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Review of Fourier Analysis

◆ Analysis of signals in terms of their components at
different frequencies

■ What are signals?
• Information bearing functions of time

• usually observed using transducers (microphone, antenna)

• often represented by analogue voltages or sampled data streams

■ What are frequency components?
• Fourier analysis considers signals to be constructed from a sum of complex

exponentials with appropriate frequencies, amplitudes and phase

• frequency components are the complex exponentials (sines and cosines)
which, when added together, make up the signal
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Fourier Series

◆ For a periodic continuous-time signal x(t) with period T

◆ This can be written in exponential form

◆ The ak are found from

◆ x(t) is made from a d.c. term plus a weighted sum of
sinusoids at integer multiples of the fundamental frequency

∑∑
∞

=

∞

=
Ω+Ω+=

1
0

1
00 sincos)(

k
k

k
k tkBtkAAtx

∑
∞

−∞=

Ω=
k

tjk
keatx 0)(

∫ Ω−=
T

tjk
k dtetx

T
a 0)(

1

Tπ20 =Ω



3

Digital Signal Processing. Slide 2.5

Fourier Transform

◆ For an aperiodic signal, we can say that it is equivalent to a
periodic signal with infinite period

■ hence the Fourier Series becomes the Fourier Transform

∫

∫
∞

∞−

Ω−

∞

∞−

Ω

=Ω

ΩΩ=

dtetxX

deXtx

tj

tj

)()(

)(
2

1
)(

π

Digital Signal Processing. Slide 2.6

Existence of Fourier Transform

◆ A (Dirichlet Conditions)
■ x(t) is absolutely integrable

■ x(t) has a finite number of maxima and minima in any finite interval

■ x(t) has a finite number of discontinuities within any finite interval and all
discontinuities are finite

◆ B
■ If then

1. X(Ω) is finite
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Discrete-Time Signals and the
Fourier Transform

◆ So far, so good - mostly review

◆ Now consider a discrete-time signal x(n) and its z-
transform X(z)

■ x(n) is just a sequence of numbers

■ what does it mean for a sequence of numbers to have a spectrum?

◆ How can the spectrum of a discrete-time signal (sequence)
be found using the Fourier transform when the Fourier
transform is defined for continuous-time signals?
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Discrete-Time Fourier Transform

◆ Consider a discrete-time signal x(n) and a continuous-time
signal x'(t) given by *
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◆ Hence
■ If x(n) is an infinite sequence, we can compute the discrete-time Fourier

transform (DTFT)

■ a sequence of numbers having a spectrum is OK if we use the trick of *

■ the DTFT is a continuous function of frequency
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Inverse DTFT

◆ There exists and inverse DTFT

■ where means integrate over any range of ω
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Discrete Fourier Transform

◆ The DTFT is defined using an infinite sum over a discrete-
time signal and yields a continuous function

■ not very useful since we don’t often have real signals of infinite length

◆ Now introduce the DFT which is defined using a sum over
only N (finite) samples of a discrete-time signal

◆ The DFT yields a discrete function of frequency with
points uniformly spaced around the unit circle in z

■ The DFT yields a sampled version of the DTFT

Digital Signal Processing. Slide 2.12

◆ DTFT yields a continuous function
■ X(ω) is defined at all values of z around the unit circle

◆ DFT yields sample version
■ X(ω) is defined only at certain points around the unit circle
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Applications of the DFT

◆ Spectrum analysis of periodic discrete-time signals

◆ Short-time spectral estimation of aperiodic signals
■ normally in conjunction with a window

◆ Fast implementation of convolution (filtering) via fast
algorithm for DFT (FFT).
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Derivation of DFT from DTFT

◆ DTFT:

■ Consider only N samples of x(n), n=0, 1, … N-1 and compute only N
samples of using

■ giving

■ which can be written
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Inverse DFT

◆ There exists an inverse relationship
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Notes and Summary

◆ Notes
■ X(k) is the DFT of x(n)

■ X(k) is an N-point sequence computed from x(n), another N-point
sequence

■ k and n are dimensionless variables

■ k is the frequency index, n is the time index

◆ Summary
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Properties of the DFT

◆ Linearity:

■ A, B, arbitrary constants

◆ Delay:

■ where

◆ Modulation:

■ Modulation in one domain implies circular shift in the other
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◆ Convolution:

■ circular convolution of two sequences in the product of their DFTs

◆ Multiplication:

■ multiplication in one domain implies circular convolution in the other

◆ Conjugation:
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Spectral Estimation using DFT

◆ Consider a speech signal s(t):
■ amplitude spectrum is controlled by

the voice source (vocal cords) and
the articulators (lips, tongue etc)

◆ Suppose that:
■ s[n] is a sampled version of s(t) at

sampling frequency fs Hz,

◆ Question:
■ find the amplitude and phase spectra

at time t1. Assume the spectrum of
s(t) is constant near t1.
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1. Windowing

◆ we must select N samples near t1.

◆ use a windowing function w(n)
■ eg: rectangular, hanning, hamming etc

◆ create a new data record
■ N is the size of the window

■ position the window in the region of t1 and
multiply the signal by the window. The
result is a new data record s1(n) of length N.

■ N is chosen to be an integer power of 2 so
that the DFT can be implemented using a
fast algorithm (FFT).
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◆ from the properties of the DFT
■ multiplying the signal by a window is equivalent to convolving their

Fourier transforms

■ using a rectangular window causes convolution with a

■ the errors caused by the convolution are called leakage
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◆ the rectangular window produces relatively narrow main
lobes with high amplitude side-lobes (~ -13dB)

◆ the rectangular window introduces no leakage in the
special case where x(n) is periodic with period N

◆ other windows produce broader main lobes with lower
amplitude side-lobes, eg:

■ Hamming

■ Hanning






−= −1

2cos46.054.0)(
N

nnw π






−= −1

2cos50.050.0)(
N

nnw π

10 −≤≤ Nn



12

Digital Signal Processing. Slide 2.23

2. Discete Fourier Transform

◆ Given x1(n) = x(m) . w(n)
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3. Interpret the result

◆ what is X1(k) ?

◆ X1(k) is a sampled version of the discrete-time Fourier
transform of x1(n)

◆ the samples in the frequency domain are spaced by

◆ X1(0) is the d.c. component

◆ X1(N/2) is the component at the Nyquist frequency

◆ X1(N-1) is the component at
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4. Present the result

◆ normally we graph the result of a spectrum estimate

◆ several options:
■ power spectrum (spectrogram) S(k)

• tells you how much power there is in the signal at each discrete frequency

■ Amplitude and phase spectrum
• define the amplitude and phase spectra to be
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