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1 Introduction

This document presents a brief user's guide to the optimal control software supplied. The code
allows users to de�ne optimal control problems with general path and boundary constraints, free
or �xed �nal times and the ability to include constant design parameters as unknowns. The
following optimal control problems fall within the scope of the code:

minu(t),tf ,p,x0 J(x(·), u(·), p, tf )
subject to
ẋ = f(x(t), u(t), p, t), x(t0) = x0 ∀ t ∈ [t0, tF ]
gL ≤ g(x(t), u(t), p, t) ≤ gU ∀ t ∈ [t0, tF ]
φL ≤ φ(x0, xf , u0, uf , p, tf ) ≤ φU ∀ t ∈ [t0, tF ]
xL ≤ x(t) ≤ xU ∀ t ∈ [t0, tF ]
uL ≤ u(t) ≤ uU ∀ t ∈ [t0, tF ]
pL ≤ p ≤ pU

where u0 , u(t0), xf , x(tf ) and uf , u(tf ). Here the cost function is de�ned as

J(x(·), u(·), p, tf ) ,
∫ tf

t0

L(x(t), u(t), p, t)dt + E(x0, xf , u0,uf , p, tf )

where E(·) is the cost associated with the boundary conditions and L(·) the stage cost function.
The arguments over which the cost function can be minimised are the time-varying control input
signals u(·), the initial state x0, the �nal time tf and a set of parameters p that are constant for
the duration of the phase. The function g(·) describes general path constraints and φ(·) imposes
the boundary conditions at the beginning and end of the phase.

∗This research was supported by EPSRC under the grant EESC/PO6675.
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As a �rst step, the user-de�ned optimal control problem is transcribed to a static optimisation
problem by either direct multiple shooting or direct collocation methods. The direct multiple
shooting formulation requires the solution of initial value problems that can be determined us-
ing the open-source sensitivity solver package CVODES. The entire Sundials suite includes the
CVODES solver and the SundialsTB Matlab Toolbox. The multiple shooting method does
not yet support problems with the �nal time tf and the set of parameters p as variables. The
direct collocation formulations discretize the system dynamics using implicit Runge-Kutta for-
mulae and can also be used to incorporate discrete-time problems. Once the optimal control
problem has been transcribed it can be solved with a selection of nonlinear constrained optimi-
sation algorithms given by the open-source code IPOPT orMatlab's own NLP solver fmincon.
The derivatives of the ODE right-hand side, cost and constraint functions are also required for
the optimisation and are either estimated numerically or supplied analytically.

2 Installation

The code is entirely Matlab-based and can be used without installing any additional software
by making use of Matlab's own built-in functions. The code can be used in conjunction with
the following packages:

� Ipopt with mex interface (highly recommended):

https://projects.coin-or.org/Ipopt

� SUNDIALS v.2.4.0 (optional):

https://computation.llnl.gov/casc/sundials/main.html

It is highly recommended that the free NLP solver Ipopt be installed since this will dramatically
improve functionality and performance of the code. If you would like to use a multiple shooting
method to solve your problem, the sensitivity solver CVODES (it comes with the SUNDIALS
suite) also has to be installed.

Before running the code you will need to include the Ipopt libraries in the path by using setenv
(or possibly export) commands and include the �le Ipopt/Contrib/MatlabInterface/ipopt.mexglx
in yourMatlab path. To compile the CVODES mex �le, simply add the sundialsTB directory to
your Matlab path and run startup_STB.m. Since the optimal control code consists only of m-
�les no installation is necessary but don't forget to add ../ICLOCS/src/ to yourMatlab path.
The current version of ICLOCS has been tested under Linux (Red Hat Enterprise Linux Version
5.2 and Ubuntu 9.0.4) with Matlab 7.6.0. The compilation of Ipopt has been performed using
the compilers gcc-4.1 and gfortran.

3 Solving Optimal Control Problems

This section details the procedure for de�ning and solving optimal control problems using the
Matlab code provided. In general, the following steps have to be performed:

1. Copy main.m, settings.m, myProblem.m from .../ICLOCS/usr/ to your working directory.
The other �les in this directory (callback.m, gradCost.m, jacConst.m and hessianLagrangian.m)
should only be copied if required (see Section 3.2.1).
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2. De�ne the optimal control problem by editing myProblem.m (see Section 3.1). Note that
the �le can be renamed as long as this change is re�ected in the main.m.

3. Edit settings.m to choose the solution method and solver settings (see Section 3.2).

4. Run main.m.

Steps 2 and 3 are discussed in greater detail below.

3.1 De�ning the Optimal Control Problem

The following section describes how the optimal control problem is to be de�ned in the problem
de�nition �le (originally called myProblem.m)

3.1.1 General Problem De�nition

1. Initial time. The initial time t0 has to be de�ned here

problem.time.t0=t0;

For discrete-time systems t0 is the initial index.

2. Final time. The �nal time tf can be a variable of the optimisation problem and the
bounds for the �nal time have to be assigned.

problem.time.tf_min=final_time_min;

problem.time.tf_max=final_time_max;

guess.tf=final_time_guess;

If the �nal time is �xed set the minimum �nal time final_time_min equal to the maximum
�nal time final_time_max.
Note that final_time_min> t0 and final_time_max≥final_time_min.
For discrete-time systems set the final_time_min, final_time_max and final_time_guess
as empty matrices.
In all other cases a final_time_guess has to be supplied.

3. Parameters. The bounds of any unknown (constant) parameters that are included in
the optimisation should be de�ned here.

problem.parameters.pl=[p1_lowerbound, ...];

problem.parameters.pu=[p1_upperbound, ...];

guess.parameters=[p1_guess p2_guess, ...];

De�ne all lower and upper bounds on the parameters as entries in a row vector. If param-
eters are unbounded their bounds can be set to -inf or inf . As before, an initial guess
for the unknown parameters should be provided. If there are no unknown parameters that
can be optimised over, set the bound and initial guess vectors to [ ].

4. Initial conditions. The bounds for the initial condition x0 of the system have to be
de�ned in row vectors as shown in the following lines
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problem.states.x0l=[x1(t0)_lowerbound ... xn(t0)_lowerbound];

problem.states.x0u=[x1(t0)_upperbound ... xn(t0)_upperbound];

problem.states.x0=[x1(t0), ... xn(t0)];

If the initial conditions are �xed let problem.states.x0l=problem.states.x0u. Note
that there will be n bounds for a system with n states. When the initial condition belongs
to a box a value for x0 can be assigned in problem.states.x0 (it can be a guess or a
desired value). Otherwise problem.states.x0 can be the empty matrix.

5. State variables. Box constraints for the state variables at t0 ≤ t ≤ tf are de�ned here.

problem.states.xl=[x1_lowerbound ... xn_lowerbound];

problem.states.xu=[x1_upperbound ... xn_upperbound];

If the states are unbounded their bounds have to be set to -inf or inf

6. Final state. Bounds on the �nal state at t = tf are speci�ed here.

problem.states.xfl=[x1(tf)_lowerbound ... xn(tf)_lowerbound];

problem.states.xfu=[x1(tf)_upperbound ... xn(tf)_upperbound];

If the �nal states are unbounded their bounds have to be set to -inf or inf

7. Guess state trajectories. By default, the initial guess for the state trajectories is auto-
matically generated by linearly interpolating between the expected initial and �nal value,
for each state, which are provided as shown below.

guess.states(:,1)=[x1(t0) x1(tf)];

...

guess.states(:,n)=[xn(t0) xn(tf)];

If the variable guess.states is the empty matrix, the initial trajectories will be generated
by linearly interpolating between random (but feasible) initial and �nal values for each
state. Note that the initial guess generated here can be overwritten and a user-supplied
guess can be assigned in main.m by de�ning the variable infoNLP.z0 (see Remark 2).

8. Number of control actions. The number of piecewise constant control actions can be
de�ned here. For direct collocation methods N = 0 sets the number of control actions
equal to the number of integration steps. Note that the number of integration steps M − 1
(de�ned in settings.m) have to be divisible by the number of control actions. For mul-
tiple shooting the number of control actions is equal to the number of integration steps
(N = M − 1).

problem.inputs.N=number_of_control_actions;
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9. Control inputs. Upper and lower bounds for the control inputs are de�ned as follows.

problem.inputs.ul=[u1_lowerbound ... um_lowerbound];

problem.inputs.uu=[u1_upperbound ... um_upperbound];

Note that there are m entries in the row vector if the problem is speci�ed with m control
inputs.

10. Guess input sequence. Provide an initial guess for the optimal control sequence. The
initial guess is generated in a similar way to that of the initial state trajectory.

guess.inputs(:,1)=[u1(t0) u1(tf)];

...

guess.inputs(:,m)=[um(t0) um(tf)];

If the variable guess.inputs is the empty matrix, the initial trajectories will be generated
by linearly interpolating between random (but feasible) initial and �nal values for each
state. Note that the initial guess generated here can be overwritten and a user-supplied
guess can be supplied in main.m by de�ning the variable infoNLP.z0 (see Remark 2).

11. Choose set-points. Constant state and input setpoints can be de�ned here if required.
These will be formatted and passed to the stage cost function as xr and ur respectively to
be used as reference trajectories along the optimisation horizon.

problem.setpoints.states=[x1_setpoint ... xn_setpoint];

problem.setpoints.inputs=[u1_setpoint ... um_setpoint];

Alternatively time-varying setpoints can also be passed to the stage cost through the struc-
tured variable data (see Section 3.3)

12. Bounds for path constraint function. Set the upper and lower bounds for the path
constraint function as entries in a row vector, if required. Set the variables to [ ] if there
are no path constraints.

problem.constraints.gl=[g1_lowerbound g2_lowerbound ...];

problem.constraints.gu=[g1_upperbound g2_upperbound ...];

13. Bounds for boundary constraints. Set the upper and lower bounds for the boundary
constraint function as entries in a row vector, if required. Set the variables to [ ] if there
are no boundary constraints.

problem.constraints.bl=[b1_lowerbound b2_lowerbound ...];

problem.constraints.bu=[b1_upperbound b2_upperbound ...];
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14. Function de�nition

The stage cost function L(·), the boundary cost function E(·), the path constraints g(·),
system equations f(·) and the boundary constraint function b(·) have to be de�ned in func-
tions with the name L, E, g, f and b respectively. Their name has to be stored as follows
and illustrated in the provided examples in the toolbox.

problem.functions={@L,@E,@f,@g,@b};

A detailed discussion of each function is carried out in the Section 3.1.2

15. User de�ned data problem

It is possible to store constant parameters of the problem that are not optimisation variables
(for instance transition matrices, reference trajectories, cost weights, etc) in a structured
variable as follows (see also illustrative examples).

problem.data.a=2;

problem data.b=1;

Set problem.data=[] if there are no data.

3.1.2 Function De�nitions

1. Stage cost function. The stage cost function

stageCost = L(x,xr,u,ur,p,t,data)

computes the stage cost for a given state x, steady state reference xr, input u, steady input
reference ur, parameters p and the time instant t. The variables x, xr, u, ur and p for a
time instant t are passed to the function as row vectors. In general, the arguments x, xr,
u, ur and p will be matrices whose rows correspond to the states, inputs and parameters
at di�erent time instants. For instance the ith state variable xi can be obtained as follows

xi = x(:,i)

Importantly, the function should return a column vector if called with arguments that have
more than one row. Each entry of the output corresponds to the evaluation of the stage
cost for a point in time. If there is no stage cost, let stageCost=0*t so that the output
will have the right dimension;

2. Boundary cost function The boundary cost function

boundaryCost=E(x0,xf,u0,uf,p,tf,data)

returns a scalar cost as a function of its arguments. If there is no boundary cost let
boundaryCost=0.

3. System equations
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The ODE right-hand side of the dynamical system is de�ned in the function

dx = f(x,u,p,t,data).

The input arguments follow the same rule as in the stage cost function. The function
returns a row containing the evaluation of each state equation for a given x, u, p for a
point in time t. The function should return a matrix if x, u and p are matrices whose rows
correspond to the states, inputs and parameters at di�erent points in time. The adopted
structure is shown here:

x1 = x(:,1); ... xn=x(:,n),

u1 = u(:,1); ... um = u(:,m);

dx(:,1) = f1(x1,..xn,u1,..um,p,t);

...

dx(:,n) = fn(x1,..xn,u1,..um,p,t);

If the ith ODE right-hand side does not depend on variables it is necessary to multiply the
assigned value by a vector of ones with the same length of t, in order to have a vector with
the right dimension when called for the optimization.
Example: dx(:,i)= 0*ones(size(t,1));

4. Path constraint function. The path constraint function

c=g(x,u,p,t,data)

is de�ned in a manner similar to the system equations. It returns a row vector at each
point in time. Each entry correspond to the evaluation of a constraint for a given x, u, p
for a point in time t. Again this function should be vectorised as follows:

x1 = x(:,1); ... xn=x(:,n);

u1 = u(:,1); ... um = u(:,m);

c(:,1)=g1(x1,...,u1,...p,t);

...

c(:,ng) = gng(x1,..xn,u1,..um,p,t);

where ng is the number of constraints. If the problem does not have any path constraints
let c=[].

5. Boundary constraint function. The boundary constraint function

bc=b(x0,xf,u0,uf,p,tf,data)

returns a column vector corresponding to the evaluation of each boundary constraint. If
the problem does not have any path constraints let bc=[].
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3.2 Choosing Solver Settings

Once the optimal control problem has been de�ned in myProblem.m, the solver methods and
settings have to edited in the �le settings.m.

1. Transcription Method. As a �rst step, the transcription method has to be chosen
by setting the variable options.transcription to either 'discrete', 'multiple_shooting',
'euler', 'trapezoidal' or 'hermite'. For instance:

options.transcription='trapezoidal';

Here 'discrete' has to be chosen for discrete-time systems. The multiple-shooting method
can be used for continuous-time systems whenever the �nal time and the constant parame-
ters are not decision variables of the optimisation problem. In this case, if Ipopt is used, the
'quasi-newton' option (options.ipopt.hessian_approximation='limited-memory') for
the Hessian computation has to be selected.

2. Derivative generation. This option selects how the derivatives are calculated. The
string derivative_method can be set to the following values: 'analytic' or 'numeric'

options.derivatives=derivative_method;

For the 'analytic' option the �les gradCost.m, jacConst.m (and possibly hessianLagrangian.m)
have to be de�ned (see Section 3.2.1). For the 'numeric' option the derivatives are com-
puted using �nite-di�erences and do not require de�nitions of any additional function. If
Ipopt is used, the 'quasi-newton' option for the computation of the Hessian can be used.

3. Whenever the numeric di�erentiation is enabled it is necessary to specify which kind of
�nite di�erence approximation to use between the following ones:
Central di�erence ('central')
forward di�erence ('forward')
For instance:

options.hessianFD='central';

4. The perturbation size for numerical di�erentiation can be chosen by setting the variables
options.perturbation.H and options.perturbation.J. The perturbation size for sec-
ond derivatives can be set in options.perturbation.H. The perturbation size for �rst
derivatives can be set in options.perturbation.J. It is possible to select default values
for the perturbations by setting options.perturbation.H and options.perturbation.J

to the empty matrix:

options.perturbation.H=[];

options.perturbation.J=[];

The default values for the Jacobian approximation is (eps/2)^(1/3) while for the Hessian
is (8*eps)^(1/3).

8



5. NLP solver. To choose the NLP solver the variable options.NLPsolver can be set to
either 'ipopt' or 'fmincon'. For instance

options.NLPsolver='ipopt';

If Ipopt has been chosen as the solver the following basic settings can be de�ned:

� Desired convergence tolerance (relative). The default value is 1e-8.

options.ipopt.tol=1e-9;

� Hessian computation can either be 'numeric' to use the method selected in options.derivatives
or 'quasi-newton' for a limited-memory quasi-newton approximation.

options.ipopt.hessian_approximation='exact';

� Print level. Check out the Ipopt documentation for details.

options.ipopt.print_level=5;

� Maximum number of iterations. The default value is

options.ipopt.max_iter=3000.

� Select the barrier parameter update strategy. The default value for this string option
is 'monotone'.
Possible values:

'monotone': use the monotone (Fiacco-McCormick) strategy
'adaptive': use the adaptive update strategy.

options.ipopt.mu_strategy = 'adaptive';

� Indicate which information for the Hessian of the Lagrangian function is used by the
algorithm. The default value is 'exact'.
Possible values:

'exact': Use second derivatives provided by ICLOCS.
'limited-memory': Perform a limited-memory quasi-Newton approximation

implemented inside Ipopt.

options.ipopt.hessian_approximation='exact';
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There are many other options which are described in the Ipopt documentation. These
options can all be changed from the default settings in the �le \ICLOCS\src\solveNLP.m
if required.

If Matlab's own NLP solver fmincon is used the options have to be set in

options.fmincon=optimset;

Consult the Matlab documentation for detailed information on the various options for
fmincon.

6. Output settings. It is possible to use the function output.m to display some information
about the solved optimisation problem. This function uses the display options de�ned in
settings.m The available options are described hereinafter. Set to zero to disable options.

� Display computation time

options.print.time=1;

� Display relative local discretization error (recommended for direct transcription)

options.print.relative_local_error=1;

� Display optimal cost

options.print.cost=1;

� Plot states

options.plot.states=1;

� Plot inputs

options.plot.inputs=1;

� Plot Lagrange multipliers relative to the system equations.

options.plot.multipliers=1;

7. Direct transcription settings

� Number of integration nodes in the interval [t0, tf ]. The quantity steps/N (N num-
ber of control actions, steps=nodes-1) must be a positive integer
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options.nodes=1001;

� Distribution of integration steps. Set to tau=0 for equispaced steps. Otherwise tau

is a vector of length M − 1 with 0 <tau(i)< 1 and sum(tau) = 1. For discrete-time
system set tau= 0.

options.tau=0;

8. Multiple shooting settings

� The ODE solver has to be set to 'cvodes'

options.ODEsolver='cvodes';

� CVODES settings. Refer to CVODES documentation for more details. Method can
be set to either 'Adams' or 'BDF' and solver to 'Newton' or 'Functional'.

options.cvodes = CVodeSetOptions('RelTol',1.e-4,'AbsTol',1.e-6,...

'LinearSolver','Dense', 'MaxNumSteps',10000, 'LMM',Method,...

'NonlinearSolver',Solver);

options.cvodesf = CVodeSensSetOptions('ErrControl',true,'method ',...

'Staggered');

3.2.1 Derivative De�nitions

If some of the analytical gradients are supplied copy gradCost.m, jacConst.m and hessianLagrangian.m
to the working directory and edit them as follows.

1. Gradient of the cost. In the �le gradCost.m, it is possible to de�ne the gradient of the
stage cost function and the boundary cost by de�ning the partial derivatives dL.dp, dL.dx,
dL.du for the stage cost function and dE.dtf, dE.dp, dE.dx0, dE.du0, dE.dxf, dE.duf
for the boundary cost function. Whenever the gradient of the stage cost is supplied set
dL.flag= 1 otherwise set dL.flag= 0. Similarly if the gradient of the boundary cost is
supplied set dE.flag= 1 otherwise set dE.flag= 0. The partial derivatives of the stage
cost function must be expressed in vector form. For instance the derivative of L(·) with
respect to the ith state variable, evaluated along all the horizon, corresponds to the ith

column of dL.dx. The same rule holds for dL.du, dL.dp and dL.dt For details refer to the
sample �les supplied in some of the examples.

2. Jacobian of the constraint function.

In the �le jacConst.m, it is possible to de�ne the Jacobian of the ODE right-hand side of
the system equations, path constraint and boundary constraint functions. Whenever the
gradient of the dynamics is supplied set df.flag= 1 otherwise set df.flag= 0. Similarly if
the gradient of the path constraints is supplied set dg.flag= 1 otherwise set dg.flag= 0.
The same rule holds for the boundary cost. Set db.flag= 1 if the analytic expression
of the gradient is available, otherwise db.flag= 0. For details refer to the sample �les
supplied in some of the examples.
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3. Hessian of the Lagrangian.

The Hessian of the Lagrangian can be de�ned in the �le hessianLagrangian.m. The
toolbox allows to specify the Hessian of the following functions: stage cost, boundary cost,
path constraints, boundary constraints are ODE right-hand side of the system equations.
These can be supplied by de�ning the corresponding cell array of appropriate dimensions
otherwise setting the related variable to [ ]. Refer to the directory \ICLOCS\examples\
for clear examples of how these analytic derivatives can be de�ned.

The derivatives that are not supplied (the corresponding �ag is set to zero or the Hessian is set
to [ ] ) are evaluated numerically. Note that the limited-memory quasi-newton approximation of
the Hessian can still be used if Ipopt is used.

3.3 Solving the optimisation problem

Once all the data for the de�nition and solution of the optimisation problem have been speci�ed in
myProblem.m, settings.m and eventually in gradCost.m, jacConst.m and hessianLagrangian.m,
as described in the previous section, the optimisation is performed running the following lines:

[problem,guess]=myProblem;

options= settings;

[infoNLP,data]=transcribeOCP(problem,guess,options);

[solution,status] = solveNLP(infoNLP,data);

The data inserted in myProblem.m and settings.m and contained in the variables problem,
guess and options have to be properly transcribed for the nonlinear solver. The following
subsections describes brie�y the functions transcribeOCP.m, solveNLP.m and their output ar-
guments.

Transcription function: transcribeOCP.m

The function transcribeOCP.m processes the information from problem, guess and options

for the nonlinear solver. Mainly it de�nes bounds for the optimisation variable, dynamic equa-
tions, path and boundary constraints, it formats matrices for the direct transcription method
(if required), it generates initial guesses for the optimisation variable and the structure of the
Jacobian for the constraints and it constructs optimal �nite-di�erence perturbation sets. The
function has two output arguments that are structured variables. The �rst output infoNLP con-
tains upper and lower bounds on the optimisation variable, additional constraints and the initial
guess. Instead, the second output variable data contains the data used in the functions evaluated
during optimisation. The optimisation variable z depends on the transcription method, on the
number of integration nodes (options.nodes) M and on the number of control actions N .

If the transcription method is multiple shooting, N = M − 1 and the optimisation variable
is

z = [x(0), u(0), x(1), u(1), ..., x(M − 1), u(M − 1), x(M)]
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The direct transcription methods present two di�erent situations

1. If N = M − 1 the optimisation variable is in the most general case

z = [tf, p, x(0), u(0), x(1), u(1), ..., x(M − 1), u(M − 1), x(M)]

2. If N < M − 1 the optimisation variable is in the most general case

z =

»
tf, p, x(0), x(1), ...x

„
M − 1

N
− 1

«
, u(0), x

„
M − 1

N

«
, ..., x(M − 1), u(N), x(M)

–
Notice that M − 1 have to be divisible by the number of control actions N. If tf and/or p are
not variables of the problem, they are not introduced in z. For discrete-time systems N = M −1
and tf cannot be a variable of the optimisation problem. For the Hermite-Simpson method it is
imposed M = 2∗options.nodes−1. For the trapezoidal method the required u(M) is imposed
equal to u(M − 1). A detailed description of the output variable follows:

1. Output variable infoNLP

� infoNLP.zl: Lower bound of the optimisation variable z,

� infoNLP.zu: Upper bound of the optimisation variable z;

� infoNLP.cl: Lower bound of the all set of constraints for the optimisation problem

� infoNLP.cu: Upper bound of the all set of constraints for the optimisation problem

� infoNLP.z0: Initial guess for the optimisation problem.

2. Output variable data

� data.t0: contains information to evaluate the time instants in the interval [t0, tf ]
(see Remark 1).

� data.k0: contains information to evaluate the time instants in the interval [t0, tf ]
(see Remark 1).

� data.Nm: contains information to evaluate the time instants in the interval [t0, tf ]
(see Remark 1). Nm = 1 for continuous-time systems, Nm = N for discrete-time
systems.

� data.sizes: contains information about dimensions involved in the problem

[nt,np,n,m,ng,nb,M,N,ns]=deal(data.sizes{:});

- nt= 1 if tf is a decision variable otherwise nt= 0;

- np contains the number of free constant parameters;

- n gives the number of states;

- m gives the number of inputs;

- ng gives the number of path constraints;

- nb gives the number of boundary constraints;

- N is the number of control actions;

- M is the number of mesh nodes;
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- ns= 2 for Hermite-Simpson transcription method and ns= 1. It is used to adjust
sizes and values of some of the variables.

� data.x0: contains the initial condition for the state at the time t0. If the vari-
able problem.states.x0, de�ned in myProblem.m, is empty, transcribeOCP.m set prob-
lem.states.x0=problem.states.x0l.

� data.x0t: contains the measured initial condition x(k0). The function transcribeOCP.m
sets data.x0t=data.x0. The variable data.x0t needs to be updated to change the
initial condition for receding horizon optimisation problems. If the initial condition is
�xed its bounds have to be updated in the following way

infoNLP.zl(nt+np+1:nt+np+n)=data.x0t';

infoNLP.zu(nt+np+1:nt+np+n)=data.x0t';

� data.cx0: transcribeOCP.m sets data.cx0= 0, if problem.states.x0 de�ned in
myProblem.m is empty, otherwise data.cx0= 1. When data.cx0= 1 the additional
term λ0(data.x0t-data.x0) is introduced in the Lagrangian, where λ0 is the relative
Lagrange multiplier.

� data.options: contains information about the transcription method, the derivative
evaluation and the solver settings.

� data.functions: contains the function de�nition of the stage cost, boundary cost,
system dynamic, path constraints and boundary constraints
[L,E,f,g,b]=deal(data.functions{:});

� data.data: contains the data to be used inside the functions and de�ned in the
variable problem.data in the function myProblem.m.

� data.references: The variables data.references.ur and data.references.xr

store respectively the state and input reference trajectories . The function transcribeOCP.m
generates constant references in [t0, tf ] expanding the set-point values assigned in
problem.setpoints. The user can overwrite the default references assigning other
reference trajectories. data.references.xr and data.references.ur are matrices
with dimension M × n and M × m respectively. If the transcription_method is
Hermite-Simpson it is necessary to assign also the references at the interval midpoints
(M = 2∗options.nodes−1).

� data.sparsity: contains sparsity information about the functions f(·) , L(·) E(·)
g(·) and b(·).

� data.tau: contains information to evaluate the time instants in the interval [t0, tf ]
(see Remark 1).

� data.map: data.map.A, data.map.B, data.map.w and data.map.W contain the data
used for the transcription with direct collocation methods while data.map.Vx, data.map.xV,
data.map.Vu and data.map.uV are matrices for the mapping of the variables. For
the details see Remark 2

� data.FD: contains information for the computation of the derivatives
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� data.jacStruct: brings the structure of the Jacobian for the constraints

� data.costStruct: gives the structure of the Jacobian for the cost

� data.hessianStruct: brings the structure of the Hessian for the Lagrangian.

� data.multipliers: In this �eld the initial value for the Lagrange multipliers can
speci�ed. It is especially useful for "warm starting" the IPOPT solver. They can be
speci�ed de�ning the following �elds:

% Multipliers corresponding to the lower bounds on the variables
data.multipliers.zl

% Multipliers corresponding to the upper bounds on the variables
data.multipliers.zu

% Multipliers corresponding to the constraints
data.multipliers.lambda

The �elds data.multipliers.zl and data.multipliers.zu have to be a column vec-
tor with the same length of z. The �eld data.multipliers.lambda have to be a col-
umn vector with the length given by the number of constraints (size(data.jacStruct,1);).

Remark 1. The general formula to compute the vector t of the time instants tk ∈ [t0, tf ] for
k = 1, . . . ,M is

t=(data.tf-data.t0)*T+data.k0

where T is a vector taking values in the interval [0, 1] such that t(k)=(data.tf-data.t0)*T(k)+data.k0.
T depends on the distribution of integration steps stored in data.tau/ns and is given by

T=[0;cumsum(data.tau)]*data.Nm/ns;

where ns= 2 if the transcription_method is 'hermite' and ns= 1 otherwise so that sum(data.tau)/ns=
1 for any transcription_method. The function transcribeOCP.m set data.k0=data.t0=initial_time
for the continuous-time case while set data.k0=initial_time, data.t0= 0 and data.tf= 1 for
discrete-time problems. Then, if the initial time has to be changed to solve a time varying op-
timisation problem in a receding horizon fashion, the variable data.k0 has to be set properly
before to call the function solveNLP.m.

Remark 2. The data mining of the state x and input u and the assignment of an initial guess for
the variable z from guess de�ned on x and u can be easily performed by mean of data.map.Vx,
data.map.xV, data.map.Vu and data.map.uV.

data.map.Vx: maps z → x
data.map.xV: maps x → z
data.map.Vu: maps z → u
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data.map.uV: maps u → z

� Consider tf_guess, p_guess, x_guess, and u_guess to be the guess for the �nal time
(if any), the constant parameters (if any), the states and inputs respectively. x_guess,
and u_guess are matrices with dimension M × n and N ×m respectively where each row
corresponds to the vector variables at some time instant. It is possible to update the guess
for z running the following lines

u_guess=u_guess';u_guess=u_guess(:);

x_guess=x_guess';x_guess=x_guess(:);

infoNLP.z0=data.map.xV*x_guess+data.map.uV*u_guess;

infoNLP.z0(1)=tf_guess; infoNLP.z0(1:np)=p_guess;

If the initial condition is �xed, data.x0t and its bounds have to be updated as previously
explained.

� Once a solution z is available the variables x and u can be obtained in the following way

x=reshape(data.map.Vx*sol.z,n,M)';

u=reshape(data.map.Vu*sol.z,m,N)';

U=kron(u,ones(((M-1)/N,1));

x, u and U are matrices of dimension M×n, N×m, and (M−1)×m respectively. Indeed the
output of solveNLP.m returns explicitly the variable x and u together with the optimisation
variable z.

Function: solveNLP.m

The function solveNLP.m calls the selected solver to solve the optimisation problem on the basis
of the information stored in infoNLP and data and return the solution. The function has two
output arguments. The �rst output solution is a structured variable containing the optimal
�nal time, parameters, states, controls and Lagrange multipliers. Instead the second one status
returns the exit condition of the solver. Its values depend on the selected solver. For its descrip-
tion see the help for the outputs of ipopt and fmincon.

In particular, the output variable solution, whenever Ipopt is employed, returns

� solution.multipliers: contains the Lagrange multipliers at the solution z (see the Ipopt
and Matlab user guide for its structure).

� solution.computation_time: Returns the CPU time in seconds that has been used by
Matlab to run the selected software.

� solution.iterates: gives the total number of iterations if fmincon is used. The number
of iterations for Ipopt can be obtained writing a function callback.m (see the example
inside the folder src) where its �rst input argment is stored in the global structured variable
sol in sol.iterates
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� solution.z: the computed solution z.

� solution.tf: the value of the �nal time.

� solution.p: contains the computed values for the parameters p (if any).

� solution.X: a matrix with dimension options.nodes × n containing the optimal solution
for the states.

� solution.x0: the initial value of the determined solution.

� solution.U: a matrix with dimension options.nodes × m containing the optimal solution
for the inputs.

� solution.T: brings information about the evaluation time instants for solution.X and
solution.U.

Remark 3. It is important to observe that the auxiliary data passed to IPOPT may not change
through the course of the IPOPT optimisation. In order to store information changing over
time the global variable sol has been used

Display output: output.m

This function uses the display options in settings.m and the solution generated by the call to
solveNLP.m in main.m and plots the state, input and adjoint variable trajectories. If direct
collocation methods are used output.m can also estimate the relative local discretization error
to estimate the accuracy with which the dynamics have been approximated [1].

4 Examples

The following sections contain all the optimal control examples included with the ICLOCS tool-
box.

4.1 Example 1: A linear optimisation problem with bang-bang con-

trol

Find the �nal time tf and control input u ∈ IR over t in [0, tf ] solving the following optimisation
problem [9]
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min
u(·), tf

tf

subject to{
ẋ1(t) = x2(t)
ẋ2(t) = u(t)

x1(0) = 0, x2(0) = 0
x1(tf ) = 300, x2(tf ) = 0

−2 ≤ u(t) ≤ 1[
−10
−100

]
≤

[
x1(t)
x2(t)

]
≤

[
300
100

]
∀t ∈ [0, tf ]

Problem setup

� The Optimal Control Problem is de�ned in the �le BangBang.m in the following way:

problem.time.t0=0; % Initial time t0

problem.time.tf_min=0.1;

problem.time.tf_max=100;

guess.tf=1;

% Parameters bounds. pl=< p <=pu
problem.parameters.pl=[];

problem.parameters.pu=[];

guess.parameters=[];

% Initial condition x0 and its bounds
problem.states.x0=[0, 0]; % x(t0)
problem.states.x0l=[0, 0]; % Bounds for x(t0)
problem.states.x0u=[0, 0];

% State bounds: xl ≤ x(t) ≤ xu
problem.states.xl=[-10 -100];

problem.states.xu=[300 100];

% Terminal state bounds: xfl ≤ x(tf ) ≤ xfu
problem.states.xfl=[300 0];

problem.states.xfu=[300 0];

% Guess the state trajectories with [x(t0), x(tf )]
guess.states(:,1)=[0 300]; % [x1(t0), x1(tf )]
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guess.states(:,2)=[0 0]; % [x2(t0), x2(tf )]

Number of control actions N . If N is equal to the number of integration steps, prob-
lem.inputs.N can be set to 0
problem.inputs.N=0;

problem.inputs.ul=[-2];

problem.inputs.uu=[1];

% Guess the input sequences with [u(t0), u(tf )]
guess.inputs(:,1)=[-2 1];

% Choose the set-points if required
problem.setpoints.states=[];

problem.setpoints.inputs=[];

% Bounds for path constraint function gl ≤ g(x, u, p, t) ≤ gu
problem.constraints.gl=[];

problem.constraints.gu=[];

% Bounds for boundary constraints bl ≤ b(x(t0), x(tf ), u(t0), u(tf ), p, t0, tf ) ≤ bu
problem.constraints.bl=[];

problem.constraints.bu=[];

% Store the necessary problem data used in the functions.
problem.data=[];

problem.functions={@L,@E,@f,@g,@b;}

function stageCost=L(x,xr,u,ur,p,t,data)

stageCost = 0*t;

function boundaryCost=E(x0,xf,u0,uf,p,tf,data)

boundaryCost=tf;

function dx = f(x,u,p,t,data)

x1 = x(:,1); x2 = x(:,2); u1 = u(:,1);

dx(:,1) = x2;
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dx(:,2) = u1;

function c=g(x,u,p,t,data)

c=[];

function bc=b(x0,xf,u0,uf,p,tf,data)

bc=[];

� The solution method and solver settings are set in settings.m . See the �le included in
the directory ../ICLOCS-*.*/examples/BangBang
Notice that the multiple-shooting option can not be used since the �nal time tf is a decision
variable.

� The �les gradCost.m, jacConst.m and hessianLagrangian.m for this example are sup-
plied. See inside the directory ../ICLOCS-*.*/examples/BangBang.

- gradCost.m:

function [dL,dE]=gradCost(L,X,Xr,U,Ur,P,t,E,x0,xf,u0,uf,p,tf,data)

% get the dimension of the state n and of the input m
[n,m]=deal(data.sizes{[3:4]});

% vector of ones with the same size of the number of point evaluation in time.

Lt=ones(size(T));

dL.flag=1;

dL.dp=[]; % Derivatives of L(x, u, p, t) wrt. p
dL.dt=0*t; % Derivatives of L(x, u, p, t) wrt. t
% Derivatives of L(x, u, p, t) wrt. x = [x1, . . . , xn]
dL.dx=kron(zeros(1,n),Lt);

% Derivatives of L(x, u, p, t) wrt. u = [u1, . . . , um]
dL.du=kron(zeros(1,m),Lt);

dE.flag=1;

dE.dtf=1; % Derivatives of E(x0, xf , u0,uf , p, tf ) wrt. tf
dE.dp=[]; % Derivatives of E(x0, xf , u0,uf , p, tf ) wrt. p
dE.dx0=[]; % Derivatives of E(x0, xf , u0,uf , p, tf ) wrt. x0

dE.du0=[]; % Derivatives of E(x0, xf , u0,uf , p, tf ) wrt. u0

dE.dxf=[]; % Derivatives of E(x0, xf , u0,uf , p, tf ) wrt. xf
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dE.duf=[]; % Derivatives of E(x0, xf , u0,uf , p, tf ) wrt. uf

The gradient of the stage cost and the boundary cost are supplied and so dL.flag=1

and dE.flag=1. The �nal time tf is a decision variable and then the derivative of the
stage cost with respect to the time t is set to 0 ∗ t. It is zero at any time instant. The
same rule applies for the derivatives of the stage cost with respect to the state and
the input. The derivative of the stage cost with respect to the state x is stored in a
matrix with n columns and a number of rows given by the di�erent evaluation times.
Each row corresponds to the evaluation of the derivative at a given time instant. The
derivative of the boundary cost depends only on the �nal time and then the variables
containing the derivatives with respect to the other decision variables are set to be
empty matrices.

- jacConst.m:

function [df,dg,db]=jacConst(f,g,X,U,P,t,b,x0,xf,u0,uf,p,tf,t0,data)

% vector of ones with the same size of the number of point evaluation in time.
Lt=ones(size(t));

df.flag=1;

df.dp{1}=[]; % Derivatives of f(x, u, p, t) wrt. p
df.dt{1}=[0*Lt 0*Lt]; % Derivatives of f(x, u, p, t) wrt. t
df.dx{1}=[0*Lt, 0*Lt]; % Derivatives of f(x, u, p, t) wrt. x1

df.dx{2}=[1*Lt, 0*Lt]; % Derivative of f(x, u, p, t) wrt. x2

df.du{1}=[0*Lt, 1*Lt]; % Derivative of f(x, u, p, t) wrt. u

dg.flag=0;

db.flag=0;

The path constraints and boundary constraints are not present and then their deriva-
tives have not be supplied (dg.flag=0 and db.flag=0). Instead the derivatives of
f(x, u, p, t) = [f1(x, u, p, t), . . . , fn(x, u, p, t)] are supplied in the structured variable
df as shown in the illustrated example. The derivative of f(x, u, p, t) with respect
to x are stored in df.dx which is a cell array where each entry corresponds to the
derivative with respect to a state variable. For instance the derivative of f(x, u, p, t)
with respect to xi is stored in df.dx{i}. df.dx{i} is a matrix with n columns and a
number of rows given by the di�erent evaluation times. Each row of df.dx{i} corre-
sponds to the evaluation of the derivative [∂f1(x, u, p, t)/∂xi, . . . , ∂fn(x, u, p, t)/∂xi]
at a given time instant. The same rule holds for the other derivatives.

- hessianLagrangian.m

function [HL,HE,Hf,Hg,Hb]=hessianLagrangian(X,U,P,t,E,x0,xf,u0,uf,p,tf,data)
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The Hessian of the di�erent parts of the Lagrangian must be supplied in cell arrays
as follows:

[nt,np,n,m,ng,nb]=deal(data.sizes{1:4});

nfz=nt+np+n+m;

Hf=cell(nfz, nfz); % Hessian of f(x, u, p, t)
Hf{1,1}=[0.*t, 0.*t]; %[∂2f1/∂t2, ∂2f2/∂t2] (nt=1)
Hf{1,2}=[0.*t, 0.*t]; % [∂2f1/(∂t ∂x1), ∂2f2/(∂t ∂x1)]
Hf{2,2}=[0.*t, 0.*t]; % [∂2f1/(∂x2

1), ∂
2f2/(∂x2

1)]
Hf{1,3}=[0.*t, 0.*t]; % [∂2f1/(∂t ∂x2), ∂2f2/(∂t ∂x2)]
Hf{2,3}=[0.*t, 0.*t]; % [∂2f1/(∂x1 ∂x2), ∂2f2/(∂x1 ∂x2)]
Hf{3,3}=[0.*t, 0.*t]; % [∂2f1/(∂x2

2), ∂
2f2/(∂x2

2)]
Hf{1,4}=[0.*t, 0.*t]; % [∂2f1/(∂t ∂u), ∂2f2/(∂t ∂u)]
Hf{2,4}=[0.*t, 0.*t]; % [∂2f1/(∂x1 ∂u), ∂2f2/(∂x1 ∂u)]
Hf{3,4}=[0.*t, 0.*t]; % [∂2f1/(∂x2 ∂u), ∂2f2/(∂x2 ∂u)]
Hf{4,4}=[0.*t, 0.*t]; % [∂2f1/(∂u2), ∂2f2/(∂u2)]

HL=cell(nfz, nfz); % Hessian of L(x, u, p, t)
HL{1,1}=[0.*t]; % [∂2L/∂t2] (nt=1)
HL{1,2}=[0.*t]; % [∂2L/(∂t ∂x1)]
HL{2,2}=[0.*t]; % [∂2L/(∂x2

1)]
HL{1,3}=[0.*t]; % [∂2L/(∂t ∂x2)]
HL{2,3}=[0.*t]; % [∂2L/(∂x1 ∂x2)]
HL{3,3}=[0.*t]; % [∂2L/(∂x2

2)]
HL{1,4}=[0.*t]; % [∂2L/(∂t ∂u)]
HL{2,4}=[0.*t]; % [∂2L/(∂x1 ∂u)]
HL{3,4}=[0.*t]; % [∂2L/(∂x2 ∂u)]
HL{4,4}=[0.*t]; % [∂2L/(∂u2)]

nE=nt;

Ez=zeros(nE,nE);

HE=num2cell(Ez); % Hessian of E(tf )

Hg=[]; % Hessian of g(x, u, p, t)
Hb=[]; % Hessian of b(x0, xf , u0,uf , p, tf )

If the Hessian of some component of the Lagrangian is not available, set the corre-
sponding output term equal to the empty matrix. For instance if the Hessian of the
dynamical system is not available set Hf=[].
Each Hessian has to be speci�ed in a two dimensional cell array of dimension given
by the size of y de�ned as [t, p, x, u] or [tf , p, x0, u0, uf , xf ] or a subset of their
variables. Each entry {i, j} of the cell array corresponds to the derivative with respect
to y(i) and y(j) The order to follow is given by the order of the vector variables inside
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[t, p, x, u] or [tf , p, x0, u0, uf , xf ]. If tf (or/and p) is not a decision variable the
derivative with respect to time (or/and p) must not be considered i.e the Hessian is
computed with respect to y = [p, x, u] or (y = [t, x, u] or y = [x, u]. The same
syntax has to be applied for y = [tf , p, x0, u0, uf , xf ]. The Hessian with respect to
the variable x and u must be speci�ed

If some variables do not contribute to the Hessian, the corresponding entries can be
set to zero, otherwise the entries have to be vectors with the same length of t, con-
taining the value of the Hessian at di�erent time instants.

Notice that, in the example, the linear equations of dynamical system do not con-
tribute to the Hessian; as a consequence all entries can be set to zero in the following
way

fz=zeros(nfz,nfz);

Hf=num2cell(fz);

where nfz gives the dimension of the vector y = [t, x, u].
The Hessian of E(x0, xf , u0,uf , p, tf ) has to be considered on the basis of the speci�ed
analytic gradient when its evaluation is enabled (dE.flag=1). Since only dE.dtf has
been speci�ed (the other Jacobin are set to empty matrices) in the �le gradCost.m,
the Hessian only with respect to tf must be considered. If dE.flag=0 the Hessian
with respect to the variables x0, u0, uf and xf must be always speci�ed and it would
be the following:

nE=nt+np+2*n+2*m;

Ez=zeros(nE,nE);

HE=num2cell(Ez); % Hessian of E(x0, xf , u0,uf , tf )

Solution of the problem and results

The solution of the optimisation problem is computed running the �le main.m. The following
lines are executed:

clear all;format compact;

[problem,guess]=BangBang; % Fetch the problem de�nition
options= settings; % Get options and solver settings
% Format for the solver
[infoNLP,data]=transcribeOCP(problem,guess,options);

[solution,status] = solveNLP(infoNLP,data); % Solve the problem
output(solution,options,data); % Output solutions

The state, control and adjoint variables solution to this problem using the Optimal Control
Toolbox are shown in Figs. 1, 2 and 3.
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Figure 1: State trajectories for Bang-Bang problem
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Figure 2: Input trajectory for Bang-Bang problem
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Figure 3: Adjoint variables for Bang-Bang problem

4.2 Example 2: Fed-batch fermentor

Find the control input u ∈ IR over t in [0, tf ] solving the following optimisation problem [4]
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min
u(·)

− x2(tf )x4(tf ) +
∫ tf

0

0.00001u(t)2dt;

subject to

ẋ1 = h1x1 − u

(
x1

500x4

)
ẋ2 = h2x1 − 0.01x2 − u

(
x2

500x4

)
ẋ3 = −h1

x1

0.47
− h2

x1

1.2
− x1

(
0.029x3

0.0001 + x3

)
+

u

x4

(
1− x3

500

)
ẋ4 =

u

500

h1 = 0.11
(

x3

0.006x1 + x3

)
h2 = 0.0055

(
x3

0.0001 + x3(1 + 10x3)

)
x(0) = [1.5, 0, 0, 7]

0 ≤ u(t) ≤ 50
0
0
0
0

 ≤


x1(t)
x2(t)
x3(t)
x4(t)

 ≤


40
50
25
10

 ∀t ∈ [0, tf ]

tf = 126

Problem setup

� The Optimal Control Problem is de�ned in the �le BatchFermentor.m in the following way:

problem.time.t0=0; % Initial time t0

% Final time tf is �xed: tf_min=tf_max.
problem.time.tf_min=126;

problem.time.tf_max=126;

guess.tf=126;

% Parameters bounds. pl=< p <=pu
problem.parameters.pl=[];

problem.parameters.pu=[];

guess.parameters=[];

% Initial condition x0 and its bounds
problem.states.x0=[1.5, 0.0, 0.0, 7];

problem.states.x0l=[1.5, 0.0, 0.0, 7]; % Bounds for x0
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problem.states.x0u=[1.5, 0.0, 0.0, 7];

% State bounds: xl ≤ x(t) ≤ xu
problem.states.xl=[0, 0, 0, 0];

problem.states.xu=[40, 50, 25, 10];

% Terminal state bounds: xfl ≤ x(tf ) ≤ xfu
problem.states.xfl=[0, 0, 0, 0];

problem.states.xfu=[40, 50, 25, 10];

% Guess the state trajectories: [x(t0), x(tf )]
guess.states(:,1)=[1.5, 30]; % [x1(t0), x1(tf )]
guess.states(:,2)=[0, 8.5]; % [x2(t0), x2(tf )]
guess.states(:,3)=[0, 0]; % [x3(t0), x3(tf )]
guess.states(:,4)=[7, 10]; % [x4(t0), x4(tf )]

% Number of control actions
problem.inputs.N=500;

% Input bounds: ul ≤ u(t) ≤ uu
problem.inputs.ul=[0];

problem.inputs.uu=[50];

% Guess the input sequences: [u(t0), u(tf )]
guess.inputs(:,1)=[2, 10];

% Choose the set-points if required
problem.setpoints.states=[];

problem.setpoints.inputs=[];

% Bounds for path constraint function gl ≤ g(x, u, p, t) ≤ gu
problem.constraints.gl=[];

problem.constraints.gu=[];

% Bounds for boundary constraints bl ≤ b(x(t0), x(tf ), u(t0), u(tf ), p, t0, tf ) ≤ bu
problem.constraints.bl=[];

problem.constraints.bu=[];

% store the necessary problem parameters used in the functions
problem.data=[];

problem.functions={@L,@E,@f,@g,@b};
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function stageCost=L(x,xr,u,ur,p,t,data)

stageCost =0.00001*u(:,1).*u(:,1);

function boundaryCost=E(x0,xf,u0,uf,p,tf,data)

boundaryCost=-xf(2)*xf(4);

function dx = f(x,u,p,t,data)

x1=x(:,1); x2=x(:,2); x3=x(:,3); x4=x(:,4);

u1=u(:,1);

h1=0.11*(x3./(0.006*x1+x3));

h2=0.0055*(x3./(0.0001+x3.*(1+10*x3)));

dx(:,1)=(h1.*x1-u1.*(x1./500./x4));

dx(:,2)=(h2.*x1-0.01*x2-u1.*(x2./500./x4));

dx(:,3)=(-h1.*x1/0.47-h2.*x1/1.2-x1.*(0.029*x3./(0.0001+x3))...

+u1./x4.*(1-x3/500));

dx(:,4) = u1/500;

function c=g(x,u,p,t,data)

c=[];

function bc=b(x0,xf,u0,uf,p,tf,data)

bc=[];

� The solution method and solver settings are set in settings.m . See the �le included in
the directory ../ICLOCS-*.*/examples/BatchFermentor

� The �les gradCost.m, jacConst.m and hessianLagrangian.m for this example are sup-
plied. See inside the directory ../ICLOCS-*.*/examples/BatchFermentor.

- gradCost.m:

function [dL,dE]=gradCost(L,X,Xr,U,Ur,P,t,E,x0,xf,u0,uf,p,tf,data)

n=deal(data.sizes{3});

Lt=ones(size(t));
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% dL - Gradient of the stage cost L(·) wrt. t, p, x, u
dL.flag=1;

dL.dp=[];

dL.dt=[];

dL.dx=kron(zeros(1,n),Lt);

dL.du=2*0.00001*U(:,1);

% dE - Gradient of E(·) with respect to tf , p, x0, u0, uf , xf

dE.flag=1;

dE.dtf=[];

dE.dp=[];

dE.dx0=[];

dE.du0=[];

dE.dxf=[0 -xf(4) 0 -xf(2)];

dE.duf=[];

The gradient of the stage cost and the boundary cost are supplied and so dL.flag=1

and dE.flag=1. The �nal time tf and p are not decision variables and then the deriva-
tives dL.dp, dL.dt, dE.dtf, and dE.dp are set to be empty matrices. The derivative
of the stage cost with respect to the state u is stored in a matrix with m columns and
a number of rows given by the di�erent evaluation times. It is expressed in term of
the input evaluated at di�erent time instant. The ith input ui, evaluated at the time
instants t = [t0, . . . , tk, . . . , tf ] is a column vectors taken as U(:,i). The derivative
of the stage cost with respect to the state x must be speci�ed even if it is identically
zero. The derivative of the boundary cost depends only on the �nal state xf and then
the variables containing the derivatives with respect to the other decision variables
are set to be empty matrices.

- jacConst.m:

function [df,dg,db]=jacConst(f,g,X,U,P,t,b,x0,xf,u0,uf,p,tf,t0,data)

Lt=ones(size(t));

df.flag=1;

h1 = 0.11*(X(:,3)./(0.006*X(:,1)+X(:,3))); % h1(x1, x3)
h2 = 0.0055*(X(:,3)./(0.0001+X(:,3).*(1+10*X(:,3)))); % h2(x3)

% ∂h1(x1, x3)/∂x1

dh1x1=-0.11*0.006*X(:,3)./((0.006*X(:,1)+X(:,3)).^2);

% ∂h1(x1, x3)/∂x3

dh1x3=0.11*0.006*X(:,1)./((0.006*X(:,1)+X(:,3)).^2);
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% ∂h2(x3)/∂x3

dh2= 0.0055*(0.0001-10*X(:,3).^2)./((0.0001+X(:,3).*(1+10*X(:,3))).^2);

df.dp{1}=[]; % ∂f(x, u, p, t)/∂p
df.dt{1}=[]; % ∂f(x, u, p, t)/∂t

% ∂f(x, u, p, t)/∂x1 = [∂f1(·)/∂x1, . . . , ∂fn(·)/∂x1]
df.dx{1}=[h1+dh1x1.*X(:,1)-U(:,1)./500./X(:,4), h2,...

-h1./0.47-dh1x1.*X(:,1)/0.47-h2/1.2...

-(0.029*X(:,3)./(0.0001+X(:,3))), 0*Lt];

% ∂f(x, u, p, t)/∂x2 = [∂f1(·)/∂x2, . . . , ∂fn(·)/∂x2]
df.dx{2}=[0*Lt,-0.01-U(:,1)./500./X(:,4), 0*Lt,0*Lt];

% ∂f(x, u, p, t)/∂x3 = [∂f1(·)/∂x3, . . . , ∂fn(·)/∂x3]
df.dx{3}=[dh1x3.*X(:,1),dh2.*X(:,1), -dh1x3.*X(:,1)/0.47-...

dh2.*X(:,1)/1.2-X(:,1).*(0.029*0.0001./((0.0001+X(:,3)).^2))...

-U(:,1)./X(:,4)/500,0*Lt];

% ∂f(x, u, p, t)/∂x4 = [∂f1(·)/∂x4, . . . , ∂fn(·)/∂x4]
df.dx{4}=[U(:,1).*X(:,1)./500./(X(:,4).^2),...

U(:,1).*X(:,2)./500./(X(:,4).^2),...

-U(:,1)./(X(:,4).^2).*(1-X(:,3)/500), 0*Lt];

% ∂f(x, u, p, t)/∂u = [∂f1(·)/∂u, . . . , ∂fn(·)/∂u]
df.du{1}=[-X(:,1)./500./X(:,4), -X(:,2)./500./X(:,4),...

(1-X(:,3)/500)./X(:,4), Lt/500];

dg.flag=0;

db.flag=0;

The path constraints and boundary constraints are not present and then their deriva-
tives have not be supplied (dg.flag=0 and db.flag=0). Instead the derivatives of
f(x, u, p, t) = [f1(x, u, p, t), . . . , fn(x, u, p, t)] are supplied in the structured variable
df as shown in the illustrated example. The derivative of f(x, u, p, t) with respect
to x are stored in df.dx which is a cell array where each entry corresponds to the
derivative with respect to a state variable. For instance the derivative of f(x, u, p, t)
with respect to xi is stored in df.dx{i}. df.dx{i} is a matrix with n columns and a
number of rows given by the di�erent evaluation times. Each row of df.dx{i} corre-
sponds to the evaluation of the derivative [∂f1(x, u, p, t)/∂xi, . . . , ∂fn(x, u, p, t)/∂xi]
at a given time instant. They are expressed in term of the ith state and input xi and
ui, evaluated at the time instants t = [t0, . . . , tk, . . . , tf ] and taken as column vectors
X(:,i) and U(:,i).
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- hessianLagrangian.m

function [HL,HE,Hf,Hg,Hb]=hessianLagrangian(X,U,P,t,E,x0,xf,u0,uf,p,tf,data)

The Hessian of the di�erent parts of the Lagrangian (HL, HE, Hf, Hg, Hb) must be
supplied in cell arrays as follows:

[nt,np,n,m,ng,nb]=deal(data.sizes{1:6});

nfz=nt+np+n+m;

dh1x1=-0.11*0.006*X(:,3)./((0.006*X(:,1)+X(:,3)).^2); % ∂h1(x1, x3)/∂x1

dh1x3=0.11*0.006*X(:,1)./((0.006*X(:,1)+X(:,3)).^2); % ∂h1(x1, x3)/∂x3

% ∂h2(x3)/∂x3

dh2= 0.0055*(0.0001-10*X(:,3).^2)./((0.0001+X(:,3).*(1+10*X(:,3))).^2);

% ∂2h2(x3)/∂2x3

d2h2=0.0055*2*(-30.*X(:,3)*0.0001+100*X(:,3).^3-0.0001)./...

(0.0001+X(:,3)+10*X(:,3).^2).^3;

% ∂2h1(x1, x3)/∂2x1

d2h1x1=2*0.11*0.006^2*X(:,3)./((0.006*X(:,1)+X(:,3)).^3);

% ∂2h1(x1, x3)/(∂x1 ∂x3)
d2h1x1x3=-0.11*0.006*(0.006*X(:,1)-X(:,3))./((0.006*X(:,1)+X(:,3)).^3);

% ∂2h1(x1, x3)/∂2x3

d2h1x3=-2*0.11*0.006*X(:,1)./((0.006*X(:,1)+X(:,3)).^3);

Hf=cell(nfz, nfz); % Hessian of f(x, u, p, t)

% [∂2f1(·)/∂x2
1, ∂2f2(·)/∂x2

1, ∂2f3(·)/∂x2
1, ∂2f4(·)/∂x2

1]
Hf{1,1}=[2*dh1x1+d2h1x1, 0.*t, -(2*dh1x1+d2h1x1)/0.47, 0.*t];

% [∂2f1(·)/(∂x1∂x2), ∂2f2(·)/(∂x1∂x2), ∂2f3(·)/(∂x1∂x2), ∂2f4(·)/(∂x1∂x2)]
Hf{1,2}=[0.*t, 0.*t, 0.*t, 0.*t];

% [∂2f1(·)/∂x2
2, ∂2f2(·)/∂x2

2, ∂2f3(·)/∂x2
2, ∂2f4(·)/∂x2

2]
Hf{2,2}=[0.*t, 0.*t, 0.*t, 0.*t];

% [∂2f1(·)/(∂x1∂x3), ∂2f2(·)/(∂x1∂x3), ∂2f3(·)/(∂x1∂x3), ∂2f4(·)/(∂x1∂x3)]
Hf{1,3}=[dh1x3+ d2h1x1x3.*X(:,1), dh2,...

-dh1x3./0.47-d2h1x1x3.*X(:,1)/0.47-dh2/1.2...

-(0.029*0.0001./((0.0001+X(:,3)).^2)), 0.*t];

% [∂2f1(·)/(∂x1∂x4), ∂2f2(·)/(∂x1∂x4), ∂2f3(·)/(∂x1∂x4), ∂2f4(·)/(∂x1∂x4)]
Hf{1,4}=[U(:,1)./500./(X(:,4).^2), 0.*t, 0.*t, 0.*t];
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% [∂2f1(·)/(∂x2∂x3), ∂2f2(·)/(∂x2∂x3), ∂2f3(·)/(∂x2∂x3), ∂2f4(·)/(∂x2∂x3)]
Hf{2,3}=[0.*t, 0.*t, 0.*t, 0.*t];

% [∂2f1(·)/∂x2
3, ∂2f2(·)/∂x2

3, ∂2f3(·)/∂x2
3, ∂2f4(·)/∂x2

3]
Hf{3,3}=[d2h1x3.*X(:,1), d2h2.*X(:,1), -d2h1x3.*X(:,1)/0.47...

-d2h2.*X(:,1)/1.2+2*X(:,1).*(0.029*0.0001./...

((0.0001+X(:,3)).^3)), 0.*t];

% [∂2f1(·)/(∂x2∂x4), ∂2f2(·)/(∂x2∂x4), ∂2f3(·)/(∂x2∂x4), ∂2f4(·)/(∂x2∂x4)]
Hf{2,4}=[0.*t, U(:,1)./500./(X(:,4).^2), 0.*t, 0.*t];

% [∂2f1(·)/(∂x3∂x4), ∂2f2(·)/(∂x3∂x4), ∂2f3(·)/(∂x3∂x4), ∂2f4(·)/(∂x3∂x4)]
Hf{3,4}=[0.*t, 0.*t, U(:,1)./500./(X(:,4).^2), 0.*t];

% [∂2f1(·)/∂x2
4, ∂2f2(·)/∂x2

4, ∂2f3(·)/∂x2
4, ∂2f4(·)/∂x2

4]
Hf{4,4}=[-2*U(:,1).*X(:,1)./500./(X(:,4).^3),...

-2*U(:,1).*X(:,2)./500./(X(:,4).^3),...

2*U(:,1)./(X(:,4).^3).*(1-X(:,3)/500), 0.*t];

% [∂2f1(·)/(∂x1∂u), ∂2f2(·)/(∂x1∂u), ∂2f3(·)/(∂x1∂u), ∂2f4(·)/(∂x1∂u)]
Hf{1,5}=[ -1./500./X(:,4), 0.*t, 0.*t , 0.*t];

% [∂2f1(·)/(∂x2∂u), ∂2f2(·)/(∂x2∂u), ∂2f3(·)/(∂x2∂u), ∂2f4(·)/(∂x2∂u)]
Hf{2,5}=[0.*t, -1./500./X(:,4), 0.*t , 0.*t];

% [∂2f1(·)/(∂x3∂u), ∂2f2(·)/(∂x3∂u), ∂2f3(·)/(∂x3∂u), ∂2f4(·)/(∂x3∂u)]
Hf{3,5}=[0.*t, 0.*t, -1./500./X(:,4), 0.*t];

% [∂2f1(·)/(∂x4∂u), ∂2f2(·)/(∂x4∂u), ∂2f3(·)/(∂x4∂u), ∂2f4(·)/(∂x4∂u)]
Hf{4,5}=[X(:,1)./500./(X(:,4).^2), X(:,2)./500./(X(:,4).^2),...

-1./(X(:,4).^2).*(1-X(:,3)/500) , 0.*t];

% [∂2f1(·)/∂u2, ∂2f2(·)/∂u2, ∂2f3(·)/∂u2, ∂2f4(·)/∂u2]
Hf{5,5}=[0.*t, 0.*t, 0.*t, 0.*t];

Lt=ones(size(t));

HL=cell(nfz, nfz);

HL{1,1}=[0.*t]; % [∂2L(·)/∂x2
1]

HL{1,2}=[0.*t]; % [∂2L(·)/(∂x2∂x1)]
HL{2,2}=[0.*t]; % [∂2L(·)/(∂x2

2)]
HL{1,3}=[0.*t]; % [∂2L(·)/(∂x1∂x3)]
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HL{2,3}=[0.*t]; % [∂2L(·)/(∂x2∂x3)]
HL{3,3}=[0.*t]; % [∂2L(·)/(∂x2

3)]
HL{1,4}=[0.*t]; % [∂2L(·)/(∂x1∂x4)]
HL{2,4}=[0.*t]; % [∂2L(·)/(∂x2∂x4)]
HL{3,4}=[0.*t]; % [∂2L(·)/(∂x3∂x4)]
HL{4,4}=[0.*t]; % [∂2L(·)/(∂x2

4)]
HL{1,5}=[0.*t]; % [∂2L(·)/(∂x1∂u)]
HL{2,5}=[0.*t]; % [∂2L(·)/(∂x2∂u)]
HL{3,5}=[0.*t]; % [∂2L(·)/(∂x3∂u)]
HL{4,5}=[0.*t]; % [∂2L(·)/(∂x4∂u)]
HL{5,5}=[2*0.00001.*Lt]; % [∂2L(·)/(∂u2)]

nE=n;

Ez=zeros(nE,nE);

HE=num2cell(Ez);

HE{2,nE}=-1;

Hg=[];

Hb=[];

Each Hessian is speci�ed in a two dimensional cell array of dimension given by the
size of y = [x, u] or y = [xf ]. Each entry {i, j} of the cell array corresponds to the
derivative with respect to y(i) and y(j) The order to follow is given by the order of
the vector variable y = [x, u] or y = [xf ]. If some variables do not contribute to the
Hessian, the corresponding entries can be set to zero, otherwise the entries have to
be vectors with the same length of t, containing the value of the Hessian at di�erent
time instants.
For instance, in the example, the Hessian of the stage cost can be speci�ed in a com-
pact way as follows

Lz=zeros(nfz,nfz);

Hf=num2cell(Lz);

HL{5,5}=[2*0.00001.*Lt];

where nfz gives the dimension of the vector y = [x, u].

If dE.flag=0 the Hessian with respect to the vector y = [x0, u0, uf, xf ] must be spec-
i�ed as follows:

nE=nt+np+2*n+2*m; Ez=zeros(nE,nE);

HE=num2cell(Ez); % Hessian of E(x0, xf , u0,uf , p, tf )
HE{8,nE}=-1; % ∂2E(x0, xf , u0,uf , p, tf )/(∂x2(tf)∂x4(tf))
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Figure 4: State trajectories for Fed-batch fermentor problem

Solution of the problem and results

The solution of the optimisation problem is computed running the �le main.m. The following
lines are executed:

clear all;format compact;

[problem,guess]=BangBang; % Fetch the problem de�nition
options= settings; % Get options and solver settings
% Format for the solver
[infoNLP,data]=transcribeOCP(problem,guess,options);

% Initialize the dual point
nc=size(data.jacStruct,1);

[nt,np,n,m,M,N]=deal(data.sizes[1:4,7:8]);

nz=nt+np+n*M+m*N;

data.multipliers.zl=2*ones(1,nz);

data.multipliers.zu=2*ones(1,nz);

data.multipliers.lambda=2*ones(1,nc);

[solution,status] = solveNLP(infoNLP,data); % Solve the problem
output(solution,options,data); % Output solutions

The state, control and adjoint variables solution to this problem using the Optimal Control
Toolbox are shown in Figs. 4, 5 and 6.
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Figure 5: Input trajectory for Fed-batch fermentor problem
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Figure 6: Adjoint variables for Fed-batch fermentor problem
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4.3 Example 3: Bryson-Denham optimal control problem

Find the �nal time tf and control input u ∈ IR over t in [0, tf ] solving the following optimisation
problem [2]

min
u(·), tf

x3(tf )

subject to
ẋ1 = x2

ẋ2 = u

ẋ3 =
u2

2

x(0) = [0, 1, 0]
x1(tf ) = 0, x2(tf ) = −1

−10 ≤ u(t) ≤ 10 0
−20
−20

 ≤

 x1(t)
x2(t)
x3(t)

 ≤

 1/9
20
20

 ∀t ∈ [0, tf ]

−20 ≤ x3(tf ) ≤ 20

Problem setup

� The Optimal Control Problem is de�ned in the �le BrysonDenham.m in the following way:

%Initial time. t0 < tf
problem.time.t0=0;

% Final time. Let tf_min=tf_max if tf is �xed.
problem.time.tf_min=0.1;

problem.time.tf_max=100;

guess.tf=1;

% Parameters bounds. pl=< p <=pu
problem.parameters.pl=[];

problem.parameters.pu=[];

guess.parameters=[];

% Initial condition x0 and its bounds
problem.states.x0=[0 1 0];

problem.states.x0l=[0 1 0];

problem.states.x0u=[0 1 0];
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% State bounds: xl ≤ x(t) ≤xu
problem.states.xl=[0 -20 -20];

problem.states.xu=[1/9 20 20];

% Terminal state bounds: x� ≤ x(tf ) ≤ xfu
problem.states.xfl=[0 -1 -20];

problem.states.xfu=[0 -1 20];

% Guess the state trajectories with [x(t0), x(tf )]
guess.states(:,1)=[0 0];

guess.states(:,2)=[1 -1];

guess.states(:,3)=[0 0];

Number of control actions N . If N is equal to the number of integration steps, prob-
lem.inputs.N can be set to 0
problem.inputs.N=0;

% Input bounds: ul ≤ u(t) ≤ uu
problem.inputs.ul=[-10];

problem.inputs.uu=[10];

% Guess the input sequences with [u(t0), u(tf )]
guess.inputs(:,1)=[-5 -5];

% Choose the set-points if required
problem.setpoints.states=[];

problem.setpoints.inputs=[];

% Bounds for path constraint function gl ≤ g(x, u, p, t) ≤ gu
problem.constraints.gl=[];

problem.constraints.gu=[];

% Bounds for boundary constraints bl ≤ b(x(t0), x(tf ), u(t0), u(tf ), p, t0, tf ) ≤ bu
problem.constraints.bl=[];

problem.constraints.bu=[];

% store the necessary problem parameters used in the functions
problem.data=[];

problem.functions={@L,@E,@f,@g,@b};

function stageCost=L(x,xr,u,ur,p,t,data)
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stageCost = 0*t;

function boundaryCost=E(x0,xf,u0,uf,p,tf,data)

boundaryCost=xf(3);

function dx = f(x,u,p,t,data)

x1 = x(:,1);x2 = x(:,2);u1 = u(:,1);

dx(:,1) = x2;

dx(:,2) = u1;

dx(:,3)=u1.*u1/2;

function c=g(x,u,p,t,data)

c=[];

function bc=b(x0,xf,u0,uf,p,tf,data)

bc=[];

� The solution method and solver settings are set in settings.m . See the �le included in
the directory ../ICLOCS-*.*/examples/BrysonDenham

� The solution of the optimisation problem is computed running the �le main.m inside the
directory ../ICLOCS-*.*/examples/BrysonDenham. The state, control and adjoint vari-
ables solution to this problem using the Optimal Control Toolbox are shown in Figs. 7, 8
and 9.

4.4 Example 4: Optimal Mixing of a Catalyst

This mixing problem considers a plug-�ow reactor, packed with two catalysts, involving the
reactions

S1 ↔ S2 → S3

The optimal mixing policy of the two catalysts has to be determined in order to maximise the
production of species S3 [12]. The optimisation problem is formulated as follow
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Figure 7: State trajectories for Bryson-Denham problem
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Figure 8: Input trajectory for Bryson-Denham problem
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Figure 9: Adjoint variables for Bryson-Denham problem

min
u(·)

−1 + x1(tf ) + x2(tf );

subject to{
ẋ1 = u(10x2 − x1)
ẋ2 = u(x1 − 10x2)− (1− u)x2;

x(0) = [1, 0]
tf = 1

0 ≤ u(t) ≤ 1[
0.8
0

]
≤

[
x1(t)
x2(t)

]
≤

[
1

0.1

]
∀t ∈ [0, tf ]

0.8 ≤ x1(tf ) ≤ 0.95

Problem setup

� The Optimal Control Problem is de�ned in the �le CatalystMixing.m in the following way:

% Initial time t0 < tf
problem.time.t0=0;

% Final time. Let tf_min=tf_max if tf is �xed.
problem.time.tf_min=1;
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problem.time.tf_max=1;

guess.tf=1;

% Parameters bounds: pl ≤ p ≤ pu
problem.parameters.pl=[];

problem.parameters.pu=[];

guess.parameters=[];

% Initial conditions x0 and its bounds
problem.states.x0=[1 0];

problem.states.x0l=[1 0];

problem.states.x0u=[1 0];

% State bounds: xl ≤ x(t) ≤ xu
problem.states.xl=[0.8 0];

problem.states.xu=[1 0.1];

% Terminal state bounds: x� ≤ x(tf ) ≤ xfu
problem.states.xfl=[0.8 0];

problem.states.xfu=[0.95 0.1];

% Guess the state trajectories with [x(t0), x(tf )]
guess.states(:,1)=[1 0.915];

guess.states(:,2)=[0 0.05];

Number of control actions N . If N is equal to the number of integration steps, prob-
lem.inputs.N can be set to 0
problem.inputs.N=0;

% Input bounds: ul ≤ u(t) ≤ uu
problem.inputs.ul=[0];

problem.inputs.uu=[1];

% Guess the input sequences with [u(t0), u(tf )]
guess.inputs(:,1)=[1 0];

% Choose the set-points if required
problem.setpoints.states=[];

problem.setpoints.inputs=[];

% Bounds for path constraint function gl ≤ g(x, u, p, t) ≤ gu
problem.constraints.gl=[];

problem.constraints.gu=[];
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% Bounds for boundary constraints bl ≤ b(x(t0), x(tf ), u(t0), u(tf ), p, t0, tf ) ≤ bu
problem.constraints.bl=[];

problem.constraints.bu=[];

% store the necessary problem parameters used in the functions
problem.data=[];

problem.functions={@L,@E,@f,@g,@b};

function stageCost=L(x,xr,u,ur,p,t,data)

stageCost = t*0;

function boundaryCost=E(x0,xf,u0,uf,p,tf,data)

boundaryCost=-1+xf(1)+xf(2);

function dx = f(x,u,p,t,data)

x1 = x(:,1); x2 = x(:,2); u = u(:,1);

dx(:,1) = u.*(10*x2-x1);

dx(:,2) = u.*(x1-10*x2)-(1-u).*x2;

function c=g(x,u,p,t,data)

c=[];

function bc=b(x0,xf,u0,uf,p,tf,data)

bc=[];

� The solution method and solver settings are set in settings.m . See the �le included in
the directory ../ICLOCS-*.*/examples/CatalystMixing

� The solution of the optimisation problem is computed running the �le main.m inside the
directory ../ICLOCS-*.*/examples/CatalystMixing The state, control and adjoint variables
solution to this problem using the Optimal Control Toolbox are shown in Figs. 10, 11 and
12.
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Figure 10: State trajectories for the Optimal Mixing of a Catalyst
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Figure 11: Input trajectory for the Optimal Mixing of a Catalyst
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4.5 Example 5: Discrete-time optimisation problem

At each time instant t, measure the current state x and compute the control input sequence

u
4
= [u(0), u(1), . . . , u(N − 1)] ∈ IRN solving the following optimisation problem

min
u

N−1∑
k=0

x(k)′Qx(k) + u(k)′Ru(k) + x(N)′Px(N);

subject to{
x1(k + 1) = x1(k) + 0.1x2(k)
x2(k + 1) = 1.8x2(k) + 0.0787u(k)

−2 ≤ u(t) ≤ 2
x(N)′Px(N) ≤ gm

where x(0)=[0.3, 0.1], N = 20, R = 10−4 and Q is the identity matrix. The parameters P
and gm de�ne a terminal invariant set where P is the positive-de�nite solution of the algebraic
Riccati equation for the selected Q and R.

Problem setup

� The Optimal Control Problem is de�ned in the �le Discrete_Sys.m in the following way:
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% Initial time t0 < tf . For discrete-time systems is the initial index
problem.time.t0=0;

% Final time. For discrete-time systems tf_min=tf_max=[ ]
problem.time.tf_min=[];

problem.time.tf_max=[];

guess.tf=[];

% Parameter bounds: pl≤ p ≤ pu
problem.parameters.pl=[];

problem.parameters.pu=[];

guess.parameters=[];

% Initial conditions x0 and its bounds
problem.states.x0=[0.3 0.1];

problem.states.x0l=problem.states.x0;

problem.states.x0u=problem.states.x0l;

% State bounds. xl ≤ x(t) ≤ xu
problem.states.xl=[-inf -inf];

problem.states.xu=[+inf +inf];

% Terminal state bounds: x� ≤ x(tf ) ≤ xfu
problem.states.xfl=[-inf -inf];

problem.states.xfu=[+inf +inf];

% Guess the state trajectories with [x(t0), x(tf )]
guess.states(:,1)=[problem.states.x0(1) 0];

guess.states(:,2)=[problem.states.x0(2) 0];

Number of control actions N . If N is equal to the number of integration steps, prob-
lem.inputs.N can be set to 0
problem.inputs.N=0;

% Input bounds: ul ≤ u(tf ) ≤ uu
problem.inputs.ul=[-2];

problem.inputs.uu=[2];

% Guess the input sequences with [u(t0), u(tf )]
guess.inputs(:,1)=[-2 0];

% Bounds for path constraint function gl ≤ g(x, u, p, t) ≤ gu
problem.constraints.gl=[];
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problem.constraints.gu=[];

Load information about the terminal set
load termset

% Bounds for boundary constraints bl ≤ b(x(t0), x(tf ), u(t0), u(tf ), p, t0, tf ) ≤ bu
problem.constraints.bl=0;

problem.constraints.bu=gm;

% Choose the set-points
problem.setpoints.states=[0 0];

problem.setpoints.inputs=[0];

Rd=10^(-4);

Qd=[1 0; 0 1];

% store the problem parameters used in the functions
problem.data.P=P;

problem.data.R=Rd;

problem.data.Q=Qd;

problem.functions={@L,@E,@f,@g,@b};

function stageCost=L(x,xr,u,ur,p,t,data)

RW=data.R;

QW=data.Q;

stagex=((x-xr)*QW).*(x-xr);

stageu=((u-ur)*RW).*(u-ur);

stageCost=sum(stagex,2)+sum(stageu,2);

function boundaryCost=E(x0,xf,u0,uf,p,tf,data)

P=data.P;

boundaryCost=((xf).'*P*(xf));

function dx = f(x,u,p,t,data)

x1=x(:,1); x2=x(:,2);u=u(:,1);
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Figure 13: State trajectories for the discrete-time optimization problem

dx(:,1)=x1+0.1*x2;

dx(:,2)=1.8*x2+0.0787*u;

function c=g(x,u,p,t,data)

c=[];

function bc=b(x0,xf,u0,uf,p,tf,data)

P=data.P;

bc=(xf).'*P*(xf);

� The solution method and solver settings are set in settings_Dis.m . See the �le included
in the directory ../ICLOCS-*.*/examples/DiscreteTimeMPC

� The solution of the optimisation problem is computed running the �le main.m. inside
the directory ../ICLOCS-*.*/examples/DiscreteTimeMPC The state, control and adjoint
variables solution to this problem using the Optimal Control Toolbox are shown in Figs.
13, 14 and 15.

4.6 Example 6: Minimum fuel orbit raising problem

Find the control u(t) over t in [t0, tf ] solving the following optimisation problem [3]:
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min
u(·)

−
∫ tf

0

x2(t)dt

subject to
ẋ1 = x2

ẋ2 =
x2

3

x1
− 1

x2
1

+
T sin(u)

(1−md t)

ẋ3 = −x2x3

x1
+

T cos(u)
(1−md t)

x(0) = [1, 0, 1]

x3(tf ) =
1√

x1(tf )
, x2(tf ) = 0

tf = 3.32

0 ≤ u(t) ≤ 2π 0.5
0

0.5

 ≤

 x1(t)
x2(t)
x3(t)

 ≤

 2
1
2

 ∀t ∈ [0, tf ]

with T = 0.1405 and md = 0.0749

Problem setup

� The Optimal Control Problem is de�ned in the �le OrbitRaising.m in the following way:

% Initial Time. t0 < tf
problem.time.t0=0;

% Final time. Let tf_min=tf_max if tf is �xed.
problem.time.tf_min=3.32;

problem.time.tf_max=3.32;

guess.tf=3.32;

% Parameters bounds: pl ≤ p ≤ pu
problem.parameters.pl=[];

problem.parameters.pu=[];

guess.parameters=[];

% Initial condition x0 and its bounds
problem.states.x0=[1 0 1];

problem.states.x0l=[1 0 1];

problem.states.x0u=[1 0 1];
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% State bounds: xl ≤ x(t) ≤ xu
problem.states.xl=[0.5 0 0.5];

problem.states.xu=[2 1 2];

% Terminal state bounds: x� ≤ x(t) ≤ xfu
problem.states.xfl=[0 0 0];

problem.states.xfu=[2 1 2];

% Guess the state trajectories with [x(t0), x(tf )]
guess.states(:,1)=[1 1.4];

guess.states(:,2)=[0 0.8];

guess.states(:,3)=[1 0.05];

Number of control actions N . If N is equal to the number of integration steps, prob-
lem.inputs.N can be set to 0
problem.inputs.N=0;

% Input bounds: ul ≤ u(t) ≤ uu
problem.inputs.ul=[0];

problem.inputs.uu=[2*pi];

% Guess the input sequences with [u(t0), u(tf )]
guess.inputs(:,1)=[0 2*pi];

% Choose the set-points if required
problem.setpoints.states=[];

problem.setpoints.inputs=[];

% Bounds for path constraint function gl ≤ g(x, u, p, t) ≤ gu
problem.constraints.gl=[];

problem.constraints.gu=[];

% Bounds for boundary constraints bl ≤ b(x(t0), x(tf ), u(t0), u(tf ), p, t0, tf ) ≤ bu
problem.constraints.bl=[0 0];

problem.constraints.bu=[0 0];

% Store the problem parameters used in the functions
problem.data.T1=0.1405;

problem.data.md=0.0749;

problem.functions={@L,@E,@f,@g,@b};

function stageCost=L(x,xr,u,ur,p,t,data)
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stageCost = -x(:,2);

function boundaryCost=E(x0,xf,u0,uf,p,tf,data)

boundaryCost=0;

function dx = f(x,u,p,t,data)

r=x(:,1);q=x(:,2);v=x(:,3);phi=u(:,1);

T1=data.T1;

md=data.md;

dx=[q,...

(v.*v)./r-r.^(-2)+(T1*sin(phi)./(1-md*t)),...

(-q.*v)./r+(T1*cos(phi)./(1-md*t))];

function c=g(x,u,p,t,data)

c=[];

function bc=b(x0,xf,u0,uf,p,tf,data)

bc=[xf(3)-sqrt(1/xf(1));xf(2)];

� The solution method and solver settings are set in settings.m . See the �le included in
the directory ../ICLOCS-*.*/examples/OrbitRaising

� The �les gradCost.m, jacConst.m and hessianLagrangian.m for this example are sup-
plied. See inside the directory ../ICLOCS-*.*/examples/OrbitRaising.

- gradCost.m:

function [dL,dE]=gradCost(L,X,Xr,U,Ur,P,t,E,x0,xf,u0,uf,p,tf,data)

Lt=ones(size(t));

% dL - Gradient of the stage cost L(·) wrt. t, p, x, u
dL.flag=1;

dL.dp=[];

dL.dt=[];

dL.dx=[0*Lt, -Lt, 0*Lt];
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dL.du=0*Lt;

% dE - Gradient of E(·) with respect to tf , p, x0, u0, uf , xf

dE.flag=1;

dE.dtf=[];

dE.dp=[];

dE.dx0=[];

dE.du0=[];

dE.dxf=[];

dE.duf=[];

The gradient of the stage cost and the boundary cost are supplied and so dL.flag=1

and dE.flag=1. The �nal time tf and p are not decision variables and then the deriva-
tives dL.dp, dL.dt, dE.dtf, and dE.dp are set to be empty matrices. The derivative
of the boundary cost does not depend on any variable and then all variables containing
the derivatives are set to be empty matrices.

- jacConst.m:

function [df,dg,db]=jacConst(f,g,X,U,P,t,b,x0,xf,u0,uf,p,tf,t0,data)

Lt=ones(size(t));

coef=data.data.T1./(1-data.data.md*t);

df.flag=1;

df.dp{1}=[]; ∂f(x, u, p, t)/∂p
df.dt{1}=[]; ∂f(x, u, p, t)/∂t

∂f(x, u, p, t)/∂x1

df.dx{1}=[0*Lt, -(X(:,3).^2)./(X(:,1). ^2)+2./(X(:,1).^3),...

X(:,3).*X(:,2)./(X(:,1).^2) ];

∂f(x, u, p, t)/∂x2

df.dx{2}=[1*Lt, 0*Lt, -X(:,3)./X(:,1)];

∂f(x, u, p, t)/∂x3

df.dx{3}=[0*Lt, 2*X(:,3)./X(:,1), -X(:,2)./X(:,1)];

∂f(x, u, p, t)/∂u
df.du{1}=[0*Lt, coef.*cos(U(:,1)), -coef.*sin(U(:,1))];

dg.flag=0;

db.flag=1;
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db.dtf=[];

db.dp=[];

db.dx0=[];

db.du0=[];

db.duf=[];

% Derivatives with respect to [x1(tf ), x2(tf ), x3(tf )]
db.dxf=[1./sqrt(xf(1))./xf(1)/2, 0, 1; 0, 1, 0];

The path constraints are not present and then their derivatives have not be sup-
plied (dg.flag=0). Instead the derivatives of the boundary constraints are supplied
in the structured variable db as shown in the illustrated example. The boundary
constraints b(tf , p, x0, u0, uf , xf ) depends only on the �nal state and then the
variables containing the other derivatives are set to be empty matrices. Each row of
db.dxf corresponds to the evaluated derivative of a terminal constraint with respect
to [x1(tf ), x2(tf ), x3(tf )].

- hessianLagrangian.m:

function [HL,HE,Hf,Hg,Hb]=hessianLagrangian(X,U,P,t,E,x0,xf,u0,uf,p,tf,data)

The Hessian of the di�erent parts of the Lagrangian (HL, HE, Hf, Hg, Hb) must be
supplied in cell arrays as follows:

[nt,np,n,m,ng,nb]=deal(data.sizes{1:6});

nfz=nt+np+n+m;

Hf=[];

Lz=zeros(nfz,nfz);

HL=num2cell(Lz);

HE=[];

Hg=[];

Bz=zeros(n,n);

Hb=num2cell(Bz);

Hb{1,1}=[-3./sqrt(xf(1))./(xf(1).^2)/4; 0];

The Hessian of the dynamical system and the path constraints have not been speci�ed
and then the respective variables are set to be empty matrices (Hf=[]; and Hg=[];).
The Hessian of the stage cost is speci�ed in a two dimensional cell array of dimen-
sion given by the size of y = [x, u] while the Hessian of the boundary constraints
is given with respect to y = [xf ]. Notice that dE.flag=1 in gradCost.m: and E(·)
does not depend on any variable so the Hessian of E(·) is not evaluated and it has
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Figure 16: State trajectories for minimum fuel orbit raising problem

not be speci�ed. If dE.flag=0, whenever HE is not set to be empty, the entries for
the Hessian with respect to [x(t0), u(t0), u(tf ), x(tf )] are speci�ed in the following way
(nt=0, np=0):

nE=nt+np+2*n+2*m;

Ez=zeros(nE,nE);

HE=num2cell(Ez);

If db.�ag=1 it is necessary to check on which variables the boundary constraints
b(tf , p, x(t0), u(t0), x(tf ), u(tf )) depends on. In this example it depends only on x(tf )
and then it is necessary to specify only the Hessian with respect to x(tf ). If db.�ag=0,
whenever Hb is not set to be empty, it needs to specify at least the entries for the
Hessian with respect to [x(t0), u(t0), u(tf ), x(tf )] as follow (here tf and p are not de-
cision variables and they must not be considered):

Bz=zeros(nE,nE);

Hb=num2cell(Bz);

Hb{1,6}=[-3./sqrt(xf(1))./(xf(1).^2)/4; 0];

� The solution of the optimisation problem is computed running the �le main.m inside the
directory ../ICLOCS-*.*/examples/OrbitRaising The state, control and adjoint variables
solution to this problem using the Optimal Control Toolbox are shown in Figs. 16, 17 and
18.
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Figure 17: Input trajectory for minimum fuel orbit raising problem
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Figure 18: Adjoint variables for minimum fuel orbit raising problem
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4.7 Example 7: Path-constrained optimal control problem

The following optimisation problem considers a continuous state constraint [7]

min
u(·)

∫ 1

0

x2
1(t) + x2

2(t) + 0.005u2(t)dt

subject to{
ẋ1 = x2

ẋ2 = −x2 + u

x(0) = [0, −1]

−20 ≤ u(t) ≤ 20[
−10
−10

]
≤

[
x1(t)
x2(t)

]
≤

[
10
10

]
∀t ∈ [0, 1]

8(t− 0.5)2 − 0.5− x2(t) ≥ 0

Problem setup

� The Optimal Control Problem is de�ned in the �le PathConstraint.m in the following way:

% Initial time t0 < tf
problem.time.t0=0;

% Final time. Let tf_min=tf_max if tf is �xed.
problem.time.tf_min=1;

problem.time.tf_max=1;

guess.tf=1;

% Parameters bounds pl ≤ p ≤ pu
problem.parameters.pl=[];

problem.parameters.pu=[];

guess.parameters=[];

% Initial condition x(t0) and its bounds
problem.states.x0=[0 -1];

problem.states.x0l=[0 -1];

problem.states.x0u=[0 -1];

% State bounds xl ≤ x(t) ≤ xu
problem.states.xl=[-10 -10];

problem.states.xu=[10 10];
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% Terminal state bounds. x� ≤ x(tf ) ≤ xfu
problem.states.xfl=[-10 -10];

problem.states.xfu=[10 10];

% Guess the state trajectories with [x(t0), x(tf )]
guess.states(:,1)=[0 0];

guess.states(:,2)=[-1 -1];

% Number of control actions N. Set problem.inputs.N=0 if N is equal to the number of
integration steps.
problem.inputs.N=0;

% Input bounds ul ≤ u(t) ≤ uu
problem.inputs.ul=[-20];

problem.inputs.uu=[20];

% Guess the input sequences with [u(t0), u(tf )]
guess.inputs(:,1)=[0 0];

% Choose the set-points if required
problem.setpoints.states=[];

problem.setpoints.inputs=[];

% Bounds for path constraint function gl ≤ g(x, u, p, t) ≤ gu
problem.constraints.gl=[0, -10];

problem.constraints.gu=[inf, 10];

% Bounds for boundary constraints
problem.constraints.bl=[];

problem.constraints.bu=[];

% store the necessary problem parameters used in the functions
problem.data=[];

problem.functions={@L,@E,@f,@g,@b};

function stageCost=L(x,xr,u,ur,p,t,data)

x1 = x(:,1);x2 = x(:,2);u1 = u(:,1);

stageCost = x1.^2+x2.^2+0.005*u1.^2;
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function boundaryCost=E(x0,xf,u0,uf,p,tf,data)

boundaryCost=0;

function dx = f(x,u,p,t,data)

x1 = x(:,1);x2 = x(:,2);u1 = u(:,1);

dx(:,1) = x2;

dx(:,2) = -x2+u1;

function c=g(x,u,p,t,data)

x2 = x(:,2);

c=[8*(t-0.5).^2-0.5-x2, x(:,1)];

function bc=b(x0,xf,u0,uf,p,tf,data)

bc=[];

� The solution method and solver settings are set in settings.m . See the �le included in
the directory ../ICLOCS-*.*/examples/PathConstraint

� The �les gradCost.m, jacConst.m and hessianLagrangian.m for this example are sup-
plied. See inside the directory ../ICLOCS-*.*/examples/PathConstraint.

- gradCost.m:

function [dL,dE]=gradCost(L,X,Xr,U,Ur,P,t,E,x0,xf,u0,uf,p,tf,data)

% dL - Gradient of the stage cost L(·) wrt. t, p, x, u
dL.flag=1;

dL.dp=[];

dL.dt=[];

dL.dx=[2*X(:,1), 2*X(:,2)];

dL.du=2*0.005*U(:,1);

% dE - Gradient of E(·) with respect to tf , p, x0, u0, uf , xf

dE.flag=1;

dE.dtf=[];

dE.dp=[];
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dE.dx0=[];

dE.du0=[];

dE.dxf=[];

dE.duf=[];

- jacConst.m:

function [df,dg,db]=jacConst(f,g,X,U,P,t,b,x0,xf,u0,uf,p,tf,t0,data)

Lt=ones(size(t));

df.flag=1;

df.dp{1}=[];

df.dt{1}=[];

df.dx{1}=[0*Lt 0*Lt];

df.dx{2}=[1*Lt , -1*Lt];

df.du{1}=[0*Lt, 1*Lt];

dg.flag=1;

dg.dp{1}=[];

dg.dt{1}=[16*(t-0.5), 0*t];

dg.dx{1}=[0*Lt, 1*Lt];

dg.dx{2}=[-1*Lt, 0*Lt];

dg.du{1}=[0*Lt, 0*Lt];

db.flag=1;

db.dtf=[];

db.dp=[];

db.dx0=[];

db.du0=[];

db.dxf=[];

db.duf=[];

The path constraints are present and their derivatives have been supplied (dg.flag=1)
. The derivatives of g(x, u, p, t) = [g1(x, u, p, t), . . . , gng (x, u, p, t)] are supplied in
the structured variable dg as shown in the illustrated example. The derivative of
g(x, u, p, t) with respect to x are stored in dg.dx which is a cell array where each entry
corresponds to the derivative with respect to a state variable. For instance the deriva-
tive of g(x, u, p, t) with respect to xi is stored in dg.dx{i}. dg.dx{i} is a matrix with
ng columns and a number of rows given by the di�erent evaluation times. Notice that
the derivative of the path constraints with respect to the time has been speci�ed but
it was not necessary since the �nal time tf is not a decision variable.

- hessianLagrangian.m:
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function [HL,HE,Hf,Hg,Hb]=hessianLagrangian(X,U,P,t,E,x0,xf,u0,uf,p,tf,data)

The Hessian of the di�erent parts of the Lagrangian (HL, HE, Hf, Hg, Hb) must be
supplied in cell arrays as follows:

[nt,np,n,m]=deal(data.sizes{1:4});

nfz=nt+np+n+m;

Fz=zeros(nfz,nfz);

Hf=num2cell(Fz);

Hz=zeros(nfz, nfz);

HL=num2cell(Hz);

HL{1,1}=2;

HL{2,2}=2;

HL{3,3}=2*0.005;

HE=[];

Gz=zeros(nfz,nfz);

Hg=num2cell(Gz);

Hb=[];

� The solution of the optimisation problem is computed running the �le main.m inside the di-
rectory ../ICLOCS-*.*/examples/PathConstraint The state, control and adjoint variables
solution to this problem using the Optimal Control Toolbox are shown in Figs. 19, 20 and
21.

4.8 Example 8: Continuously-stirred tank reactor

The following optimisation problem is based on the model of a continuously-stirred tank reactor
proposed in [6] and modi�ed in [8]
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Figure 19: State trajectories for the path-constrained optimal control problem
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Figure 20: Input trajectory for the path-constrained optimal control problem
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Figure 21: Adjoint variables for the path-constrained optimal control problem

min
u(·),tf

∫ tf

0

(x1(t)− x1(tf))2 + (x2(t)− x2(tf))2 + (u(t)− u(tf ))2dt

subject to
ẋ1 =

1− x1

q
− kx1e

(−En
x2

)

ẋ2 =
Tf − x2

q
+ kx1e

(−En
x2

) − au(x2 − Tc)

x(0) = [0.98, 0.39]
x1(tf) = 0.26, x2(tf) = 0.65, u(tf ) = 0.76

0 ≤ u(t) ≤ 2[
0
0

]
≤

[
x1(t)
x2(t)

]
≤

[
1
1

]
∀t ∈ [0, tf ]

10 ≤ tf

where a = 0.000195∗600, q = 20, En = 5, k = 300, Tc = 0.38158 and Tf = 0.3947. The variable
x1 is the product concentration, x2 is the temperature and u is the coolant �ow rate. In the
described optimisation problem, the reactor undergoes a slow set-point change from the stable
steady-state x(0) = [0.98, 0.39] to the unstable steady state x(tf ) = [0.26, 0.65].
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Problem setup

� The Optimal Control Problem is de�ned in the �le RayHicksCSTR.m in the following way:

%Initial time t0 < tf
problem.time.t0=0;

% Final time. Let tf_min=tf_max if tf is �xed.
problem.time.tf_min=10;

problem.time.tf_max=inf;

guess.tf=120;

% Parameters bounds pl ≤ p ≤ pu
problem.parameters.pl=[];

problem.parameters.pu=[];

guess.parameters=[];

% Initial condition x(t0) and its bounds
problem.states.x0=[0.9831 0.3918];

problem.states.x0l=problem.states.x0;

problem.states.x0u=problem.states.x0l;

% State bounds xl ≤ x(t) ≤ xu
problem.states.xl=[0 0];

problem.states.xu=[1 1];

% Terminal state bounds x� ≤ x(tf ) ≤ xfu
problem.states.xfl=[0.2632 0.6519];

problem.states.xfu=[0.2632 0.6519];

% Guess the state trajectories with [x(t0), x(tf )]
guess.states(:,1)=[0.9831 0.2632];

guess.states(:,2)=[0.3918 0.6519];

% Number of control actions N. Set problem.inputs.N=0 if N is equal to the number of
integration steps.
problem.inputs.N=40;

% Input bounds ul ≤ u(t) ≤ uu
problem.inputs.ul=[0];

problem.inputs.uu=[2];

% Guess the input sequences with [u(t0), u(tf )]
guess.inputs(:,1)=[0.0 455/600];
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% Bounds for path constraint function gl ≤ g(x, u, p, t) ≤ gu
problem.constraints.gl=[];

problem.constraints.gu=[];

% Bounds for boundary constraints bl ≤ b(x(t0), x(tf ), u(t0), u(tf ), p, t0, tf ) ≤ bu
problem.constraints.bl=[];

problem.constraints.bu=[];

% Choose the set-points
problem.setpoints.states=[0.2632 0.6519];

problem.setpoints.inputs=[455/600];

% store the necessary problem parameters used in the functions
problem.data=[];

problem.functions={@L,@E,@f,@g,@b};

function stageCost=L(x,xr,u,ur,p,t,data)

c=x(:,1);T=x(:,2);u=u(:,1);

cr=xr(:,1);Tr=xr(:,2);

stageCost = 0.5*((c-cr).*(c-cr)+(T-Tr).*(T-Tr))+0.5*(u-ur).*(u-ur);

function boundaryCost=E(x0,xf,u0,uf,p,tf,data)

boundaryCost=0;

function dx = f(x,u,p,t,data)

%Biegler's Model coe�cient a=0.000195*600;q=20;En=5;k=300;Tc=0.38158;Tf=0.3947;

c=x(:,1);T=x(:,2);u=u(:,1);

dx(:,1)=(1-c)/q-k*c.*exp(-En./T);

dx(:,2)=(Tf-T)/q+k*c.*exp(-En./T)-a*u.*(T-Tc);

function c=g(x,u,p,t,data) function bc=b(x0,xf,u0,uf,p,tf,data)
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Figure 22: State trajectories for the continuous-stirred tank reactor

c=[];

function bc=b(x0,xf,u0,uf,p,tf,data)

bc=[];

� The solution method and solver settings are set in settings.m . See the �le included in
the directory ../ICLOCS-*.*/examples/RayHicksCSTR

� The solution of the optimisation problem is computed running the �le main.m inside the di-
rectory ../ICLOCS-*.*/examples/RayHicksCSTR The state, control and adjoint variables
solution to this problem using the Optimal Control Toolbox are shown in Figs. 22, 23 and
24.

4.9 Example 9: Continuous-time nonlinear Model Predictive Control

example

At any time instant tk for k = 0, 1, 2, . . . measure the state x(tk), solve the following optimal
control problem
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Figure 23: Input trajectory for the continuous-stirred tank reactor
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Figure 24: Adjoint variables for the continuous-stirred tank reactor
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min
u(·)

∫ 10

0

x1(t)2 + x2(t)2 + u(t)2dt

subject to{
ẋ1 = x2

ẋ2 = sin(x1) + u

x(0) = x(tk)

−10 ≤ u(t) ≤ 10[
−2
−2

]
≤

[
x1(t)
x2(t)

]
≤

[
2
2

]
∀t ∈ [0, 10]

and apply the �rst control action u(0) for the time window [tk, tk+1]. The measures are collected
from the plant described by the following ODE

ẋ1 = 1.2x2 + 0.1sin(t)
ẋ2 = 0.2sin(x1) + u

with x(0) = [1, 1].

Problem setup

� The Optimal Control Problem is de�ned in the �le testProblem.m in the following way:

% Initial time t0 < tf
problem.time.t0=0;

% Final time. Let tf_min=tf_max if tf is �xed.
problem.time.tf_min=10;

problem.time.tf_max=10;

guess.tf=10;

% Parameters bounds pl ≤ p ≤ pu
problem.parameters.pl=[];

problem.parameters.pu=[];

guess.parameters=[];

% Initial condition x(0) and its bounds
problem.states.x0=[1 1];

problem.states.x0l=problem.states.x0;

problem.states.x0u=problem.states.x0l;

% State bounds xl ≤ x(t) ≤ xu
problem.states.xl=[-2 -2];
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problem.states.xu=[2 2];

% Terminal state bounds x�≤ x(tf ) ≤ xfu
problem.states.xfl=[0 0];

problem.states.xfu=[0 0];

% Guess the state trajectories with [x(0), x(tf )]
guess.states(:,1)=[1 0];

guess.states(:,2)=[1 0];

% Number of control actions N
problem.inputs.N=10;

% Input bounds ul ≤ u(t) ≤ uu
problem.inputs.ul=[-10];

problem.inputs.uu=[10];

% Guess the input sequences with [u(0), u(tf )]
guess.inputs(:,1)=[-2 0];

% Choose the set-points if required
problem.setpoints.states=[];

problem.setpoints.inputs=[];

% Bounds for path constraint function gl ≤ g(x, u, p, t) ≤ gu
problem.constraints.gl=[];

problem.constraints.gu=[];

% Bounds for boundary constraints bl ≤ b(x(t0), x(tf ), u(t0), u(tf ), p, t0, tf ) ≤ bu
problem.constraints.bl=[];

problem.constraints.bu=[];

% Problem data
problem.data=[];

problem.functions={@L,@E,@f,@g,@b};

function stageCost=L(x,xr,u,ur,p,t,data)

x1=x(:,1); x2=x(:,2); u1=u(:,1);
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stageCost = x1.*x1+x2.*x2+u1.*u1;

function boundaryCost=E(x0,xf,u0,uf,p,tf,data)

boundaryCost=0;

function dx = f(x,u,p,t,data)

x1=x(:,1); x2=x(:,2); u=u(:,1);

dx(:,1)=x2;

dx(:,2)=sin(x1)+u;

function c=g(x,u,p,t,data)

c=[];

function bc=b(x0,xf,u0,uf,p,tf,data)

bc=[];

� The solution method and solver settings are set in settings.m . See the �le included in
the directory ../ICLOCS-*.*/examples/SimpleMPC

� The solution of the optimisation problem is computed running the �le mainMPC.m inside
the directory ../ICLOCS-*.*/examples/SimpleMPC
The following lines are executed:

clear all

format compact

[problem,guess]= testProblem; % Fetch the problem de�nition
options= settings; % Get options and solver settings
plant=@testPlant; % Get function handle of plant model

[infoNLP,data]=transcribeOCP(problem,guess,options); % Format for NLP solver
[nt,np,n,m,ng,nb,M,N,ns]=deal(data.sizes{:});

time=[];states=[];inputs=[];

P=20; % Number of MPC iterations
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% � Begin MPC loop �
for i=1:P

disp('Compute Control Action');disp(i);

solution = solveNLP(infoNLP,data); % Solve the NLP

tc=solution.tf/N; % Control horizon

% Apply control
disp('Apply Control')

[x0,tv,xv,uv]=applyControl(tc,solution,plant,data,i);

% Store results
time=[time;tv];

states=[states;xv];

inputs=[inputs;uv];

% Update initial condition
infoNLP.zl(nt+np+1:nt+np+n)=x0;

infoNLP.zu(nt+np+1:nt+np+n)=x0;

data.x0t=x0.';

% Update initial guess
infoNLP.z0=solution.z;

end

% � End MPC loop �

% Plot the solutions
figure(1)

hold on

plot(time,states)

title('States vs. time');

xlabel('Time')

figure(2)

hold on

plot(time,inputs)

title('Inputs vs. Time');

xlabel('Time')

figure(3)

hold on

plot(states(:,1),states(:,2))
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Figure 25: State trajectories for the continuous-time nonlinear Model Predictive Control example

title('Optimal state trajectory');

xlabel('x_1')

ylabel('x_2')

Notice that mainMPC.m calls the following two additional �les:

- testPlant.m: It returns the ODE right hand side of the model describing the plant.

- applyControl.m: It applies the optimal control stored in the variable solution to the
system described in the �le testPlant.m.

The state and control variables solution to this problem using the Optimal Control Toolbox
are shown in Figs. 25, 26 and 27.

4.10 Example 10: Singular Arc problem

Find the control input u ∈ IR over t in [0, tf ] solving the following optimisation problem [7], [5]
(p.57).
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Figure 26: Input trajectory for the Continuous time nonlinear Model Predictive Control example
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Figure 27: Phase plane for the continuous-time nonlinear Model Predictive Control example
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min
u(·),tf

tf

subject to ẋ1 = u
ẋ2 = cos(x1)
ẋ3 = sin(x1)

x(0) = [π
2 , 4, 0]

x3(tf) = 0, x2(tf) = 0

−2 ≤ u(t) ≤ 2 −10
−10
−10

 ≤

 x1(t)
x2(t)
x3(t)

 ≤

 10
10
10

 ∀t ∈ [0, tf ]

1 ≤ tf ≤ 100

Problem setup

� The Optimal Control Problem is de�ned in the �le SingularArc.m in the following way:

% Initial time t0 < tf
problem.time.t0=0;

% Final time. Let tf_min=tf_max if tf is �xed.
problem.time.tf_min=1;

problem.time.tf_max=100;

guess.tf=4;

% Parameters bounds. pl ≤ p ≤ pu
problem.parameters.pl=[];

problem.parameters.pu=[];

guess.parameters=[];

% Initial condition x(t0) and its bounds
problem.states.x0=[pi/2 4 0];

problem.states.x0l=[pi/2 4 0];

problem.states.x0u=[pi/2 4 0];

% State bounds xl ≤ x(t) ≤ xu
problem.states.xl=[-10 -10 -10];

problem.states.xu=[10 10 10];
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% Terminal state bounds x� ≤ x(t) ≤ xfu
problem.states.xfl=[-10 0 0];

problem.states.xfu=[10 0 0];

% Guess the state trajectories with [x(t0), x(tf )]
guess.states(:,1)=[pi/2 pi/2];

guess.states(:,2)=[4 0];

guess.states(:,3)=[0 0];

% Number of control actions N.
% Set problem.inputs.N=0 if N is equal to the number of integration steps.
problem.inputs.N=0;

% Input bounds ul ≤ u(t) ≤ uu
problem.inputs.ul=-2;

problem.inputs.uu=2;

% Guess the input sequences with [u(t0), u(tf )]
guess.inputs(:,1)=[0 0];

% Choose the set-points if required
problem.setpoints.states=[];

problem.setpoints.inputs=[];

% Bounds for path constraint function gl ≤ g(x, u, p, t) ≤ gu
problem.constraints.gl=[];

problem.constraints.gu=[];

% Bounds for boundary constraints bl ≤ b(x(t0), x(tf ), u(t0), u(tf ), p, t0, tf ) ≤ bu
problem.constraints.bl=[];

problem.constraints.bu=[];

% Problem data
problem.data=[];

problem.functions={@L,@E,@f,@g,@b};

function stageCost=L(x,xr,u,ur,p,t,data)

stageCost = 0*t;

function boundaryCost=E(x0,xf,u0,uf,p,tf,data)
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boundaryCost=tf;

function dx = f(x,u,p,t,data)

x1 = x(:,1); u1 = u(:,1);

dx(:,1) = u1;

dx(:,2) = cos(x1);

dx(:,3) = sin(x1);

function c=g(x,u,p,t,data)

c=[];

function bc=b(x0,xf,u0,uf,p,tf,data)

bc=[];

� The solution method and solver settings are set in settings.m . See the �le included in
the directory ../ICLOCS-*.*/examples/SingularArc

� The solution of the optimisation problem is computed running the �le main.m inside the
directory ../ICLOCS-*.*/examples/SingularArc The state, control and adjoint variables
solution to this problem using the Optimal Control Toolbox are shown in Figs. 28, 29 and
30.

4.11 Example 11: Speyer's problem

The Speyer's problem consists in the following periodic optimal control problem of a sailboat
[11]
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Figure 28: State trajectories for the singular arc problem
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Figure 29: Input trajectory for the singular arc problem
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Figure 30: Adjoint variables for the singular arc problem

min
u(·)

∫ 1

0

(x2
1 − x2

2 + x4
2 + 0.00001u2)dt

subject to{
ẋ1 = x2

ẋ2 = u

x1(1) = x1(0), x2(1) = x2(0)

−1000 ≤ u(t) ≤ 1000[
−100
−100

]
≤

[
x1(t)
x2(t)

]
≤

[
100
100

]
∀t ∈ [0, 1]

Problem setup

� The Optimal Control Problem is de�ned in the �le Speyer.m in the following way:

% Initial time t0 < tf
problem.time.t0=0;

% Final time. Let tf_min=tf_max if tf is �xed.
problem.time.tf_min=1;

problem.time.tf_max=1;
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guess.tf=1;

% Parameters bounds pl ≤ p ≤ pu
problem.parameters.pl=[];

problem.parameters.pu=[];

guess.parameters=[];

% Initial condition x(t0) and its bounds
problem.states.x0=[ ];

problem.states.x0l=[-100 -100];

problem.states.x0u=[100 100];

% State bounds. xl ≤ x(t) ≤ xu
problem.states.xl=[-100 -100];

problem.states.xu=[100 100];

% Terminal state bounds x� ≤ x(tf ) ≤ xfu
problem.states.xfl=[-100 -100];

problem.states.xfu=[100 100];

% Guess the state trajectories with [x(t0), x(tf )]
guess.states(:,1)=[1 1];

guess.states(:,2)=[1 1];

% Number of control actions N
% Set problem.inputs.N=0 if N is equal to the number of integration steps.
problem.inputs.N=0;

% Input bounds ul ≤ u(t) ≤ uu
problem.inputs.ul=[-1000];

problem.inputs.uu=[1000];

% Guess the input sequences with [u(t0), u(tf )]
guess.inputs(:,1)=[1 -1];

% Choose the set-points if required
problem.setpoints.states=[];

problem.setpoints.inputs=[];

% Bounds for path constraint function gl ≤ g(x, u, p, t) ≤ gu
problem.constraints.gl=[];

problem.constraints.gu=[];
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% Bounds for boundary constraints bl ≤ b(x(t0), x(tf ), u(t0), u(tf ), p, t0, tf ) ≤ bu
problem.constraints.bl=[0 0];

problem.constraints.bu=[0 0];

% Store the necessary problem parameters used in the functions
problem.data=[];

problem.functions={@L,@E,@f,@g,@b};

function stageCost=L(x,xr,u,ur,p,t,data)

x1=x(:,1); x2=x(:,2); u=u(:,1);

a=1;

stageCost = 0.5*(x1.^2-a.*x2.^2+x2.^4+0.00001*u.^2);

function boundaryCost=E(x0,xf,u0,uf,p,tf,data)

boundaryCost=0;

function dx = f(x,u,p,t,data)

x1=x(:,1); x2=x(:,2); u=u(:,1);

dx(:,1)=x2;

dx(:,2)=u;

function c=g(x,u,p,t,data)

c=[];

function bc=b(x0,xf,u0,uf,p,tf,data)

bc=[x0-xf];

� The solution method and solver settings are set in settings.m . See the �le included in
the directory ../ICLOCS-*.*/examples/Speyersproblem

� The solution of the optimisation problem is computed running the �le main.m inside the di-
rectory ../ICLOCS-*.*/examples/Speyersproblem The state, control and adjoint variables
solution to this problem using the Optimal Control Toolbox are shown in Figs. 31, 32 and
33.
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Figure 31: State trajectories for Speyer's problem
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Figure 32: Input trajectory for Speyer's problem
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Figure 33: Adjoint variables for Speyer's problem

4.12 Example 12: Two-link Robot Arm

Find tf and u(·) over t ∈ [0, tf ] solving the following optimal control problem of a two-link robot
arm ( Section 12.4.2, Example 2 in [10])

min
u(·), tf

tf + 0.01
∫ tf

0

(u2
1(t) + u2

2(t))dt

subject to

ẋ1 =
sin(x3)( 9

4 cos(x3)x2
1) + 2x2

2 + 4
3 (u1 − u2)− 3

2 cos(x3)u2

31
36 + 9

4 sin(x3)2

ẋ2 = −
sin(x3)( 9

4 cos(x3)x2
2) + 7

2x2
1 − 7

3u2 + 3
2 cos(x3)(u1 − u2)

31
36 + 9

4 sin(x3)2
ẋ3 = x2 − x1

ẋ4 = x1

x(0) = [0, 0, 0, 0]
x(tf ) = [0, 0, 0.5, 0.522]

−1 ≤ u(t) ≤ 1
tf ≥ 0.1
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Problem setup

� The Optimal Control Problem is de�ned in the �le TwoLinkRobotArm.m in the following
way:

% Initial time t0 < tf
problem.time.t0=0;

% Final time. Let tf_min=tf_max if tf is �xed.
problem.time.tf_min=0.1;

problem.time.tf_max=inf;

guess.tf=3.1;

% Parameters bounds pl ≤ p ≤ pu
problem.parameters.pl=[];

problem.parameters.pu=[];

guess.parameters=[];

% Initial condition x(t0) and its bounds
problem.states.x0=[0 0 0 0];

problem.states.x0l=[0 0 0 0];

problem.states.x0u=[0 0 0 0];

% State bounds. xl ≤ x(t) ≤ xu
problem.states.xl=[-inf -inf -inf -inf];

problem.states.xu=[inf inf inf inf];

% Terminal state bounds x� ≤ x(t) ≤ xfu
problem.states.xfl=[0 0 0.5 0.522];

problem.states.xfu=[0 0 0.5 0.522];

% Guess the state trajectories with [x(t0), x(tf )]
guess.states(:,1)=[0.1 0];

guess.states(:,2)=[0.1 0];

guess.states(:,3)=[0 0.5];

guess.states(:,4)=[0 0.522];

% Number of control actions N.
% Set problem.inputs.N=0 if N is equal to the number of integration steps.
problem.inputs.N=0;

% Input bounds ul ≤ u(t) ≤ uu
problem.inputs.ul=[-1 -1];
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problem.inputs.uu=[1 1];

% Guess the input sequences with [u(t0), u(tf )]
guess.inputs=[];

% Choose the set-points if required
problem.setpoints.states=[];

problem.setpoints.inputs=[];

% Bounds for path constraint function gl ≤ g(x, u, p, t) ≤ gu
problem.constraints.gl=[];

problem.constraints.gu=[];

% Bounds for boundary constraints bl ≤ b(x(t0), x(tf ), u(t0), u(tf ), p, t0, tf ) ≤ bu
problem.constraints.bl=[];

problem.constraints.bu=[];

% Store the necessary problem parameters used in the functions
problem.data=[];

problem.functions={@L,@E,@f,@g,@b};

function stageCost=L(x,xr,u,ur,p,t,data)

stageCost = 0.01*(u(:,1).*u(:,1)+u(:,2).*u(:,2));

function boundaryCost=E(x0,xf,u0,uf,p,tf,data)

boundaryCost=tf;

function dx = f(x,u,p,t,data)

x1 = x(:,1); x2 = x(:,2); x3 = x(:,3);

u1 = u(:,1); u2 = u(:,2);

dx(:,1) = ( sin(x3).*(9/4*cos(x3).*x1.^2)+2*x2.^2 + 4/3*(u1-u2) ...

- 3/2*cos(x3).*u2 )./ (31/36 + 9/4*sin(x3).^2);

dx(:,2) = -( sin(x3).*(9/4*cos(x3).*x2.^2)+7/2*x1.^2 - 7/3*u2 ...

+ 3/2*cos(x3).*(u1-u2) )./ (31/36 + 9/4*sin(x3).^2);

dx(:,3) = x2-x1;
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Figure 34: State trajectories for the two-link robot arm problem

dx(:,4) = x1;

function c=g(x,u,p,t,data)

c=[];

function bc=b(x0,xf,u0,uf,p,tf,data)

bc=[];

� The solution method and solver settings are set in settings.m . See the �le included in
the directory ../ICLOCS-*.*/examples/TwoLinkRobotArm

� The solution of the optimisation problem is computed running the �le main.m. inside
the directory ../ICLOCS-*.*/examples/TwoLinkRobotArm The state, control and adjoint
variables solution to this problem using the Optimal Control Toolbox are shown in Figs.
34, 35 and 36.
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