gaussian (0,l) signal. 

The linear and nonlinear results are 
outlined in Figure 2.1-2.4. Consider 
the linear LMS, noise free case 
indicated in Figure 2.l(a). At a=O.O 
the learning curve converges to a 
steady state value of -135dB in 225 
iterations. [Since there is no additive 
noise present the expected steady state 
value is -wdB, the -135dB level is a 
consequence of the finite precision 
used in our simulations]. For an a 
of 0.01 the steady state value is seen 
to he -34dB. As the value of a 
continues to increase by an order of 
magnitude the steady state value 
worsens by 20dB each time. In fact 
the a=10.0 learning curve is only 
marginally stable as it initially rises 
before settling into a narrow hand. 

The linear Standard NLMS 
performance shown in Figure 2.l(b) 
exhibits a similar performance to the 
LMS ones, except for three noticeable 
differences. Firstly, steady state is 
reached more quickly than the 
corresponding LMS learning curve. 
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Secondly, at higher values of a (21) the steady state 
value attained is marginally improved. Lastly, even at 
a=10.0 there is not a hint of approaching instability in 
the learning curve. The performance of the Power 
NLMS, Figure 2.l(c), is similarly improved over the 
LMS. However, the Power NLMS curves are seen to 
be smoother than the corresponding Standard NLMS 
ones. 

The Quadratic Volterra adaptive filter employed 
the following filter equation. 

N - 1  

ytk) - z W l ( m l ) x ( k  - m l )  
ml -0 

here has 

(2.2) 
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Figure 2.4 

Since the Volterra filter is quadratic there are two step- 
sizes to account for, as indicated in Table 2.2. For our 
simulations we have found that using the same p for the 
linear and nonlinear sections produces the best results. 
The noise free case simulations are outlined in Figure 
2.2. For a51 the learning curves are closely bunched at 
the -135dB steady state value. Convergence occurring in 
340 iterations for all cases. At a=10.0 the steady state 
value is worsened by 15dB to -120dB. reached after 360 
iterations. The differences between the LMS and the 
Standard and Power NLMS were as in the linear case. 
Therefore we have elected not to show the Volterra 
Standard NLMS learning curves. 

An important characteristic of Volterra Filters can be 
seen in Figure 2.1 and 2.2. The time constants of the 
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Volterra Filter increases with the addition of each new 
term. This is particnlarly visibk in the aa.0 learning 
curve. Whereas the linear filters achieve steady state in 
little over 200 iterations the Volterra Filter does not 
achieve steady state until 340 iterations. This 
observation is true in general of nonlinear systems. In 
the case of Volten‘a Filters it is expected the addition of 
cubic, quartic, etc., sections will further increase 
convergence times. 

For lOdB Gaussian additive noise the linear LMS results 
are shown in Figure 2.3(a). [Notice that the learning 
curves in Figure 2.3 and 2.4 start at a level slightly 
above OdB, and not OdB. This value is equal to 
1010g, , (d2)] .  For ad .1  the learning curves are 
practically superimposed. Convergence occurs in 300 
iterations, with a find mse which is lOdB below its 
starting level. At a-1.0 the learning curve converges 
very shghtly, falling from 5dB to 4dB in 600 iterations. 
By the time a-10.0 the learning curve is showing small 
signs of divergence. 

The linear NLMS learning curves are indicated in Figure 
2.3(b,c). Again performance is comparable to those 
obtained for the LMS algorithm, bar the observations 
made for the noise free case. For as0.1 the learning 
curves are much more closely bunched than previously. 

The Volterra filter results are shown in Figure 2.4. 
When -0.1 the learning curves are identical. In each 
case steady state is reached after 300 iterations, and the 
final mse is lOdB below its starting value. The a-1.0 
curve is similar but with a worsened steady state value 
that is 8dB below its starting level. That is, a 
worsening in performance of 2dB. Some convergence is 
visible even when a-10.0. 

3. LEWELOFNONLDWMWT 

3.1 Definition of SIM 

The simulations presented in Section 2 have shown how 
the presewe of a single nonlineax term can adversely affect 
the performance of an adaptatioq algorithm, depending on 
the magnitude of the nonlinear contribution. Presently, 
we are not aware of any techniques which, when given an 
arbitrary signal can estimate the level of nonlinearity 
present in the signal. 

Traditionally, systems have been described as being 
“weakly” or “strongly” nonlinear. However, what exactly 
do we mean by a weakly or strongly nonlinear system?. 
The descriptions are clearly open to conjecture. What is 
required is a measure of some form which can assign an 
unambiguous figure to the level of nonlinearity. In real 
applications such questions are difficult to answer. 
However, it is still of considerable importance to have 
some measure to account for the presence of the 
nonlineanty, at the very least to be able to determine the 
usefulness, or otherwise, of new and existing algorithms. 

Here, we propose an a posteriori measure of the level of 
nonlinearity present in a given system, using the ideas of 
energy flow through the system. By “given” we mean 
that a parametric description of the system is available. 
The system is also assumed to be separable. That is, the 
system is assumed to have its linear and nonlinear 
sections connected in parallel. This rules out nonlinear 
systems of the Wiener and Hammerstein types, however, 
the parametric Volterra structure is general enough to 
include most nonlinear systems. The continuous time 
Volterra Series is an infinite series which can be made to 
approximate almost any system, no matter how nonlinear 
it is. Since the Quadratic Volterra Adaptive Filter, (2.2), 
is a discrete representation of the condnuous time Volterra 
Series, of order 2, it is quite possible to model Wiener 
and Hammerstein systems. 

The parametric description need not be exact and any 
preliminary parametric model, including state space 
models, can tie used to ascertain a sufficient measure of 
the level of nonlinearity present. For the present we have 
elected to structure the quadratic Volterra model using a 
Finite Impulse Response or transversal filter purely 
because of its popularity in signal processing. Even if the 
actual system were not of this type our test will still give 
an accurate enough result to allow the user to decide 
better whether to continue modelling with a nonlinear 
adaptive filter or switch to a linear adaptive filter. 

The technique is to estimate and compare the powers of 
the si,gnals emerging from the linear and nonlinear 
sections of the system. This estimate of the level of 
nonlinearity presept in the system ‘is named the Simple 
nonanearity Measure and defined as 

SIM(dB)  = [NonLinear signal power] 
- [Linear signal power] 

: - 1010glo[NLP2] - l a b g l 0 [ l @ ]  
(3.1) 

The experimental set-up to calculate SIM is 
indicated in Figure 3.1. A consequence of the 
definition in (3.1) is that the overall system must 
be separable. 

From the definition given in (3.1) it is seen that if 
SIh4 takes on a large negative value then the system 
is described as being weakly nonlinear. That is, the 
power of the nonlinear section is small in 

SIM (dB) 

Figure 3.1 Set-up to measure the level of nonlinearity 
(SIM) present in a system, in dBs 
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comparison to that of the linear section. Conversely, if 
SIM is large and positive then the system may be 
described as being strongly nonlinear. 

For the system (2.1) the value of SIM as the magnitude of 
the nonlinear coefficient varies is illustrated graphically in 
Figure 3.2. Notice that the input signal is white 
Gaussian (0,l) in nature, however, other input signals can 
also be used. 

0.i 1 io lo0 

Log@) 
Figure 32 Plot of Levels of Nonlinearity for 

the system defined in (2.1) 

At values of a less than unity SIM is seen to be large and 
negative, approaching OdB as a passes 1. Hence the 
system may be described as being weakly nonlinear. 
Indeed the results given in Figure 2.1-2.4, show that at 
these values of SIM the linear LMS and NLMS 
algorithms can still achieve convergence. However, as U 
increases SIM increases rapidly and from the results given 
in Section 2 it is seen that the h e a r  adaptation 
algorithms are no longer effective. The plot in Figure 3.2 
is seen to be linear, this is a consequence of the quadratic 
nonlinearity, (2.1), that is used to perform the 
simulations. The squaring operation in (2.1) effectively 
becomes linear when the logarithm operator is applied, 
and the linear nature of the plot is further emphasised by 
plotting the logarithm of a on the horizontal axis. 

Our results indicate that a SIM value of OdB would be a 
reasonable centre point. That is, as SIM becomes 
progressively positive the system may be described as 
becoming more strongly nonlinear. Similarly as SIM 
decreases from the OdB point the system may be described 
as becoming more weakly nonlinear. The idea is depicted 
in Figure 3.3. 

Weaklv STML Strongly 

- m  dB O d B  + m d B  

Figure 33 System Nonlinearity according to 
SIM value 

As a bonus we have found additional uses for OUT measure 
which will also be of some practical use. A glance 
through the nonlinear literature will show a variety of 
algorithms in use. Some are seen to have rapid 
convergence and approach steady state in a matter of a few 
hundred iterations, while others are comparatively slow 
and do not reach steady state until after thousands of 

iterations. Using our measure it can be shown 
conclusively that the reason for this discrepancy lies at 
least in part in the systems being identified. Those 
examples which are seen to convergence quickly were 
found to have low levels of nonlinearity while the slow 
responsive algorithms were found to be identifying 
systems with high levels of nonlinearity. The 
implications of this result are far reaching because it 
means that it would be possible to perform better 
comparisons of algorithms performances. In other words, 
once a level of nonlinearity is decided upon it can be used 
as a benchmark figure to compare other existing and new 
algorithm perfor". 

3.2 Applications of SIM 

To demonstrate the use of the nonlinearity measure we 
have selected two (quadratic) nonlinear systems from the 
open literature with which to test SIM. The systems are 
taken from references [l] and [3], and have the following 
SIM values. 

System [l]  : SIM=-4.94dB (3 .2) 
System [3] : SIM = 10.37dB (3.3) 

Comparing these values with Figure 3.3 and our earlier 
discussion we have the following. The power of the 
linear section in System [l]  is of grater magnitude than 
that of its nonlinear section. In System [3] the opposite 
is the case, now the nonlinear section power is greater 
than the linear section power. On the SIM scale, Figure 
3.3, these values indicate that System [ l ]  may be 
amenable to linear approximation, but System [3) is 
unlikely to respond to linear adaptation alone. 

To test these assertions we have obtained the learning 
curves for System [I]  and [3], indicated in Figure 3.4 and 
3.5. As previously the input signal was white Gaussian 
(0,l); the optimum step-sizes were used in all cases. For 
lack of space only the Power N L W  performance is 
shown. 

From Figure 3.4(a) it can be seen that the nonlinear 
adaptive filter attains steady state in around 350 iterations. 
The linear adaptive filter performance shown in Figure 
3.4(b) indicates an initial derrcase in mse during the first 
lo00 iterations, after which it remains at a mse level of 
2dB. In Figure 3.5(a) the nonlinear adaptive filter learning 
curve for System [3] is shown. As in the previous case 
there is a sharp decrease in the mse before steady state is 
reached in under 3000 iterations. The linear adaptive filter 
learning curve, Figure 3.5(b), shows no visible signs of 
convergence, the mse is constant at 19dB throughout. 
Altering the step-size and filter length of the linear 
adaptive filter did not result in any noteworthy 
improvements in performance of either System [ 11 or [3]. 

These results would appear to backup our earlier 
assertions. That is, 

(a) SIM(System [3]) > SIM(System [l]): From Figure 
3.4(a) and 3.5(a) it is seen that the learning curve for 
System [3] takes almost 9 times longer to reach steady 
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state. Since the level of nonlinearity is greater in System 
[3] it would reasonably be expected to have longer 
convergence times. 
(b) SIM(System [3]) z OdB. SIM(System [l]) < OdB: 
The linear learning curves in Figure 3.qb) and 3.5(b) 
show that while the linear adaptive filter in System [I]  is 
to a small extent still able to influence the adaptation, the 
linear adaptive filter in System [3] has no affect. 
Moreover the final m e  in Figure 3A(b) is 17dB better 
than that in Figure 3.5(b). 

These results would also seem to indicate that our choice 
of OdB as the centre point of the SIM scale is appropriate. 
As has been shown, once a system is found to have a SIM 
value in excess of OdB little should be expected in the way 
of performance from a linear adaptive filter alone. 
Conversely, if a system is found to have a SIM value 
below the centre point then a linear adaptive filter may be 
worth investigating. In the case of System [l] employed 
here, which had a S N  value of only 5dB below the 
centre point, convergence was small but clearly visible 
with the linaar adaptive filter. If the SIM value were to 
decrease further then the influence of the linear routine 
would increase accordingly, as was found to be the case in 
section 2.2. 

4. CONCLUSIONS 
In this paper we have presented a new tool for the study of 
nonlinear systems. We began by recalling some of the 
commonest stochastic gradient adaptation algorithms and 
made some comments on their suitability. Then the 
effects of a squaring nonlinearity on the performance of 
the linear and nonlinear adaptive filter were shown. It was 
shown how such an apparently simple nonlinear function 
could have devastating effects on the performance of a 
linear adaptive filter. Next we addressed the important 
issue of measuring the amount of nonlinearity in a 
system. A new estimator, the Simple nonllnearity 
ueasure, was then outlined. Two examples from the 

(a) Quadmtic Voltara Powa NLMS 

_- s o  1000 2000 3000 

0 500 1000 1500 2000 

Iteration Number 
Figure 3.5 Nonlinear and linear learning curves 

for System[ 31 

open literature were used to demonstrate the SIM. These 
results indicate that our assumptions in its derivation are 
valid and the measure does indeed predict well the 
performance of linear and nonlinear adaptive filters in the 
presence of nonlinear signals. In particular using this 
measure it may be possible to do away with the need for 
testing a system with both a linear and nonlinear 
adaptation routine just to see which performs better. 

The testing of different adaptation algorithms is also 
likely to be much improved and made more reliable using 
the SIM. Any system can be employed in the testing so 
long as the SUI value is constant. This will ensure a 
sense of consistency in the tests. 
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