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ABSTRACT
Equalization techniques for high order, multichannel, FIR systems
are important for dereverberation of speech observed in reverbera-
tion using multiple microphones. In this case the multichannel sys-
tem represents the room impulse responses (RIRs). The existence of
near-common zeros in multichannel RIRs can slow down the conver-
gence rate of adaptive inverse filtering algorithms. In this paper, the
effect of common and near-common zeros on both the closed-form
and the adaptive inverse filtering algorithms is studied. An adaptive
shortening algorithm of room acoustics is presented based on this
study.

1. INTRODUCTION

In hands-free communications, the speech signal can be distorted
by room reverberation, resulting in reduced intelligibility to lis-
teners. One method to achieve dereverberation is to perform
identification and inverse filtering of the room impulse responses
(RIRs). The methodology is illustrated in Fig. 1. Consider a
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Fig. 1. Illustration of identification and inverse filtering of acoustic
systems.

clean speech signal s(n) propagating through M acoustic chan-
nels, which are characterized by their impulse responses hm =
[hm(0) hm(1) · · · hm(L − 1)]T , m = 1, · · · , M , where L is
the length of the RIRs, and {·}T denotes the transpose operation.
Using the reverberant speech signals xm(n), m = 1, · · · , M , es-
timates of the RIRs hm, m = 1, · · · , M can be obtained with
blind system identification techniques, such as in [1]. Then, with
the estimates ĥm, m = 1, · · · , M , an inverse filtering system
g = [gT

1 gT
2 . . . gT

M ]T , which is formed by stacking column vec-
tors of the filters gm = [gm(0) gm(1) . . . gm(Li − 1)]T of each
channel, can be designed with some equalization algorithm. Then,
by filtering xm(n) using the inverse filtering system g, we expect a
good estimate ŝ(n) of s(n) can be obtained. In this paper, we do not
consider the possible errors induced by the system identification, so
we assume ĥm = hm, m = 1, · · · , M .

Traditionally, inverse systems can be obtained, for the single
channel case, by using the method of least squares (LS), or employ-

ing the multiple-input/output inverse theorem (MINT) when multi-
ple microphones are deployed [2]. Although LS inverse filters can
be used to approximately invert the RIRs, which are usually of non-
minimum phase, such techniques necessitate the use of very long
inverse filters as well as significantly long delay [3]. From a theoret-
ical perspective, reverberation can be completely removed by using
multiple microphones and techniques based on MINT in the case
that the multichannel room transfer functions (RTFs) do not share
any common zeros [2]. In practice, MINT is computationally ex-
pensive [4], and this motivates the use of the subband algorithm [4].
On the other hand, multichannel adaptive systems have been used
for acoustic system equalization [5][6], and it is shown that an iden-
tical inverse filtering system to MINT can be obtained [7]. However,
the existence of common and near-common zeros [8] causes prob-
lems in both closed-form and adaptive inverse filtering algorithms.
MINT has been generalized to a multichannel least squares (MCLS)
method [4], and it can overcome the problems due to the existence
of common zeros. In adaptive inverse filtering, we will show that
near-common zeros slow down the convergence rate of the adaptive
algorithms. Therefore, after any finite period of adaptation, the tail
of the equalized impulse response will not be completely suppressed.

In this paper, we address the performance degradation in adap-
tive inverse filtering algorithms due to the presence of near-common
zeros. We achieve this by leaving the parts of the RIRs with common
and near-common zeros without equalization, which leads to a pro-
cess known as channel shortening. Channel shortening has been ex-
tensively developed in the context of digital communications to mit-
igate the inter-symbol and inter-carrier interference. The techniques
are firstly developed for the single-input/single-output (SISO) cases.
Both closed form [9] and, iterative and adaptive [10][11] methods
have been well studied. These techniques have been extended to the
multiple-input/multiple-output (MIMO) case in [12][13]. A com-
mon frame work and an overview of the design techniques for chan-
nel shortening can be found in [14]. The motivation behind employ-
ing such techniques for our acoustic system equalization application
is based on the fact that the early reflections in room acoustics can,
in certain cases, enhance the speech intelligibility [15]. Therefore, it
can be argued that it is not necessary to use the delta function as the
target impulse response (TIR) in RIRs equalization for the purpose
of dereverberation. Shortening the RIRs may therefore be indeed
satisfactory for enhancing the quality and intelligibility of reverber-
ant speech. By relaxing the TIR to be less constrained than the delta
function, we expect that the common and near-common parts of the
RIRs can be manifest in the early part of the equalized impulse re-
sponse and the equalization tail correspondingly suppressed.

First, we will study the LS and MCLS algorithms. It will be
shown that when common zeros exist, the MCLS is able to invert
those parts of the channels with factors which are not common in the
multichannel RIRs and to perform the LS inversion on the parts with
common zeros. Then, the performance of an adaptive inverse fil-
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tering algorithm when common or near-common zeros exist will be
studied. It will be shown that the near-common zeros can slow down
the convergence rate of the adaptive algorithm. After this, some im-
provements to the adaptive algorithm based on this study will be
made, which will lead to an adaptive channel shortening algorithm
for the RIRs.

2. FORMULATION OF INVERSE FILTERING

Inverse filtering of room acoustics aims to use an inverse system
of the RIRs to compensate for the distortion to the original signal
caused by the RIRs. It usually aims to force the equalized impulse
response

y = h1 ∗ g1 + h2 ∗ g2 + · · · + hM ∗ gM =
M∑

m=1

hm ∗ gm (1)

to be a target impulse response (TIR) of the delta function

d = [1 0 . . . 0︸ ︷︷ ︸
L+Li−1

]T , (2)

where ∗ denotes linear convolution. The aim is to minimize the cost
function

J = ‖d − y‖2, (3)

where ‖ · ‖ denotes the Euclidean norm.
The inverse system g can be obtained by

g = H+d, (4)

where H = [H1 H2 · · · HM ] is the system matrix, and {·}+ de-
notes pseudo inverse. Hm is an (L + Li − 1) × Li convolution
matrix of hm

Hm =





hm(0) 0 · · · 0
hm(1) hm(0) · · · 0

...
. . .

. . .
...

hm(L − 1) · · ·
...

...

0 hm(L − 1)
. . .

...
...

...
. . .

...
0 . . . 0 hm(L − 1)





.

If M = 1, (4) gives a single channel LS optimal inverse system
[2]. If M ≥ 2, the multichannel RTFs do not share any common
zeros, and Li ≥ Lc, where Lc = & L−1

M−1' is defined as the critical
filter length of the inverse system, (4) gives an exact inverse system,
with which the TIR (2) can be perfectly achieved [2]. For the case
that multichannel RTFs have common zeros, or Li < Lc, (4) gives
an MCLS inverse system [4].

An inverse system g minimizing (3) can also be obtained adap-
tively, which will be introduced later in this paper.

In this paper, we will focus on the M = 2 channel systems to
study the effect of common and near-common zeros on the inverse
filtering algorithms. Suppose we have an M = 2 channel system,
and the design length of the filters of the inverse system is Li = Lc,
which leads to a square system matrix H = [H1 H2]. The degree of
rank deficiency of H is equivalent to the number of common zeros of
the transfer functions of h1 and h2 [16]. If these two channels do not
have any common zeros, i.e. H is of full rank, then H+ = H−1. If
these two channels are identical, i.e. all zeros of these two channels
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Fig. 2. g̃ and g̃ − gcom.

are correspondingly common, then calculating H+ is identical to
calculating the single channel LS inverse system.

To study the effect of common and near-common zeros by ex-
periments, we will use some synthetic impulse responses, the zeros
of which are manually located on the z-plane.

3. FROM LS TO MINT

Studies of RIRs measured in rooms indicate that common zeros are
normally present. Therefore, the inverse system g in (4) is usually
given by the MCLS. In this Section, we will show that the MCLS
works to fully invert the non-common parts in the impulse responses,
and performs LS inversion on the common parts.

Two synthetic impulse responses h1 and h2, the transfer func-
tions of which have two common zeros are used to show this. These
two zeros are a pair of conjugate zeros. The length of h1 and h2 is
L = 127. h1 and h2 can be written as

h1 = h̃1 ∗ hcom, (5)
h2 = h̃2 ∗ hcom, (6)

where h̃1 and h̃2 are the non-common parts, and hcom, which is of
3 taps in this example, is the common part.

Consider an inverse system g = [gT
1 gT

2 ]T , where Li = Lc, is
obtained by using (4). By applying g to h = [h1 h2], an equalized
impulse response can be obtained,

y = g1 ∗ h1 + g2 ∗ h2

= (g1 ∗ h̃1 + g2 ∗ h̃2) ∗ hcom

= g̃ ∗ hcom, (7)

where g̃ is of L + Li − 3 taps. On the other hand, an LS optimal
inverse filter, gcom, of hcom, with a design length of L + Li − 3
can be obtained by the LS algorithm.

Experiment 1
In this experiment, we study the relationship between g̃ and gcom.
Figure 2 shows that g̃ and gcom are identical, which means that the
MCLS performs an inversion on the non-common parts in full, and
performs LS inversion on the common parts. In practice, to avoid
the problems caused by rounding errors in computing H+, singular
values and their singular vectors corresponding to the near-common
zeros of very small δ, found to be of order, for example, 10−16

in our MATLAB simulations which use the IEEE floating-point
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Fig. 3. Equalization results for (a) TIR from (2) and (b) TIR from
(8).

double-precision computation, are also truncated. This can be
understood in another way that the near-common zeros of very
small δ are processed as common zeros in MCLS, the order of
which is subject to different numerical computation systems.

Experiment 2
In this experiment, we will use

d = [hT
com 0 · · · 0]T (8)

as the TIR to calculate g from h = [h1 h2]. The equalization result
with (2) as TIR is shown in Fig. 3(a), and Fig. 3(b) shows the result
obtained with (8). It can be seen that in Fig. 3(a) that the equalization
result is equal to a LS inversion of hcom with the characteristic non-
zero tail exhibiting ripple. In Fig. 3(b), since no attempt is made to
equalize the common part hcom, the equalization tail is completely
suppressed with no evidence of ripple.

4. ADAPTIVE INVERSE FILTERING

In this Section, an adaptive algorithm aiming to minimize the cost
function (3) using the steepest descent (SD) method [17] will be pro-
posed.

The gradient is given by

∇J = −2HT d + 2HT Hg (9)

and the inverse system g can be obtained by

g(k + 1) = g(k) − µ∇J, (10)

where k denotes the index of iteration, and µ is the step-size. The
algorithm is given in Algorithm 1.

Algorithm 1 Proposed adaptive inverse filtering.
g(0) = 0M(L+Li−1)

b = HT d, A = HT H
for k = 0, 1, 2, . . . do

∇J = −2b + 2Ag(k)
g(k + 1) = g(k) − µ∇J

end for
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In the following, the effect of common or near-common zeros
on the performance of Algorithm 1 will be studied.

Experiment 3
In this experiment, Algorithm 1 will be studied for the case in which
no common or near-common zeros exist. The first impulse response
used is h1 in (5). The second impulse response will include h̃2 in
(6), but the other part is different from hcom, to ensure that the two
channels do not share common zeros. The convergence of J in (3)
is shown in Fig. 4.

Experiment 4
In this experiment, Algorithm 1 will be studied for the case that
common zeros exist. The impulse responses used are h = [h1 h2]
in (5) and (6). The convergence of J is shown in Fig. 4.

Experiment 5
Algorithm 1 will next be studied for the case that near-common
zeros exist. The first impulse response will be h1 in (5), and the
second is obtained by replacing hcom with some impulse response
with zeros separated by δ = 1× 10−4 from the corresponding zeros
of the first channel. The convergence of J is shown in Fig. 4.

We can see in Fig. 4 that without common zeros, J converges
quickly. When common zeros exist, Fig. 4 shows that J converges to
an asymptotic performance level of about -21 dB, which corresponds
to the LS inverse filtering of hcom shown in Fig. 3(a). When near-
common zeros exist, J converges quickly to the asymptotic level of
the case when common zeros exist, and then continues to converge
but very slowly. Therefore, we can conclude that near-common zeros
will slow down the convergence rate of Algorithm 1 after the adap-
tive filter has first been able to equalize the parts without common or
near-common zeros.

5. CHANNEL SHORTENING

In this Section, we will study the performance of Algorithm 1 with
some different TIRs, for the cases that common or near-common
zeros exist.

Experiment 6
As in Exp. 2, we use (8) as the TIR when common zeros exist. We
can see in Fig. 5(a) that J converges quickly. Figure 5(b) shows that
the equalized impulse response is identical to the one given in Fig.
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Fig. 5. Adaptive equalization with TIR of (8).

3(b) which is obtained using the closed-form MCLS.
However, in practice, we do not know the zeros of the true RTFs,

and we do not know how many common or near-common zeros ex-
ist. Therefore, we cannot use an exactly known TIR such as (8)
which we have used in Exp. 6. In room acoustics, the early reflec-
tions can enhance the speech intelligibility in certain circumstances
[15]. Therefore, we can relax the early part of TIR, to make it less
constrained than the delta function (2). We propose to achieve this
by using a weighting function in the cost function

J = ‖w ◦ (d − y)‖2, (11)

where
w = [1 0 . . . 0︸ ︷︷ ︸

Lr

1 . . . 1]T (12)

is the weighting function and ◦ denotes the Hadamard product. Here
Lr is the length of the ‘relaxing’ window. We use w(1) = 1 to avoid
the trivial solution.

With the weighting function used, the gradient of J defined in
(11) can be written as

∇J = −2(WH)T d + 2(WH)T (WH)g, (13)

where W = diag{w}. The corresponding channel shortening algo-
rithm to compute the shortening system g is given in Algorithm 2.

Algorithm 2 Proposed adaptive channel shortening.
g(0) = 0M(L+Li−1)

b = (WH)T d, A = (WH)T (WH)
for k = 0, 1, 2, . . . do

∇J = −2b + 2Ag(k)
g(k + 1) = g(k) − µ∇J

end for

By using the ‘relaxing’ window, the equalization tail may still
not be able to fully removed, for example, when Lr is less than
the length of hcom. However, any Lr greater than one can reduce
the effect of the common and near-common zeros on the adaptive
inverse filtering algorithm. Tests show that the equalization tail
does not need to be fully suppressed in speech dereverberation. It is
satisfactory to suppress it to some given level.
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Fig. 6. Adaptive channel shortening with Lr = 8.
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Fig. 7. Adaptive inverse filtering and shortening of RIRs.

Experiment 7
In this experiment, we will use Lr = 8 to test Algorithm 2. The
impulse responses used in Exp. 5 (near-common zeros case) will be
used. It can be seen in Fig. 6(a) that with the ‘relaxing’ window
employed, J converges more quickly. The equalized impulse
response is given in Fig. 6(b). We can see that after the 8th tap, the
late part is fully suppressed.

6. ADAPTIVE CHANNEL SHORTENING USED IN TRUE
ROOM ENVIRONMENTS

In this Section, the adaptive channel shortening algorithm will be
tested with true RIRs.

Experiment 8
In this experiment, a M = 2 channel acoustic system will be used
and the RIRs are taken from the MARDY database [18]. The length
of the RIRs is L = 2000 with a sampling frequency of 8 kHz. The
filter length of the shortening system Li is used as Li = Lc = 1999.

Since reflections arriving within 20 ms (160 taps) of the direct
sound cause little or no disturbance in hearing even when the ampli-
tude of the reflections is greater than the direct sound [15], we will
use Lr = 160 in (12) in this experiment.

The comparison of convergence of J of inverse filtering (Lr =
1) and shortening (Lr = 160) is shown in Fig. 7(a). The shortening
result at iteration 2000 is shown in Fig. 7(b). We can see that for

Authorized licensed use limited to: Imperial College London. Downloaded on January 4, 2010 at 08:24 from IEEE Xplore.  Restrictions apply. 



shortening, J converges more quickly than inverse filtering.

7. CONCLUSIONS

In this paper, we analyzed the performance of LS and MINT algo-
rithms for the inverse filtering of RIRs. An adaptive approach for
inverse filtering of room acoustics has been introduced and studied.
Also, an adaptive channel shortening algorithm has been developed.
Experiments show that when common zeros among multichannel
RTFs exist, the MCLS inverts the non-common parts of the RIRs and
performs LS inversion on the common parts. For adaptive inverse
filtering, the existence of near-common zeros slows its convergence
rate. Adaptive channel shortening can speed up the convergence rate
and effectively suppress the late part of the RIRs.
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