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Module 1

Sampling and Aliasing, System Functions
and z-transforms
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• Concept of sampling a continuous-time signal
• Periodic nature of discrete-time signals in the frequency domain, the effect of 

aliasing and Nyquist sampling criterion
• Reconstruction of continuous-time signals from their samples
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• Transfer function
• Frequency response
• Example

z-transforms
• Definition and properties
• Inverse z-transform
• Causal and anticausal systems
• Stability
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Sampling

Analog signal 
Sampling function sT(t) is a sequence of impulses
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Symbols

continuous time signal
samples of continuous time signal
discrete-time signal
frequency
digital frequency
FT of 
DFT of
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Analysis of Sampled Signal

Spectrum of discrete-time signal  =  spectrum of 
continuous-time signal  +  images at multiples of 2π

From IFT:

From IDFT:

Combining these:
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Proof
write expression for                 as sum of integrals over intervals of length

change of variable: replace         with

use                                 integer, reverse order of sum and integration and 
use 
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Note that this is in the form of an IDFT since
Hence
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Points to note:
spectrum of x(n) is periodic in       with period 2π
if Xa(Ω) is not bandlimited to           then information in the signal is lost 
when sampled due to overlapping spectral images - this effect is called 
aliasing
if Xa(jΩ) is bandlimited to           then the original continuous-time signal 
can be perfectly reconstructed from its discrete-time samples

• this is known as the Nyquist Sampling Criterion
is the analog frequency,      

is the digital frequency
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Examples of signal spectra after sampling
1) sinusoidal signal at 1 kHz, sampling frequency = 8 kHz

2) sinusoidal signal at 5.5125 kHz, sampling frequency = 44.1 kHz
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3) sinusoidal signal at 1 kHz, sampling frequency = 1.1429 kHz
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Sampling in time domain => periodicity in frequency

Sampling in frequency domain => periodicity in time
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Signal Reconstruction

A continuous-time signal          can be reconstructed from 
its samples          as

where                                                           

and corresponds to a lowpass filter with cut-off at the Nyquist frequency.
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Proof
write the IFT expression for              for the range
or equivalently 

from [1] we know that, in the range

giving
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Proof (continued)
using the DTFT relation (described later)

write

change order of summation and integration
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Proof (continued)
This operation can be recognized as the convolution of          with the 
sinc function  

This convolution represents filtering with an “ideal” lowpass filter with a 
cut-off frequency of

• the Nyquist frequency 
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Reading: Proakis: Chapter 1, especially 1.4.1 to 1.4.7
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System Functions

Transfer function
For a continuous-time system H(s) with input X(s) and output Y(s), 

its transfer function is defined as 

For a discrete-time system H(z) with input X(z) and output Y(z), 

its transfer function is defined as 

• H(.), Y(.) and X(.) are polynomials in (.)
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Frequency response
For continuous-time systems, use                        and investigate the 
function H(s) as a function of frequency ω only, i.e. write

For discrete-time systems, use                                       and investigate the 
function H(z) as a function of frequency ω only, i.e. write

s j= +σ ω
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z e s jsT= = +,   α ω
z e j= ω

jω

σ Re

Im
z = ∠1 ωs-plane z-plane

s j= ω
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Example:
Transfer Function

• zeros at z = 0.3+j0.3 and z = 0.3-j0.3
• poles at z = -0.9 and z = 0.7

Can be written in terms of          as

Difference Equation:
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Frequency Response

• set 

• plot magnitude and phase

• normally plot for                        normalized such that  
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Reading: Proakis, Chapter 2 especially 2.4.and 2.5
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z-transform

Definition
The z-transform of the sequence x(n) is given by

The z domain for discrete-time signals is analogous to the s domain for 
continuous-time signals
the z domain allows a signal (or system) to be compactly described
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Notation

Z-transform denoted by

relationship indicated by

{ })()( nxZzX ≡

)()( zXnx z→←
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z-transform is an infinite power series
only exists for particular values of z for which the series converges
these are the values of z for which X(z) has a finite value

need to specify Region Of Convergence (ROC) when 
referring to z-transform

Region of Convergence
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Examples

Finite Duration Sequences
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Infinite Duration Sequences

Sequences like              are called “right-sided” sequences
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Another Example

The region of convergence is

or
since

z plane
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Properties of the z-transform
Linearity

• for signals x(n) and y(n) with z-transforms X(z) and Y(z)
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Multiplication by n

• Proof

– differentiating both sides gives

– multiplying both sides by -z gives

– where the RHS can be seen to be the z-transform of nf(n)
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Convolution

x(n) h(n) y(n) X(z) H(z) Y(z)≡

LTI System LTI System
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Example
Find the z-transform of the following function

Write

Using the shift and linearity properties we obtain

The ROC is
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Plotting on the z-plane

Given 

• Poles are roots of denominator
• Zeros are roots of numerator
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Frequency Response from the z-plane plot
The frequency response is given by
Can be derived analytically from the transfer function in z

• put 
Can be derived graphically

• compute :

as z goes around the unit circle

H e H zj
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Product of distances to all the poles
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Inverse z-transform

Aim
Given           find 

4 methods
Inspection (for power series)
Long division
Partial fractions and table look-up
Inversion formula 

x n( )X z( )

Reading: Proakis Section 3.4
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Inverse z-transform by inspection
Given a z-domain expression as a power series

use

to write

X z z z( ) = + +− −1 2 31 2
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Inverse z-transform by long division
Given a z-domain expression as a ratio of polynomials, the first few terms 
of the sequence can be found by long division.
Start by converting ratio of polynomials to power series, then use 
inspection
E.g.

and hence
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Inverse z-transform by partial fractions and table look-up
Use tables of standard transform pairs
Use partial fraction expansion to re-write problem in terms of standard 
transform pairs
E.g.

Use PFE to write

Use standard transform pair

to give
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Inverse z-transform by the inversion formula
The inverse z-transform is given by 

This can be solved using the residue theorem

Express                   as
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Example
Find the inverse z-transform of

Write

C is a circular contour of radius greater than a.

Comparing with the form

gives           ,             and                   .

For            the only pole of                 is at           with a 
residue of
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For            there is a multiple order pole at
For n= -1

• residue of pole at origin is
• residue of pole at             is

For n=-2
• residue of pole at origin is                                  residue of pole at               is

etc.

Therefore

n < 0 z = 0
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Causal and Anticausal Systems

Already seen that the ROC is the region of the z-plane for 
which the infinite sum of the z-transform converges

Given a transfer function          the impulse response 
depends on the ROC of 

H z( ) h n( )
H z( )
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Causal Example

This has z-transform
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Anticausal Example

This has z-transform

Causal and anticausal sequences have same form of
z-transforms but different ROCs
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Generalisation
A system with N poles with ROC               where       is the pole farthest 
from           is causal.

A system with N poles with ROC               where        is the pole nearest 
to            is anticausal.

 z pi> pi
z = 0

 z pi< pi
z = 0
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Stability

Two equivalent definitions:
A system            is stable if its inverse z-transform          satisfies

A system           is stable if its ROC includes the unit circle in the z-plane

Causal systems are stable if all poles lie inside the unit 
circle
Anticausal systems are stable if all poles lie outside the 
unit circle

H z( ) h n( )

h n
n

( )
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∞
∑ < ∞

H z( )
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Example

ROC lies outside both poles
• therefore system is causal

ROC includes unit circle (i.e. modulus of all poles < 1)
• therefore system is stable

z plane
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Schur-Cohn Stability Test

Write the denominator of the system function as

Convert the polynomial coefficients     to reflection 
coefficients
A(z) has roots within the unit circle iff
Conversion to reflection coefficients can be done 
efficiently using a recursive algorithm

Levinson/Durbin
Uses       multiplications
Better than direct factorisation of A(z)
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Set

Then compute for m=N, N-1, … ,1 
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N is order of polynomial
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Example
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Reading: Proakis Chapter 3


