Module 1

Sampling and Aliasing, System Functions
and z-transforms
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Sampling

1

xg(8) ® x,(nT) x(t)
| gl
st (1) | i) 'g{ }/

----- M e )

\ Sampling period T

& Analog signal X, (?)
¢ Sampling function s(?) is a sequence of impulses

st()= X(t—mT)

m=—oco
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Symbols

& continuous time signal x4 (1)

& samples of continuous time signal xq(nT)
# discrete-time signal x(n)

¢ frequency Q

¢ digital frequency w

& FTof x,(t) X, (L)
# DFT of x(n) X(e/®)
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Analysis of Sampled Signal

¢ Spectrum of discrete-time signal = spectrum of
continuous-time signal + images at multiples of 27
= From /FT:

x(n)=x,(nT) = L [X,(jQ)e™"dQ
27 7
s From IDFT:

1 7 . .
x(n)=— [X(e/?)e/™dw
27 r
= Combining these:

xe-1 & xl{3427])
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¢ Proof

= write expression for X, (#7T) as sum of integrals over intervals of length

27/T

- r+)z/T

x(n) = % Y [x,(Qede

r==e  (2r-lz/T

= change of variable: replace Q with Q'+27/T

o 7/T
_ 1 J ' 27 JQnT 2mr U
x(n)—g Z j X”(J(Q+Tjje e dQ

r=== a7

» use ¢/ =1 V(r,n) integer, reverse order of sum and integration and
use Q'=w/T

171 (@ 2m )| jon
X(H)Z%J;J:?ZXQ(](F'FTJJ}@ dw
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R = (@ 20 \)| jon
X(I’l) =E:[r|:; ZXH(](F+TJJ:|€ dw

F=—c0

= Note that this is in the form of an IDFT since

= Hence

X (™) =% i)(( ](CT”+2;”D 1]

p=—co
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¢ Points to note:

= spectrum of x(n) is periodic in @ with period 21

= if X (€) is not bandlimited to Q/2 then information in the signal is lost
when sampled due to overlapping spectral images - this effect is called
aliasing

= if X (7€) is bandlimited to Q,/2 then the original continuous-time signal
can be perfectly reconstructed from its discrete-time samples

« this is known as the Nyquist Sampling Criterion

= Q is the analog frequency, Q=27 (0<Q<eo

2
= @ is the digital frequency w=QT =27T = 24
s
X, (Q) e/
1 1/T
w
o e, T8 27 -n |z oz
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¢ Examples of signal spectra after sampling
» 1) sinusoidal signal at 1 kHz, sampling frequency = 8 kHz
[xee)

= 2) sinusoidal signal at 5.5125 kHz, sampling frequency = 44.1 kHz
e’
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¢ Sampling in time domain => periodicity in frequency

¢ Sampling in frequency domain => periodicity in time
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Signal Reconstruction

¢ A continuous-time signal x,(¢) can be reconstructed from
its samples{x,(nT)} as

x,(0)= 3 x,(1T)g(t—nT)

n=—co

sin(7t/T)

= where )=
w g(1) T

and corresponds to a lowpass filter with cut-off at the Nyquist frequency.
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¢ Proof

= write the /FT expression for X, (#) for the range —7z/T<Q < 7z/T
or equivalently — 7 <w<7x

/T
x, ()= L an (Q)e’dQ
2

-n/T

= from [1] we know that, in the range — 7z <w <7

()= XY =X, (@)
= giving

/T . .
xa(t)zi [ x(e™*)e/aq
-/T
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¢ Proof (continued)
= using the DTFT relation (described later)

Xy = T, (e T

n=-—oc

= write 2T oo ) )
X (O)=— | {Zxa(nT)e_JQ"T }eﬂ’dg
r —7t/ TLn=—o°

= change order of summation and integration

oo T /T —
x,(0)= Zxa (nT){zﬂ J.e" dQ

- sin(;[(t—nT)J
= ?(t_l’lT)
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¢ Proof (continued)

= This operation can be recognized as the convolution of x,(nT) with the
sinc function
sin(7zt/T)
m/T

= This convolution represents filtering with an “ideal” lowpass filter with a
cut-off frequency of w =7
* the Nyquist frequency

Reading: Proakis: Chapter 1, especially 1.4.1 to 1.4.7
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System Functions

¢ Transfer function
= For a continuous-time system H(s) with input X(s) and output Y(s),
_ Y(s)
X(s)

its transfer function is defined as H(s)

= For a discrete-time system H(z) with input X(z) and output Y(z),

Y(2)

its transfer function is defined as H(z)=
X(2)

e H(), Y() and X(.) are polynomials in (.)
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¢ Frequency response

= For continuous-time systems, use s = 0 + j@ and investigate the
function H(s) as a function of frequency w only, i.e. write s = jw

= For discrete-time systems, use z = eST, s=a+ jo and investigate the
function H(z) as a function of frequency w only, i.e. write z = e/%

Jj@

Im
, s-plane z=lz0 z-plane
s= jo — N

2

. Re
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¢ Example:
= Transfer Function
z-plane
22 -06z+018 2
H(Z) = 27 IS °
z“+02z-0.63 g
Eé:j °
+ zeros at z=0.3+j0.3 and z = 0.3-j0.3 ! * Realpart”

e polesatz=-0.9andz=0.7

1-0.6z7'+0.182z7

= Canbe written interms of z™' as H(z)=—
1+0.2z7 -0.63z

= Difference Equation:

y(n)=x(n)—0.6x(n—1)+0.18x(n—-2)-02y(n—1)+0.63y(n—2)
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= Frequency Response

jo a Frequency Response
.« set z=e T3
2 2
21
.
lot magnitude and phase =
P & p Z -l 02 04 06 08 1
2 10
g ]
oS
i)
=2
5 0
£ 02 04 06 08 1
£ ) ) . .

Normalized frequency (Nyquist == 1)

+ normally plot for 0 < @ < 7Z normalized such that 7 = 1

Reading: Proakis, Chapter 2 especially 2.4.and 2.5
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z-transform

¢ Definition
» The z-transform of the sequence x(n) is given by

X(z2)= g:x(n)zfn

n=—oco

= The z domain for discrete-time signals is analogous to the s domain for
continuous-time signals

= the z domain allows a signal (or system) to be compactly described
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Notation

¢ Z-transform denoted by
X(2)= Z{x(n)}

# relationship indicated by

Region of Convergence

¢ z-transform is an infinite power series

= only exists for particular values of z for which the series converges
» these are the values of z for which X{z) has a finite value

# need to specify Region Of Convergence (ROC) when

referring to z-transform

X(z)= ix(n)z_n

n=-—oo

Digital Signal Processing. Slide 1.22

x(n)«—— X(2)
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Examples
¢ Finite Duration Sequences

x(n)=11,2,3,5,8} X(z)=1+2z"+3z2+527 +8z*
ROC:z#0

x(n)=11,2,3,5,8} X(z)=22+22' +3+527" +827

T ROC:z#0and z # >

x(n)=9(n) X(2)=1

ROC: vz
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¢ Infinite Duration Sequences

Step Function

-3 -2 -1 3 4 5 6 7

x(n) = Au(n)
X(z) = iAu(n)z_n
=A{l+z7 4272 +z_3+~~~)
A

=5 ROC:|-<1

LTI

Recall that an infinite
geometric series

1

I+ A+ A +...=——

1-4

if |4<1

ROC

z plane

= Sequences like Au(n) are called “right-sided” sequences
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¢ Another Example

x(n) = Au(n)a"e™"

X(2)= i Au(n)a"e” " z™"

n=

- Ai (ae"”" z! )n
n=0

_ A
T l-ae’z
z plane
ROC
= The region of convergence is
‘aej”’z'l‘ <1 [4=a
or |2[>d]
since ‘ef‘”‘ =1
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¢ Properties of the z-transform

= Linearity
« for signals x(n) and y(n) with z-transforms X(z) and Y(z)

S Cofi(n o $CF )
k=1 k=1

x(n) 4, X(z) 4,
ax(n)+by(n) = aX(z)+bY(z)
y(n) b Y(z) b,
= Shift

Z{f(n —m)} =z"F(z)
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= Multiplication by n

. dF(z)

Z{nf (0} ===

" Proof F@)= Sf(n)z"

n=—co

— differentiating both sides gives

dF(z) _

- S —nf (n)=" "D

n=—co

— multiplying both sides by -z gives

—z@ = Enf(n)z_”

dz .
— where the RHS can be seen to be the z-transform of nf(n)
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= Convolution

) |y = X@_ | gl Y
LTI System LTI System
y(n)="Y h(m)x(n—m) Y(2)=H(2)X(2)

m=—oo
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¢ Example
= Find the z-transform of the following function p(n)
AR T
o (o] (o] // o] o]
3-2-101 2 3 N-1 n

. Write p(n)=u(n)—u(n—N)

= Using the shift and linearity properties we obtain

1 N 1-z7N
PE@)=—F-—3*= 0
1-z 1-z 1-z
s The ROC is
‘z_l‘<1
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¢ Plotting on the z-plane

_ by +b12_1 +b22_2+~~-+sz_N

= Given H(z) T > i
l+aiz” +apz “+-+ayz

e Poles are roots of denominator X
» Zeros are roots of numerator O
z plane
Im(z)

1 @ increasing
z=—l, w=r71 ’ / X\\\ |
\

Re(z
o\ © v\
/’”\ X// =1, =0

i
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¢ Frequency Response from the z-plane plot
= The frequency response is given by H(e/®) = H(z)|
= Can be derived analytically from the transfer function in z

° put z= e/’

z=e/?

= Can be derived graphically
« compute : Product of distances to all the zeros

Product of distances to all the poles

as z goes around the unit circle

z plane
Im(z)
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Inverse z-transform

¢ Aim
= Given X(z) find x(n)
¢ 4 methods
= Inspection (for power series)
= Long division
= Partial fractions and table look-up
» Inversion formula

Reading: Proakis Section 3.4
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¢ Inverse z-transform by inspection

= Given a z-domain expression as a power series
_ -1 -2
X(z)=1+42z""+3z

= use Z{A6(n-m)} = Az""

= to write x(n)=0(n)+28(n—-1)+356(n-2)
={1,2,3}
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¢ Inverse z-transform by long division

=  Given a z-domain expression as a ratio of polynomials, the first few terms
of the sequence can be found by long division.

= Start by converting ratio of polynomials to power series, then use

inspection
= Eg
0522 4 052 05+10z" +0.75272 ..
X(Z):722—2+0.5 22 —2+405) 0522 +052
05z% —05z+025
0 +10z-025

1.0z - 1.00+0.50z "
0 +0.75-050z""

= and hence etc
x(n)=0.50(n)+16(n—1)+0.756(n-2) +...
={0.5,1,0.75,...}
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¢ Inverse z-transform by partial fractions and table look-up
= Use tables of standard transform pairs

= Use partial fraction expansion to re-write problem in terms of standard
transform pairs

[ ] Eg
2
4z
X@)=75——
z“ =025
= Use PFE to write 2z 2z
X(z)= +
z—=05 z+05
» Use standard transform pair y
Z{Aanu(rz)} =2
z—a

= to give
x(n) =2(0.5)" u(n) +2(-05)" u(n)
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¢ Inverse z-transform by the inversion formula

» The inverse z-transform is given by
_ 1 n-1
x(n)= o §C X(2)z" dz

= This can be solved using the residue theorem

x(n) = i §C X(2)z" \dz = Z(residues of X(z)z" ! at the poles inside contour C)

= Express X(z)zn_las X(Z)Z"_l = ﬂ
(z —ZO)S

which has s poles at Z=20

s—1
« Then Res[X(2)z" ' atz=zy]=——. 42
(s=D!| a7
Z=ZO
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¢ Example

= Find the inverse z-transform of X(2)=

1
1-az

dz

- for|z| >|q]

1 n-1 1 n
= Write X(f’l) = T - 1_2 = dz ZT - Z_
7 az vk z—a

C'is a circular contour of radius greater than a.

-l _ @(2)

= Comparing with the form X (z)z .
(z—2y)

gives s=1, zg=aand @(z)=z" .

¢ For n>0 the only pole of X(z)z" Visat z=a witha
residue of a”
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¢ For n<0 there is a multiple order pole at z=0

a
¢ Therefore x(n)= 0

For n=-1
. . PSCTTTR | \
residue of pole at origin is a_l cancel
+ residue of poleat z=q is a -
For n=-2

« residue of pole at origin is

Re{2 ! } =—q7?
z7(z—a) ],

etc. n

residue of poleat z=a is

Res{zl} =a?
z7(z-a)],_,

n=0

n<0 cancel
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Causal and Anticausal Systems

¢ Already seen that the ROC is the region of the z-plane for
which the infinite sum of the z-transform converges

¢ Given a transfer function H(z) the impulse response /(n)
depends on the ROC of H(z)
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¢ Causal Example  h(n)= {an’ nz0_ a"u(n)

0, n<0
This has z-transform

H(z)= i a'u(n)z™" = z (az_l )"
N=—co n=0
= ! — for ‘z‘ > ‘a‘
1-az

Digital Signal Processing. Slide 1.40




0, n=0

n

=-a"u(-n-1
-a", n<0 ( )

¢ Anticausal Example h(n) :{

» This has z-transform

oo -1
H(z)= Z—a"u(—n—l)z_"z Z(—az_ly

n=—oo n=—co
-1 forld<|d
l—az™

¢ Causal and anticausal sequences have same form of
z-transforms but different ROCs
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& Generalisation

= A system with N poles with ROC ‘Z‘ > ‘ p[‘ where p; is the pole farthest
from z =0 is causal.

= A system with N poles with ROC ‘Z‘ < ‘Pi‘ where p; is the pole nearest
to z=0 is anticausal.
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Stability

¢ Two equivalent definitions:
= A system H(z) is stable if its inverse z-transform /(n) satisfies

o

5[y <=

n=—oc0

= A system H(z)is stable if its ROC includes the unit circle in the z-plane

¢ Causal systems are stable if all poles lie inside the unit
circle

¢ Anticausal systems are stable if all poles lie outside the
unit circle
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¢ Example z plane
Im(z)

1

H&) = 055G T075)

for |2| > 0.75 Re(z)

= ROC lies outside both poles
« therefore system is causal
= ROC includes unit circle (i.e. modulus of all poles < 1)

« therefore system is stable
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Schur-Cohn Stability Test

¢ Write the denominator of the system function as
A(z)=1+ alz_1 + azz_2 +..+ aNz_N
¢ Convert the polynomial coefficients g to reflection
coefficients K,
@ A(z) has roots within the unit circle iff |K,[<1 Vm
¢ Conversion to reflection coefficients can be done
efficiently using a recursive algorithm
= Levinson/Durbin

s Uses N 2multiplications
= Better than direct factorisation of A(z)
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& Set ay(k)=a; k=12,.,N N is order of polynomial
Ky =ay(N)

¢ Then compute for m=N, N-1, ... ,1
K, =a,m) a,10)=1
by(k)=a,(m—k) k=0,1,..m

k)—-K,,b,, (k
am_l(k):am( ])_szm( )

k=12,.,m-1

m
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Example

A(z)=1-1.75z"" =05z

N=2

ay()=-1.75, a,(2)=-0.5

Ky =a,(2)=-0.5

m=2:

Ky =ay(2)=-0.5, ay(0)=1

ay()= ay()—Kray (1) _-1.75-0.5%1.75 _

: -3.5
1-K, 1-0.25

m=1:
K] = (1) = —3.5, (10(0) =1

Reading: Proakis Chapter 3
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