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Module 3

Convolution

Digital Signal Processing. Slide 4.2

Aim
How to perform convolution in real-time systems efficiently?

Is convolution in time domain equivalent to multiplication of the 
transformed sequence?
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Introduction

Let            be the unit impulse sequence

We can write

represent x(n) as sum of delayed and weighted impulse

Let          be the output for          input

is the impulse response

Then                is the output for                input 

LTI – linear time invariance
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Then by superposition

y(n) is sum of lots of delayed impulse responses

This equation is called the CONVOLUTION SUM
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Linear Convolution

Consider unit step input:

And example filter: 

Task: find y(n) 

Filtering is the operation of convolving a signal with the filter’s 
impulse response.
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For this example:
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Periodic and Circular Convolution
Develop ideas in terms of periodic signals and DFS, then extend to 
aperiodic signals.

Given 2 periodic signals              and 

with discrete Fourier series coefficients given by              and 

what is                 formed from  
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Linear convolution:
Sum over infinite extent of signals

Periodic convolution:
Sum over one period
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Example A
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Example B
So far we have             from a convolution of               with

Since                         

we can also obtain              from the IDFS of 

Similarly

Hence

3 ( )px n 1 ( )px n 2 ( )px n

3 1 2( ) ( ) ( )p p pX k X k X k=

3 ( )px n 3 ( )pX k

2
3

6 6

6 6

3 3

2
3

2
- .

1 1
0

2

3

2
.

3 3
0

( ) ( ) 

            [6,  3 ,  3 ]

( ) [6,  3 ,  3 ]

    ( ) [36,  3 ,  3 ]

1
 ( ) ( ) 

3

                     [13,  13,  10]   -  as before

j nk
p p

n

j j

j j
p

j j
p

j nk
p p

k

X k x n e

e e

X k e e

X k e e

x n X k e

π

π π

π π

π π

π

=

− +

−

−

=

=

=

=

∴ =

=

=

∑

∑

Digital Signal Processing. Slide 4.12

Periodic - Aperiodic

So far we have considered periodic signals
Periodic convolution

• Direct

• Via DFS

Now consider aperiodic signals
Circular convolution

Treat aperiodic signals as one period of periodic signals
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Circular Convolution

Consider aperiodic signals          and

The symbol        means circular convolution
Perform periodic extension

Take one period of the result of periodic convolution
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Example

Consider Linear convolution
of

Consider Circular convolution
of 

1 2( )    ( )x n x n∗

1 2( )    ( )x n x n⊗

• different length

• different values
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Relationship between Linear Convolution and 
Circular Convolution

Why are we interested?
Linear convolution is the filtering operation

Filters are a very important application of DSP

Would like to implement filters efficiently

FFT is a fast DFT

Maybe we can use FFTs to implement filters (?)
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We desire that circular and linear convolution give identical results, 
then we can use FFTs for fast filtering

This can be achieved by applying zero-padding to the signals before 
performing circular convolution

For a signal            of length        and signal           of length 

Zero-pad           with             zeros

Zero-pad           with            zeros

1( )x n 1N 2 ( )x n 2N

1( )x n 2 1N −

1 1N −2 ( )x n
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Example

For a signal            of length        and signal           of length 

Zero-pad           with             zeros to give 

Zero-pad           with            zeros to give

1( )x n 1N 2 ( )x n 2N

1( )x n 2 1N −

1 1N −2 ( )x n

Equivalent to 
linear convolution

'
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Summary

given that

and                        is a zero-padded version of

means Linear Convolution 

means Circular Convolution

{ }' ' ' '
1 2 1 2 1 2( )* ( ) ( ) ( ) IDFT ( ) ( )x n x n x n x n X k X k= ⊗ =
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Complexity
Direct implementation

multiplies

DFT Implementation

FFT Implementation
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Block Filtering

FFT-based convolution has advantage of lower computational 
complexity

But if data is long, must wait until all the data is captured
Long delay

Solution
Use block filtering
Use FFT-based convolution on short blocks of data
Then join blocks together

Sectioned convolution: two main methods
Overlap add
Overlap save
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Overlap-add Procedure

Perform linear convolution using FFT

Each block of           padded with M-1 zeros

Each block of           padded with L-1 zeros

Size of FFT: next integer power of 2 greater than or equal to L+M-1
M is fixed by the filter impulse response

Choose to obtain convenient size of FFT

( ) ( ) ( )

( ) :  data; divide into blocks of length 

( ) :  impulse response; length 

m

y n x m h n m

x n L

h n M

∞

=−∞

= −∑

( )x n

( )h n

{ }1 1( ) ' ( ) '( )y n IFFT X k H k=

First block Computed once and stored
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Note that the length of             is L+M-1
first L samples are true values

M-1 samples are in the overlap

is added to            with a shift of  L samples

1( )y n

{ }2 2( ) ' ( ) '( )y n IFFT X k H k=

second block

2 ( )y n 1( )y n

   
L L L

 

 

 

1 zerosM −
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Perform linear convolution using FFT

Each block of           consists of 
the last M-1 data points from previous data block

follow by L new points

Each block of           padded with L-1 zeros

Size of FFT: next integer power of 2 greater than or equal to L+M-1
M is fixed by the filter impulse response

Choose to obtain convenient size of FFT

Overlap-save Procedure

( ) ( ) ( )

( ) :  data; divide into blocks of length 

( ) :  impulse response; length 

m
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First block Computed once and stored
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Note that the length of             is L+M-1
last L samples are true values

M-1 samples are in the overlap

Discard the first M-1 samples, only last L samples are saved
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Correlation

Operation to determine some measure of similarity between two signals

Correlation of two signals          and          is defined as

l is the index of the correlation function            and is referred to as “lag”

Autocorrelation is the special case when  

( )x n ( )y n

( ) ( ) ( ) , 0, 1, 2,...xy
n
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Relationship between correlation and convolution
Convolution

Correlation

Therefore, correlation can be implemented by a convolution algorithm 
providing one of the inputs is given time-inversed
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Time reversed and 
delayed samples of y[m]

Delayed samples 
of y[n]
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Property of Correlation

We can write

Similarly,

From which, we can deduce that

For the autocorrelation function, we obtain an even function
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