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ABSTRACT
Blind estimation of a two-slope feature-domain reverbera-

tion model is proposed. The reverberation model is suit-

able for robust distant-talking automatic speech recognition

approaches which use a convolution in the feature domain

to characterize the reverberant feature vector sequence, e.g.

[1, 2, 3]. Since the model describes the reverberation by a

matrix-valued IID Gaussian random process, its statistical

properties are completely captured by its mean and variance

matrices. The suggested solution for the estimation of the

model includes two novel features based on the study of sim-

ulated rooms: 1) a solution for blindly determining a two-

slope decay model from a single-slope estimate; 2) a variance

mask to improve the estimation of the variance matrix. Using

the proposed solution, the reverberation model can be esti-

mated during recognition without the need of pre-training or

using calibration utterances with known transcription. Con-

nected digit recognition experiments using [3] show that the

reverberation models estimated by the proposed approach

significantly outperform HMM-based recognizers trained on

reverberant data in most environments.

1. INTRODUCTION
Distant-talking speech capture can increase the comfort

and the acceptance of many Automatic Speech Recognition

(ASR) applications, like e.g. automatic meeting transcrip-

tion, voice control of consumer electronics, and dictation

systems. However, the reverberation caused by multi-path

propagation of sound waves from the source to the distant-

talking microphone leads to a mismatch between the input

utterances and the acoustic model of the recognizer, usu-

ally trained on close-talking speech. Therefore, the perfor-

mance of ASR systems is significantly reduced by reverber-

ation [4, 5] if no countermeasures are taken.

In the time domain, reverberant speech can be described

by a convolution of clean speech with the Room Impulse

Response (RIR) characterizing the acoustic path from the

speaker to the microphone. The length of the RIR, typically

ranging from 200 ms to 1000 ms, significantly exceeds the

length of the analysis window used for feature extraction in

ASR systems, typically ranging from 10 ms to 40 ms. There-

fore, the time-domain convolution is not transformed into a

simple multiplication in the short-time frequency transform

(STFT) domain. Instead, reverberation still has a dispersive

effect in the STFT domain and also in STFT-based feature

domains. To capture this dispersive effect, a convolution of

the clean-speech feature vectors with a feature-domain re-

verberation representation in the mel-spectral (melspec) do-

main has been proposed in several recent publications, e.g.

[1, 2, 3].

Blind estimation of a statistical feature-domain ReVer-

beration Model (RVM) [3] which can be employed in vir-

tually all robust distant-talking ASR concepts based on the

melspec convolution described above, is proposed. Since

the RVM describes the reverberation by a matrix-valued IID

Gaussian random process, its statistical properties are com-

pletely captured by its mean and variance matrices. While a

set of known RIRs in [3], simultaneous recordings of close-

talking and distant-talking microphones in [6], and calibra-

tion utterances with known transcriptions in [1, 7, 8] are re-

quired for estimating the reverberation representation, the

proposed approach can estimate the RVM blindly during

recognition. Thus, the flexibility of the robust distant talking

ASR approaches according to [1, 2, 3] can be significantly

improved.

The suggested solution includes two new features based

on the study of simulated rooms: firstly, a blind solution for

determining a two-slope decay model from a single-slope es-

timate; secondly, a variance mask to improve the estimation

of the RVM’s variance matrix. Using the proposed solution,

the reverberation model can be estimated during recognition

without the need of pre-training or using transcribed cali-

bration utterances. The paper is structured as follows: The

underlying algorithms are concisely reviewed in Sec. 2 fol-

lowed by the description of the blind approach and the vari-

ance mask in Sec. 3 and Sec. 4, respectively. The perfor-

mance of the proposed approach is evaluated by connected

digit recognition experiments based on the concept of [3] in

Sec. 5, and conclusions are drawn in Sec. 6.

2. REVIEW OF UNDERLYING ALGORITHMS
2.1 Statistical RVM
The statistical RVM η used in this contribution has been in-

troduced in [3]. It can be considered as a feature-domain

representation of all possible RIRs for arbitrary speaker and

microphone positions in a certain room. The RVM exhibits

a matrix structure where each row corresponds to a certain

mel channel and each column to a certain frame as shown in

Fig. 1(a). Each matrix element is modeled by a Gaussian In-

dependent Identically Distributed (IID) random process. For

simplicity, the elements are assumed to be mutually statis-

tically independent [3]. Thus, the RVM is completely de-

scribed by its mean matrix mH and its variance matrix σ2

H.

2.2 Blind Estimation of Reverberation
In [9], a method for blind estimation of reverberation time

based on the distribution of signal decay rates is presented

and its accurate performance for ‘diffuse RIRs’, that is, for

RIRs exhibiting a single exponential decay, is shown. The
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Figure 1: (a) Reverberation model η for observation frame n. (b)

Two-slope decay model (i) and its single-slope estimate (ii).

decay rate is defined as the gradient of the first order linear

least squares fit.

The estimated probability density function (pdf) of the

decay rate of a reverberant speech signal in the STFT log-

magnitude domain, λx, becomes increasingly ‘skewed’ as the

decay rate decreases or equivalently as the reverberation time

T60 increases [9]. Thus, the ‘skewness’ of the estimated pdf

can be used to estimate the decay rate of the RIR envelope.

As a measure for the ‘skewness’ of the random variable λx,

the negative-side variance σ2

X− is proposed in [9] because

of its superior properties compared to the third-order central

moment.

A second-order function is used in [9] to map the ob-

served σ2

X− , obtained from the reverberant speech decay rate

distribution, to the estimated single-slope room decay rate α̂ .

In this contribution, a more generic mapping function for the

estimation of the room decay α̂ according to

α̂ =
4

∑
r=0

γr(σ2

X−)r
(1)

is used. The parameters (γr) of the mapping function are ob-

tained in [9] by using Polack’s statistical reverberation model

[10] and two speech fragments consisting of one male and

one female sentence.

2.3 Late Decay Adjustment
RIRs obtained in real-world rooms are not ‘diffuse’ since

‘diffuse’ RIRs require an infinite source-microphone dis-

tance. Non-perfectly diffuse sound fields exhibit a faster de-

cay for the early segment corresponding to the direct sound

and early reflections, and a slower decay for the late reverber-

ation [11, 12]. Therefore, a two-slope RVM extended from

Pollack’s time-domain model [10] is used in [8] to capture

the non-diffuse RIRs as depicted in Fig. 1(b). In the early

segment of the two-slope model, extending from time index

one to the mixing time tm, the envelope decreases with the

early decay rate λe. In the late segment, starting at tm, the

envelope decreases with the late decay rate λl . Given an esti-

mate for the single-slope decay, α̂ , determined according to

[9] and an estimate for the early decay λ̂e determined from

the ML estimate according to [7], an estimate of the late de-

cay λ̂l is obtained by linear least squares adjustment in [8].

3. BLIND DECAY ADJUSTMENT

Since the late decay adjustment according to [8] described

above uses the ML approach of [7] for estimating the early

decay rate, calibration utterances with known transcription

are necessary for the determination of the RVM. In this sec-

tion, a blind approach for the adjustment of the late decay is

introduced which does not require pre-transcribed calibration

utterances.

Let λ̂ ∗e be the early decay rate when the source-mic dis-

tance is greater than the critical distance, where the super-

script
∗

indicates that the microphone is located in the dif-

fuse sound field. In this case, a fixed ratio between λ̂ ∗e and

λ̂l is assumed for simplicity. Thus, the single-slope decay

can be estimated by linear least squares optimization from N
observations as (see [8] for a derivation)

α̂max ≈ γλ̂ ∗e g1(N, tm)− γλ̂lg2(N, tm), (2)

where γ = (N3−N) and

g1(N, tm) = −tm(tm−1)(2tm−1−3N) (3)

g2(N, tm) = −(2tm−1+N)(tm−N)(tm−1−N). (4)

The mixing time tm is assumed to be 50 ms [13] so that the

values of g1, g2 and γ can be pre-calculated. If we assume

a fixed ratio such that λ̂ ∗e = ϖλ̂l , where ϖ is determined in

Section 4, we can estimate λ̂l as

λ̂l ≈
α̂max

ϖγg1(N, tm)− γg2(N, tm)
. (5)

We first estimate an STFT-domain representation H(1)(m,k)
of the RIR (m being the reverberation frame index and k in-

dexing the frequency bins) using the single-slope method of

[9]. To increase the robustness of the frequency-dependent

decay estimates, a rectangular window is used to smooth

across the frequency bins k of H(1)(m,k). Then the early

and late decays are estimated using (5) to obtain a two-slope

adjustment H(2)(m,k) in the STFT-domain. Since α̂ is an es-

timate, and both tm and ϖ are assumed constant, a particular

adjustment may exhibit a significant estimation error. There-

fore, smoothing across k is performed according to

H(3)(m,k) = ξ H((2)m,k)+(1−ξ )E[H(2)(m,k)]k (6)

to get a smoothed STFT-domain RIR representation, where

ξ is the smoothing parameter and E[]k denotes the expec-

tation across frequency bins k. Transforming H(3)(m,k) to

the melspec domain, we obtain the melspec RIR representa-

tion Hmel(m, l), where l is the mel channel index. The mean

matrix mH of the RVM is calculated by averaging over the

estimates Hmel(m, l) obtained for several utterances.

For the estimation of the variance matrix σ2

H, a heuristic

approach is used in [8]. Based on a comparison of the mean

matrix and the variance matrix of the RVMs according to [3],

an estimate σ̃2

H = m2

H of the variance matrix is obtained by

calculating the element-wise square of the mean matrix.

4. VARIANCE MASK

An in-depth investigation of the relationship between the

heuristic variance estimate σ̃2

H = m2

H according to [8] and

the reference variance estimate σ2

H according to [3] shows

some systematic dependencies which can be used to improve

the estimate σ̃2

H. Therefore, we propose a variance mask,

ς2

H, to map σ̃2

H as close as possible to σ2

H in the form of
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Figure 2: Simulation setup of different room acoustics parameters

using the image method of [14].

σ̂2

H
.= ς2

H⊗ σ̃2

H = ς2

H⊗m2

H
!≈ σ2

H (7)

where ⊗ denotes the Hadamard product. Taking the natural

logarithm of each matrix element, we get

ln σ̂2

H = lnς2

H + lnm2

H. (8)

To determine the parameters of the variance mask, the re-

lations between the characteristics of the variance mask

and room acoustic properties are studied. The influ-

ence of the following acoustic parameters is investigated:

i) source-mic distance d = 1 . . .4 m, ii) reverberation time

T60 = 0.2 . . .1.0 s, iii) room size L = 120 . . .320 m
3

and iv)

source-microphone position r relative to the room. For each

of the parameters ii), iii), and iv), a set of RIRs with fixed

parameter i) on a semi-circle as illustrated in Fig. 2 is gen-

erated using the image method [14]. Each set consists of 20

RIRs determined for different microphone positions (θ ) on a

semi-circle. Based on the sets of RIRs, the reference values

of σ2

H and m2

H are calculated according to [3].

Two observations are made regarding the characteris-

tics of the variance mask for the individual matrix elements

(m, l): Firstly, σ̃2

H(m, l) overestimates the reference variance

σ2

H(m, l) in the first frame m = 1, i.e., the variance mask

should be negative for m = 1. The overestimation is mainly

due to the nearly constant direct component dominating the

first frame. Secondly, there is an increasing overestimation

of the reference variance σ2

H(m, l) by σ̃2

H(m, l) for increasing

mel-channel index, i.e., the variance mask should be decreas-

ing with increasing frequency. A possible explanation for

this observation could be that for increasing frequency, the

density of the normal modes increases according to statisti-

cal room acoustics [13]. Since this means averaging over a

higher number of modes for high frequencies, the variance

of the feature domain RIR representation due to position

changes decreases with frequency. Therefore, we propose

the following variance mask with ρ and ϕ as parameters:

lnς2

H(m, l) =






ρ for m = 1 , l = 1, . . . ,24,
0 for m > 1, l = 1 . . .4,
ϕ(m−4) for m > 1, l = 5 . . .24.

(9)

The proposed variance mask has the shape characteristics

shown in Fig. 3(d). Since the image method is known to be

relatively inaccurate for lower frequencies [14], we set the

first four mel channels of the variance mask lnς2

H to zero.

Minimising the error between the reference σ2

H and the es-
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Figure 3: Mean optimised parameters (a) ρ and (b) ϕ for different

source-mic distances and different reverberation times for the two-

parameter variance mask model. (c) Histogram of ϖ averaged over

all frequencies. (d) Variance mask lnς2

H for optimal ρ and ϕ .

timate σ̂2

H based on the two-parameter variance mask with

respect to ρ and ϕ according to

min
ρ,ϕ

{�σ2

H− σ̂2

H�2}, (10)

where � · �2 denotes the spectral norm, we obtain the param-

eters ρ and ϕ . In Fig. 3 (a) and (b), optimised parameters

ρ and ϕ for different source-microphone distances and re-

verberation times are shown. For each source-microphone

distance and reverberation time, the mean and the variance

across five different room sizes and five relative positions

are determined. We see that the source-mic distance dom-

inates the term ρ while the reverberation time only slightly

affects it. The variation of the parameter ϕ with respect to the

source-mic distance increases with increasing reverberation

time.

For the intended applications, like meeting transcription

or voice control of consumer electronics, we assume an aver-

age reverberation time of T60 = 0.6 s and an average source-

mic distance of d = 2.5 m to select the optimum values of

the parameters ρ and ϕ . Connected digit recognition tests in

[15] indicate that overestimation of the reverberation by the

RVM is less detrimental than underestimation. Since larger

values of ϖ cause the adjusted late decay to be slower, we

select ϖ = 3 corresponding to the 0.9-percentile of the ϖ
values found in the image method rooms shown in Fig. 3(c).

A hard decision at the 0.9-percentile ensures most of the de-

cays are adjusted with slight overestimation of the late decay,

and only a few decays with underestimation.

5. EXPERIMENTS
Experiments with the same connected-digit recognition task

as used in [3, 7, 8] are carried out to analyze the performance

of the reverberation models determined according to Sec. 3

and 4. For recognition, the approach of [3] is used.

5.1 Experimental Setup
In real-world applications, the proposed approach can be

used as follows. If the recognizer is to be used in a new
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76.4 62.9 54.9 31.4 60.6 39.467.2 32.0 45.3

Table 1: (a) Room Characteristics. (b) Word accuracies in % for the conventional HMM-based recognizer trained on (I) clean and (II)

reverberant speech. The ASR concept of [3] with the RVMs estimated according to (III) [3],(IV) single-slope approach, (V) [7], (VI) [8]

and (VII) Sec. 3. Three variance models are used in connection with the five different mH estimation methods (III)-(VII): σ2

H-variance of

the RVM is estimated according to [3]; σ̃2

H-using m2

H; σ̂2

H- according to Sec. 4 (7).

room, the first utterance to be recognized is used to deter-

mine a melspec RIR representation according to Sec. 3. An

initial estimate of the RVM is obtained from this single RIR

representation, and the recognition is started. As soon as the

next utterances are available, they are used to estimate mel-

spec RIR representations, which are used to update the initial

RVM. For the following tests, the first seven utterances are

used for averaging the RVM, then it is fixed for the follow-

ing 505 test utterances. Alternatively, a recursive smoothing

over melspec RIR representations could be used. Thus the

algorithm could even adjust the RVM when the user moves

to another room.

Static melspec features with 24 mel channels calculated

from speech data sampled at 20 kHz are used. 16-state word-

level HMMs with single Gaussian densities serve as clean-

speech models. To obtain the reverberant test data, the clean-

speech TI digits data are convolved with different RIRs mea-

sured at different LS-mic positions in three rooms with the

characteristics given in Table 1(a). Each test utterance is

convolved with an RIR selected randomly from a number

of measured RIRs in order to simulate changes of the RIR

during recognition. Before convolution, the RIRs are nor-

malized to have unit energy in the melspec domain. This

normalization corresponds to using automatic gain control

as preprocessing in the ASR system.

To maintain a strict separation of the training data from

the test data in all experiments, RIRs generated with the im-

age method are used for determining the fixed parameters

while the tests are performed in room A, B and C (see Ta-

ble 1(a)). Comparing the closeness of the melspec RIR repre-

sentation Hmel(m, l) to the mean matrix of the RVM obtained

by averaging over the image method RIRs (see Sec. 4), the

smoothing parameters ξ were chosen as 0.1 for a trade-off

between frequency characteristics capture and outlier robust-

ness.

5.2 Variance Adjustment
Table 1(b) shows the results of the experiments. The results

obtained with the variance estimate σ̂2

H based on the mask

according to Sec. 4 are highlighted in the table with cyan

background colour. Regardless of the estimation method for
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Figure 4: Comparison of the true decay for room C, averaged

across all mel channels, with the decay of the corresponding single-

slope and two-slope models.

determining the mean matrix mH, using the variance estimate

σ̂2

H significantly improves the word accuracy over the heuris-

tic estimate σ̃2

H. Using σ̂2

H in connection with the means

estimated according to [3] (III) even outperforms the vari-

ance estimate σ2

H based on measured RIRs in rooms B and C.

In general, the gain of applying the variance mask increases

with the accuracy of the mH estimate. For example, compar-

ing the estimation methods (III) and (VI) in room C, there is

a significant difference in the word accuracy for the variance

estimate σ̂2

H, while the variance estimate σ2

H achieves simi-

lar word accuracies for the estimation methods (III) and (VI).

The difference in word accuracy for σ̂2

H can be attributed to

the slightly more inaccurate mean estimate of (VI). The re-

sults for the variance estimate σ2

H based on measured RIRs

in connection with the RVM estimation approaches (IV) -

(VII) are only given for comparison. In real-world applica-

tions, they are only available if the RVM estimation method

(III) is used. The relatively low accuracy of 35.1% for (V)

in connection with σ2

H is due to the mismatch between the

variance matrix σ2

H and the mean matrix mH for this case.

5.3 Blind Estimation
Fig. 4 compares the true decay for room C averaged across

all mel channels with the decay of the corresponding single-

slope and two-slope models. It is clearly obvious that the
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single-slope model overestimates the early reverberation and

underestimates the late reverberation. The proposed two-

slope model is able to capture both early and late parts more

accurately. Furthermore, the relatively low recognition rates

of initial connected digit recognition tests using the single-

slope RVMs in the ASR concept of [3] (see Table1(IV)) con-

firm that the effect of reverberation cannot be captured with

sufficient accuracy by a single-slope model.

The results obtained with the blind adjustment approach

(VII) according to Sec. 3 are highlighted by magenta back-

ground colour in Table 1(b). For all rooms, the word ac-

curacies obtained by (VII) are significantly higher than that

of the conventional HMM-based recognizer trained on clean

data (I). In rooms A and C, (VII) also outperforms the con-

ventional HMM-based recognizer trained on matched rever-

berant data (II). The reason why the performance of (VII)

is slightly lower than that of (II) in room B is the strong

low-pass characteristic of room B which cannot be perfectly

captured by the blind estimation approach (VII). Additional

tests with an adjusted RVM where the reference frequency

response obtained from measured RIRs is multiplied to the

mean matrix mH show an increase of the word accuracy to

73.8 %. This result indicates that the imperfect capture of the

frequency response of room B by (VII) is the main reason for

the relatively low recognition rate.

6. SUMMARY AND CONCLUSIONS

Blind estimation of a feature-domain reverberation model for

robust distant-talking ASR concepts based on a convolution

in the melspec domain, e.g. [1, 2, 3], has been proposed

in this paper. The proposed approach determines the mean

and the variance matrices of a matrix-valued IID Gaussian

random process. Blind estimates of the reverberation time

according to [9] are used to determine single-slope decay es-

timates. Using the proposed adjustment method, the single-

slope estimates are transformed to an early and a late decay

to produce the mean matrix of a two-slope RVM. The vari-

ance matrix of the RVM is determined by the element-wise

square of the mean matrix and the proposed variance mask.

Thus, an RVM capturing both the initial and the late reverber-

ation as well as the variance with high accuracy is obtained.

Since the parameters of the RVM are estimated blindly with-

out the need for close-talking recordings, RIR measurements

or transcribed calibration utterances, the RVM can be esti-

mated during recognition so that the recognizer can be used

right away. Simulation results of a connected digit recog-

nition task confirm that using the reverberation models ob-

tained by the proposed blind approach in connection with the

recognizer concept of [3] achieves similar results as the re-

verberation models based on non-blind methods [7, 8] and

outperforms conventional HMM-based recognizers trained

on matched reverberant data in most environments.
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