Contents

Module 1

Sampling and Aliasing, System Functions and z-transforms

- Sampling and Aliasing
- Concept of sampling a continuous-time signal
- Periodic nature of discrete-time signals in the frequency domain, the effect of aliasing and Nyquist sampling criterion
- Reconstruction of continuous-time signals from their samples
- System Functions
- Transfer function
- Frequency response
- Example
- z-transforms
- Definition and properties
- Inverse z-transform
- Causal and anticausal systems
- Stability

Sampling

- Analog signal $\quad x_{a}(t)$
- Sampling function $s_{\mathrm{T}}(t)$ is a sequence of impulses

$$
s_{\mathrm{T}}(t)=\sum_{m=-\infty}^{\infty} \delta(t-m T)
$$

Symbols

- continuous time signal $\quad x_{a}(t)$
- samples of continuous time signal
$x_{a}(n T)$
- discrete-time signal
$x(n)$
- frequency
Ω
- digital frequency
ω
- FT of $x_{a}(t)$
$X_{a}(\Omega)$
- DFT of $x(n)$
$X\left(e^{j \omega}\right)$

Analysis of Sampled Signal

- Spectrum of discrete-time signal $=$ spectrum of continuous-time signal + images at multiples of 2π
- From IFT:

$$
x(n)=x_{a}(n T)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X_{a}(j \Omega) e^{j \Omega n T} d \Omega
$$

- From IDFT:

$$
x(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega
$$

- Combining these:

$$
X\left(e^{j \omega}\right)=\frac{1}{T} \sum_{r=-\infty}^{\infty} X_{a}\left(j\left(\frac{\omega}{T}+\frac{2 \pi r}{T}\right)\right)
$$

Digital Signal Processing. Slide 1.5

- Proof
- write expression for $x_{a}(n T)$ as sum of integrals over intervals of length $2 \pi / T$

$$
x(n)=\frac{1}{2 \pi} \sum_{r=-\infty}^{\infty} \int_{(2 r-1) \pi / T}^{(2 r+1) \pi / T} X_{a}(j \Omega) e^{j \Omega n T} d \Omega
$$

- change of variable: replace Ω with $\Omega^{\prime}+2 \pi r / T$

$$
x(n)=\frac{1}{2 \pi} \sum_{r=-\infty}^{\infty} \int_{-\pi / T}^{\pi / T} X_{a}\left(j\left(\Omega^{\prime}+\frac{2 \pi r}{T}\right)\right) e^{j \Omega^{\prime} n T} e^{2 \pi \eta r} d \Omega^{\prime}
$$

- use $e^{j 2 \pi n}=1 \forall(r, n)$ integer, reverse order of sum and integration and use $\Omega^{\prime}=\omega / T$

$$
x(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left[\frac{1}{T} \sum_{r=-\infty}^{\infty} X_{a}\left(j\left(\frac{\omega}{T}+\frac{2 \pi r}{T}\right)\right)\right] e^{j \omega n} d \omega
$$

Digital Signal Processing. Slide 1.6
$x(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left[\frac{1}{T} \sum_{r=-\infty}^{\infty} X_{a}\left(j\left(\frac{\omega}{T}+\frac{2 \pi r}{T}\right)\right)\right] e^{j \omega n} d \omega$

- Note that this is in the form of an IDFT since
- Hence

$$
\begin{equation*}
X\left(e^{j \omega}\right)=\frac{1}{T} \sum_{r=-\infty}^{\infty} X_{a}\left(j\left(\frac{\omega}{T}+\frac{2 \pi r}{T}\right)\right) \tag{1}
\end{equation*}
$$

- Points to note:
- spectrum of $x(n)$ is periodic in ω with period 2π
- if $X_{a}(\Omega)$ is not bandlimited to $\Omega_{s} / 2$ then information in the signal is lost when sampled due to overlapping spectral images - this effect is called aliasing
- if $X_{a}(j \Omega)$ is bandlimited to $\Omega_{s} / 2$ then the original continuous-time signal can be perfectly reconstructed from its discrete-time samples
- this is known as the Nyquist Sampling Criterion
- Ω is the analog frequency, $\Omega=2 \pi f \quad 0<\Omega<\infty$
- ω is the digital frequency $\omega=\Omega T=2 \pi f T=\frac{2 \pi f}{f_{s}}$

Digital Signal Processing. Slide 1.8

- Examples of signal spectra after sampling
- 1) sinusoidal signal at 1 kHz , sampling frequency $=8 \mathrm{kHz}$

- 2) sinusoidal signal at 5.5125 kHz , sampling frequency $=44.1 \mathrm{kHz}$

Digital Signal Processing. Slide 1.9

- Sampling in time domain $=>$ periodicity in frequency
- Sampling in frequency domain $=>$ periodicity in time
- 3) sinusoiday singl at 1 kHz , sampling frequency $=1.1429 \mathrm{kHz}$

Signal Reconstruction

- A continuous-time signal $x_{a}(t)$ can be reconstructed from its samples $\left\{x_{a}(n T)\right\}$ as

$$
x_{a}(t)=\sum_{n=-\infty}^{\infty} x_{a}(n T) g(t-n T)
$$

- where $g(t)=\frac{\sin (\pi t / T)}{\pi t / T}$
and corresponds to a lowpass filter with cut-off at the Nyquist frequency.
- Proof
- write the $I F T$ expression for $x_{a}(t)$ for the range $-\pi / T \leq \Omega \leq \pi / T$ or equivalently $-\pi \leq \omega \leq \pi$

$$
x_{a}(t)=\frac{1}{2 \pi} \int_{-\pi / T}^{\pi / T} X_{a}(\Omega) e^{j \Omega t} d \Omega
$$

- from [1] we know that, in the range $-\pi \leq \omega \leq \pi$

$$
X\left(e^{j \omega}\right)=X\left(e^{j \Omega T}\right)=\frac{1}{T} X_{a}(\Omega)
$$

- giving

$$
x_{a}(t)=\frac{1}{2 \pi} \int_{-\pi / T}^{\pi / T} T X\left(e^{j \Omega T}\right) e^{j \Omega t} d \Omega
$$

- Proof (continued)
- This operation can be recognized as the convolution of $x_{a}(n T)$ with the sinc function

$$
\frac{\sin (\pi t / T)}{\pi t / T}
$$

- This convolution represents filtering with an "ideal" lowpass filter with a cut-off frequency of $\omega=\pi$
- the Nyquist frequency

Reading: Proakis: Chapter 1, especially 1.4.1 to 1.4.7

- Proof (continued)
- using the DTFT relation (described later)

$$
X\left(e^{j \Omega T}\right)=\sum_{n=-\infty}^{\infty} x_{a}(n T) e^{-j \Omega n T}
$$

- write

$$
x_{a}(t)=\frac{T}{2 \pi} \int_{-\pi / T}^{\pi / T}\left[\sum_{n=-\infty}^{\infty} x_{a}(n T) e^{-j \Omega n T}\right] e^{j \Omega t} d \Omega
$$

- change order of summation and integration

$$
\begin{aligned}
x_{a}(t) & =\sum_{n=-\infty}^{\infty} x_{a}(n T)\left[\frac{T}{2 \pi} \int_{-\pi / T}^{\pi / T} e^{j \Omega(t-n T)} d \Omega\right] \\
& =\sum_{n=-\infty}^{\infty} x_{a}(n T) \frac{\sin \left(\frac{\pi}{T}(t-n T)\right)}{\frac{\pi}{T}(t-n T)}
\end{aligned}
$$

System Functions

- Transfer function
- For a continuous-time system $\mathrm{H}(\mathrm{s})$ with input $\mathrm{X}(\mathrm{s})$ and output $\mathrm{Y}(\mathrm{s})$,
its transfer function is defined as $\quad H(s)=\frac{Y(s)}{X(s)}$
- For a discrete-time system $\mathrm{H}(\mathrm{z})$ with input $\mathrm{X}(\mathrm{z})$ and output $\mathrm{Y}(\mathrm{z})$,
its transfer function is defined as $\quad H(z)=\frac{Y(z)}{X(z)}$
- $H(),. Y($.$) and X($.$) are polynomials in (.)$
- Frequency response
- For continuous-time systems, use $s=\sigma+j \omega$ and investigate the function $H(s)$ as a function of frequency ω only, i.e. write $s=j \omega$
- For discrete-time systems, use $z=e^{s T}, s=\alpha+j \omega$ and investigate the function $H(z)$ as a function of frequency ω only, i.e. write $z=e^{j \omega}$

Digital Signal Processing. Slide 1.17

- Frequency Response
- set $z=e^{j \omega}$
- plot magnitude and phase

- normally plot for $0<\omega<\pi$ normalized such that $\pi=1$

Reading: Proakis, Chapter 2 especially 2.4.and 2.5

- Example:
- Transfer Function

$$
H(z)=\frac{z^{2}-0.6 z+0.18}{z^{2}+0.2 z-0.63}
$$

- zeros at $z=0.3+\mathrm{j} 0.3$ and $z=0.3-\mathrm{j} 0.3$
- poles at $z=-0.9$ and $z=0.7$

- Can be written in terms of z^{-1} as $H(z)=\frac{1-0.6 z^{-1}+0.18 z^{-2}}{1+0.2 z^{-1}-0.63 z^{-2}}$
- Difference Equation:

$$
y(n)=x(n)-0.6 x(n-1)+0.18 x(n-2)-0.2 y(n-1)+0.63 y(n-2)
$$

Digital Signal Processing. Slide 1.18

Notation

- Z-transform denoted by

$$
X(z) \equiv Z\{x(n)\}
$$

- relationship indicated by

$$
x(n) \stackrel{z}{\longleftrightarrow} X(z)
$$

Examples

- Finite Duration Sequences

$x(n)=\{1,2,3,5,8\}$	$X(z)=1+2 z^{-1}+3 z^{-2}+5 z^{-3}+8 z^{-4}$
	ROC: $z \neq 0$
$x(n)=\{1,2,3,5,8\}$	$X(z)=z^{2}+2 z^{1}+3+5 z^{-1}+8 z^{-2}$
\uparrow	ROC: $z \neq 0$ and $z \neq \infty$
$x(n)=\delta(n)$	$X(z)=1$
	ROC: $\forall z$

Region of Convergence

$X(z)=\sum_{n=-\infty}^{\infty} x(n) z^{-n}$ $n=-\infty$

- z-transform is an infinite power series
- only exists for particular values of z for which the series converges
- these are the values of z for which $X(z)$ has a finite value
- need to specify Region Of Convergence (ROC) when referring to z-transform
- Infinite Duration Sequences
Recall that an infinite geometric series

$$
1+A+A^{2}+\ldots=\frac{1}{1-A}
$$

$x(n)=A u(n)$
if $|A|<1$

$$
\begin{aligned}
X(z) & =\sum_{n=-\infty}^{\infty} A u(n) z^{-n} \\
& =A\left(1+z^{-1}+z^{-2}+z^{-3}+\cdots\right) \\
& =\frac{A}{1-z^{-1}} \quad \text { ROC: }\left|z^{-1}\right|<1
\end{aligned}
$$

- Another Example

$$
\begin{aligned}
x(n) & =A u(n) a^{n} e^{j n \omega_{1}} \\
X(z) & =\sum_{n=-\infty}^{\infty} A u(n) a^{n} e^{j n \omega_{1}} z^{-n} \\
& =A \sum_{n=0}^{\infty}\left(a e^{j \omega_{1}} z^{-1}\right)^{n} \\
& =\frac{A}{1-a e^{j \omega_{1}} z^{-1}}
\end{aligned}
$$

- The region of convergence is

$$
\begin{aligned}
& \left|a e^{j \omega} z^{-1}\right|<1 \\
& |z|>|a| \\
& \left|e^{j \omega}\right|=1
\end{aligned}
$$

since

- Multiplication by n

$$
Z\{n f(n)\}=-z \frac{d F(z)}{d z}
$$

- Proof

$$
F(z)=\sum_{n=-\infty}^{\infty} f(n) z^{-n}
$$

- differentiating both sides gives

$$
\frac{d F(z)}{d z}=\sum_{n=-\infty}^{\infty}-n f(n) z^{-(n+1)}
$$

- multiplying both sides by -z gives

$$
-z \frac{d F(z)}{d z}=\sum_{n=-\infty}^{\infty} n f(n) z^{-n}
$$

where the RHS can be seen to be the z-transform of $n f(n)$

- Properties of the z-transform
- Linearity
- for signals $x(n)$ and $y(n)$ with z-transforms $X(z)$ and $Y(z)$

$$
\sum_{k=1}^{p} C_{k} f_{k}(n) \leftrightarrow \sum_{k=1}^{p} C_{k} F_{k}(z)
$$

- Shift

$$
Z\{f(n-m)\}=z^{-m} F(z)
$$

Digital Signal Processing. Slide 1.26

- Convolution
$x(n) \underset{\text { LTI System }}{h(n)} y$
$\equiv \quad X($

$y(n)=\sum_{m=-\infty}^{\infty} h(m) x(n-m)$
$Y(z)=H(z) X(z)$

$$
Y(z)=H(z) X(z)
$$

$$
m=-\infty
$$

- Example
- Find the z -transform of the following function $\quad p(n)$

- Write $p(n)=u(n)-u(n-N)$
- Using the shift and linearity properties we obtain

$$
P(z)=\frac{1}{1-z^{-1}}-\frac{z^{-N}}{1-z^{-1}}=\frac{1-z^{-N}}{1-z^{-1}}
$$

- The ROC is

$$
\left|z^{-1}\right|<1
$$

- Frequency Response from the z-plane plot
- The frequency response is given by $H\left(e^{j \omega}\right)=\left.H(z)\right|_{z=e^{j \omega}}$
- Can be derived analytically from the transfer function in z
- put $z=e^{j \omega}$
- Can be derived graphically
- compute : Product of distances to all the zeros

Product of distances to all the poles
as z goes around the unit circle

- Plotting on the z-plane
- Given $H(z)=\frac{b_{0}+b_{1} z^{-1}+b_{2} z^{-2}+\cdots+b_{N} z^{-N}}{1+a_{1} z^{-1}+a_{2} z^{-2}+\cdots+a_{M} z^{-M}}$
- Poles are roots of denominator \times
- Zeros are roots of numerator O

Inverse z-transform

- Aim
- Given $X(z)$ find $x(n)$
- 4 methods
- Inspection (for power series)
- Long division
- Partial fractions and table look-up
- Inversion formula

Reading: Proakis Section 3.4

Inverse z-transform by inspection

- Given a z-domain expression as a power series

$$
X(z)=1+2 z^{-1}+3 z^{-2}
$$

- use

$$
Z\{A \delta(n-m)\}=A z^{-m}
$$

- to write

$$
\begin{aligned}
x(n) & =\delta(n)+2 \delta(n-1)+3 \delta(n-2) \\
& =\{1,2,3\}
\end{aligned}
$$

- Inverse z-transform by long division
- Given a z-domain expression as a ratio of polynomials, the first few terms of the sequence can be found by long division.
- Start by converting ratio of polynomials to power series, then use inspection
- E.g.

$$
\left.X(z)=\frac{0.5 z^{2}+0.5 z}{z^{2}-z+0.5} \quad z^{2}-z+0.5\right) \frac{0.5+1.0 z^{-1}+0.75 z^{-2}+\ldots}{0.5 z^{2}+0.5 z}
$$

- and hence

$$
\begin{aligned}
x(n) & =0.5 \delta(n)+1 \delta(n-1)+0.75 \delta(n-2)+\ldots \\
& =\{0.5,1,0.75, \ldots\}
\end{aligned}
$$

Digital Signal Processing. Slide 1.34

- Inverse z-transform by partial fractions and table look-up
- Use tables of standard transform pairs
- Use partial fraction expansion to re-write problem in terms of standard transform pairs
E.g.

$$
X(z)=\frac{4 z^{2}}{z^{2}-0.25}
$$

- Use PFE to write

$$
X(z)=\frac{2 z}{z-0.5}+\frac{2 z}{z+0.5}
$$

- Use standard transform pair

$$
Z\left\{A a^{n} u(n)\right\}=\frac{A z}{z-a}
$$

- to give

$$
x(n)=2(0.5)^{n} u(n)+2(-0.5)^{n} u(n)
$$

- Inverse z-transform by the inversion formula
- The inverse z-transform is given by
$x(n)=\frac{1}{2 \pi j} \oint_{C} X(z) z^{n-1} d z$
- This can be solved using the residue theorem
$x(n)=\frac{1}{2 \pi j} \oint_{C} X(z) z^{n-1} d z=\sum\left(\right.$ residues of $X(z) z^{n-1}$ at the poles inside contour C$)$
- Express $\quad X(z) z^{n-1}$ as $\quad X(z) z^{n-1}=\frac{\varphi(z)}{\left(z-z_{0}\right)^{s}}$
which has s poles at $\quad z=z_{0}$
- Then $\operatorname{Res} s\left[X(z) z^{n-1}\right.$ at $\left.z=z_{0}\right]=\frac{1}{(s-1)!} \cdot\left[\frac{d^{s-1} \varphi(z)}{d z^{s-1}}\right]_{z=z_{0}}$
- Example
- Find the inverse z -transform of $\quad X(z)=\frac{1}{1-a z^{-1}} \quad$ for $|z|>|a|$
- Write $x(n)=\frac{1}{2 \pi j} \oint_{C} \frac{z^{n-1}}{1-a z^{-1}} d z=\frac{1}{2 \pi j} \oint_{C} \frac{z^{n}}{z-a} d z$
C is a circular contour of radius greater than a.
- Comparing with the form $X(z) z^{n-1}=\frac{\varphi(z)}{\left(z-z_{0}\right)^{s}}$
gives $s=1, z_{0}=a$ and $\varphi(z)=z^{n}$
- For $n \geq 0$ the only pole of $X(z) z^{n-1}$ is at $z=a$ with a residue of a^{n}
- For $n<0$ there is a multiple order pole at $z=0$
- For $\mathrm{n}=-1$
- residue of pole at origin is $-a^{-1}$
- residue of pole at $z=a$ is a^{-1}
 cancel
- For $\mathrm{n}=-2$
- residue of pole at origin is residue of pole at $z=a$ is

Causal and Anticausal Systems

- Already seen that the ROC is the region of the z-plane for which the infinite sum of the z-transform converges
- Given a transfer function $H(z)$ the impulse response $h(n)$ depends on the ROC of $H(z)$
- Causal Example $\quad h(n)=\left\{\begin{array}{cc}a^{n}, & n \geq 0 \\ 0, & n<0\end{array}=a^{n} u(n)\right.$
- This has z-transform

$$
\begin{aligned}
H(z) & =\sum_{n=-\infty}^{\infty} a^{n} u(n) z^{-n}=\sum_{n=0}^{\infty}\left(a z^{-1}\right)^{n} \\
& =\frac{1}{1-a z^{-1}} \text { for }|z|>|a|
\end{aligned}
$$

- Anticausal Example $\quad h(n)=\left\{\begin{array}{cc}0, & n \geq 0 \\ -a^{n}, & n<0\end{array}=-a^{n} u(-n-1)\right.$
- This has z-transform

$$
\begin{aligned}
H(z) & =\sum_{n=-\infty}^{\infty}-a^{n} u(-n-1) z^{-n}=\sum_{n=-\infty}^{-1}\left(-a z^{-1}\right)^{n} \\
& =-\frac{1}{1-a z^{-1}} \quad \text { for }|\mathrm{z}|<|a|
\end{aligned}
$$

- Causal and anticausal sequences have same form of z-transforms but different ROCs

Stability

- Two equivalent definitions:
- A system $H(z)$ is stable if its inverse z -transform $h(n)$ satisfies

$$
\sum_{n=-\infty}^{\infty}|h(n)|<\infty
$$

- A system $H(z)$ is stable if its ROC includes the unit circle in the z-plane
- Causal systems are stable if all poles lie inside the unit circle
- Anticausal systems are stable if all poles lie outside the unit circle
- Generalisation
- A system with N poles with ROC $|z|>\left|p_{i}\right|$ where p_{i} is the pole farthest from $z=0$ is causal.
- A system with N poles with ROC $|z|<\left|p_{i}\right|$ where p_{i} is the pole nearest to $z=0$ is anticausal.
- Example

$$
H(z)=\frac{1}{(z-0.5)(z+0.75)} \text { for }|z|>0.75
$$

- ROC lies outside both poles
- therefore system is causal
- ROC includes unit circle (i.e. modulus of all poles <1)
- therefore system is stable

Schur-Cohn Stability Test

- Write the denominator of the system function as

$$
A(z)=1+a_{1} z^{-1}+a_{2} z^{-2}+\ldots+a_{N} z^{-N}
$$

- Convert the polynomial coefficients a_{k} to reflection coefficients K_{m}
- $A(z)$ has roots within the unit circle iff $\left|K_{m}\right|<1 \quad \forall m$
- Conversion to reflection coefficients can be done efficiently using a recursive algorithm
- Levinson/Durbin
- Uses N^{2} multiplications
- Better than direct factorisation of $A(z)$
- Set $\quad a_{N}(k)=a_{k} \quad k=1,2, \ldots, N$

$$
K_{N}=a_{N}(N)
$$

- Then compute for $m=N, N-1, \ldots, 1$

$$
\begin{aligned}
& K_{m}=a_{m}(m) \quad a_{m-1}(0)=1 \\
& b_{m}(k)=a_{m}(m-k) \quad k=0,1, \ldots, m \\
& a_{m-1}(k)=\frac{a_{m}(k)-K_{m} b_{m}(k)}{1-K_{m}^{2}} \quad k=1,2, \ldots, m-1
\end{aligned}
$$

Example

$$
\begin{aligned}
& A(z)=1-1.75 z^{-1}-0.5 z^{-2} \\
& N=2 \\
& a_{2}(1)=-1.75, \quad a_{2}(2)=-0.5 \\
& K_{2}=a_{2}(2)=-0.5 \\
& m=2: \\
& K_{2}=a_{2}(2)=-0.5, \quad a_{1}(0)=1 \\
& a_{1}(1)=\frac{a_{2}(1)-K_{2} a_{2}(1)}{1-K_{2}{ }^{2}}=\frac{-1.75-0.5 * 1.75}{1-0.25}=-3.5 \\
& m=1: \\
& K_{1}=a_{1}(1)=-3.5, \quad a_{0}(0)=1
\end{aligned}
$$

Reading: Proakis Chapter 3

