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Introduction

In single-rate DSP systems, all data is sampled at the same rate
no change of rate within the system.

In multirate DSP systems, sample rates are changed (or are different)
within the system

Multirate can offer several advantages
reduced computational complexity
reduced transmission data rate.
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Example: Audio sample rate conversion

recording studios use 192 kHz
CD uses 44.1 kHz
wideband speech coding using 16 kHz

master from studio must be rate-converted by a factor

44.1

192
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Example: Oversampling ADC

Consider a Nyquist rate ADC in which the signal is sampled at the desired
precision and at a rate such that Nyquist’s sampling criterion is just
satisfied.

Bandwidth for audio is 20 Hz < f < 20 kHz

Antialiasing filter required has very demanding specification

|H(jω)| = 0 dB, f < 20 kHz

|H(jω)| < 96 dB, f ≥
44.1

2
kHz

Requires high order analogue filter such as elliptic filters that have very
nonlinear phase characteristics

hard to design, expensive and bad for audio quality.
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Nyquist Rate Conversion Anti-aliasing Filter.
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Consider oversampling the signal at, say, 64 times the Nyquist rate but
with lower precision. Then use multirate techniques to convert sample rate
back to 44.1 kHz with full precision.

New (over-sampled) sampling rate is 44.1 × 64 kHz.

Requires simple antialiasing filter

|H(jω)| = 0 dB, f < 20 kHz

|H(jω)| < 96 dB, f ≥ (44.1 × 64) −
44.1

2
kHz

Could be implemented by simple filter (eg. RC network)

Recover desired sampling rate by downsampling process.
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Oversampled Conversion Antialiasing Filter
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Overall System

This is a simplified version

In these lectures we will study blocks like G(z) and ↓ 64
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Example: Subband Coding

Consider quantizing the samples of a speech signal. How many bits are
required?

In general, 16 bits precision per sample is normally used for audio.
This gives an adequate dynamic range.

In practice, certain frequency bands are less important perceptually
because they contain less significant information

bands with less information or lower perceptual importance may be
quantized with lower precision - fewer bits.

Divide the spectrum of the signal into several subbands then allocate
bits to each band appropriately.
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16 bits per sample, 10 kHz sampling frequency gives
160 kbits/s

Divide into 2 bands: high frequency and low frequency subbands.
High frequencies of speech are less important to intelligibility.
Therefore use only 8 bits per sample

The sampling frequency can be reduced by a factor of 2 since
bandwidth is halved, still satisfying Nyquist criterion.

5 × 16 + 5 × 8 = 120 kbits/s
4:3 compression

Reconstructed signal has no noticeable reduction is signal quality.
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Fundamental Multirate Operations

Downsampling by a factor M

filter and M-fold decimator

Upsampling by a factor L

L-fold expander and filter
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M-fold Decimator

For an input sequence x(n), select only the samples which occur at integer
multiples of M . The other samples are thrown away.

yD(n) = x(Mn)

Aliasing will occur in yD(n) unless x(n) is sufficiently bandlimited
loss of information.
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Eg. M = 2
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L-fold Expander

For an input sequence x(n), insert L − 1 zeros between each sample.

yE(n) = x(Mn)

x(n) can always be recovered from yE(n)

no loss of information, no aliasing.

Digital Signal Processing – p.15/25



Eg. L = 2
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Frequency Domain View of the Expander

From the definition of the z-transform

YE(z) =

∞
∑

n=−∞

yE(n)z−n

=
∞
∑

k=−∞

yE(kL)z−kL

=

∞
∑

k=−∞

x(k)z−kL = X(zL)

For frequency response write z = ejω giving

YE(ejω) = X(ejωL)

YE is a compressed version of X

Multiple images of X(ejω) are created in YE(ejω) between ω = 0 and
ω = 2π
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To use the expander for interpolation, a lowpass filter is applied after
the expander to remove the images (shaded).
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Frequency Domain View of the Decimator

From the definition of the z-transform

YD(z) =

∞
∑

n=−∞

yD(n)z−n =

∞
∑

n=−∞

x(Mn)z−n

Let

x1(n) =

{

x(n) if n is an integer multiple of M

0 otherwise

Then

YD(z) =
∞
∑

n=−∞

x1(Mn)z−n =
∞
∑

k=−∞

x1(k)z−k/M

since x1(k) = 0 unless k is a multiple of M .
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Therefore

YD(z) = X1(z
1/M) =

1

M

M−1
∑

k=0

X
(

z1/MW k
M

)

as will be shown on the next slide and using
W k

M = e−j2πk/M

For frequency response write z = ejω to give

YD(ejω) =
1

M

M−1
∑

k=0

X
(

ej(ω−2πk)/M
)
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We arrive at the previous expression for YD(z) by considering a new
sequence

cM (n) =

{

1 if n is an integer multiple of M

0 otherwise

and then writing
x1(n) = cM (n)x(n)

Further consideration of cM (n) tells us that cM (n) is the inverse Fourier
transform of unity and can be written

cM (n) =
1

M

M−1
∑

k=0

W−kn
M
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Then

X1(z) =
1

M

M−1
∑

k=0

∞
∑

n=−∞

x(n)W−kn
M z−n

=
1

M

M−1
∑

k=0

∞
∑

n=−∞

x(n)
(

W k
Mz

)−n

=
1

M

M−1
∑

k=0

X
(

zW k
M

)

from the definition of the z-transform. So finally

YD(z) =
1

M

M−1
∑

k=0

X
(

z1/MW k
M

)
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What does YD(z) = 1
M

∑M−1
k=0 X

(

z1/MW k
M

)

represent?

stretching of X(ejω) to X(ejω/M)

creating M − 1 copies of the stretched versions
shifting each copy by successive multiples of 2π and superimposing
(adding) all the shifted copies
dividing the result by M
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To use a decimation process we must first bandlimit the signal to
|ω| < π

M .
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Summary

Downsampling

Upsampling
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