
	
	
	
	
	

	
						EE2-PRJ	Brain-Computer	Interface	

							Final	Technical	Report	
	

						2nd	Year	Group	Project	
					Low-Cost	Brain	Computer	Interface	for	Motor-Impaired	People	

						
	 	

Group	8	
Members:		 				Javier	Hernandez	(00943425)	

	 						 				Nicolas	Perez	(00931920)	

	 							 				Aaron	Low	(00920886)	

	 							 				Vinay	Maniam	(00981045)	

	 	 				Jun	Chan	(00861477)	

	 	 				Jorn	Voegtli	(00958215)	

	 	 				Samuel	Zatland	(00818847)	

	 	 	 	

Supervisor:		 				Dr.	Bruno	Clerckx	

Year:		 	 				2nd	Year	

Course:		 				Electrical	&	Electronic	Engineering	

Submission	Date:		13	March	2016 



2	
	

Contents	
Abstract	..........................................................................................................................................................................................	3	

1.	 Introduction	and	Background	...............................................................................................................................................	4	

2.	 Design	Criteria	.......................................................................................................................................................................	4	

3.	 Concept	Designs	Considered	.................................................................................................................................................	4	

3.1.	 Hardware:	Low	Cost	EEG	Equipment	...........................................................................................................................	6	

3.1.1.	 Concept	1:	OpenEEG	...........................................................................................................................................	6	

3.1.2.	 Concept	2:	Emotiv	Epoc	Headset	........................................................................................................................	7	

3.2.	 Software:	Signal	Processing	and	Interface	...................................................................................................................	7	

3.2.1.	 Concept	1:	P300	based	Interface	........................................................................................................................	7	

3.2.2.	 Concept	2:	SSVEP	based	Interface	......................................................................................................................	8	

4.	 Concept	Selection	..................................................................................................................................................................	9	

5.	 Concept	Development	.........................................................................................................................................................	10	

5.1.	 Hardware	Development	.............................................................................................................................................	10	

5.1.1.	 Headset	Structure	.............................................................................................................................................	11	

5.1.2.	 Electrode	Socket	Array	.....................................................................................................................................	11	

5.1.3.	 Casing	for	the	Electronics	and	Boards	Cabling	..................................................................................................	12	

5.2.	 Software	Development:	Signal	Processing	.................................................................................................................	13	

5.2.1.	 Recording	of	the	Training	Session	Scenario	......................................................................................................	13	

5.2.2.	 Training	a	Spatial	Filter	Scenario	......................................................................................................................	14	

5.2.3.	 Training	Classifier	Scenario	...............................................................................................................................	14	

5.2.4.	 Online	Scenario	.................................................................................................................................................	15	

5.3.	 Software	Development:	Interface	..............................................................................................................................	16	

5.3.1.	 Display	design	...................................................................................................................................................	17	

5.3.2.	 Customisability	.................................................................................................................................................	17	

5.3.3.	 OpenVibe	compatibility	....................................................................................................................................	18	

5.3.4.	 Predictive	Text	..................................................................................................................................................	18	

6.	 Testing	the	prototype	..........................................................................................................................................................	19	

6.1.	 Hardware	testing	.......................................................................................................................................................	19	

6.2.	 Software	testing	.........................................................................................................................................................	19	

7.	 Project	Management	...........................................................................................................................................................	21	

7.1.	 Costs	...........................................................................................................................................................................	22	

8.	 Conclusion	and	Future	Work	...............................................................................................................................................	23	

9.	 References	...........................................................................................................................................................................	24	

Appendix	A:	Product	Design	Specification	....................................................................................................................................	26	

Appendix	B:	Minutes	of	Meetings	................................................................................................................................................	31	

Appendix	C:	OpenEEG	Schematics	................................................................................................................................................	35	

Appendix	D:	OpenVibe	Scenarios	.................................................................................................................................................	37	

1.	 Scenario	1:	Signal	Acquisition	........................................................................................................................................	37	

2.	 Scenario	2:	Spatial	Filter	trainer	.....................................................................................................................................	38	

3.	 Scenario	3:	Training	Classifier	........................................................................................................................................	39	

4.	 Scenario	4:	Online	Scenario	...........................................................................................................................................	40	

Appendix	E:	Microcontroller	Code	...............................................................................................................................................	42	

Appendix	F:	Optimal	Electrode	Positioning	for	P300	Detection	...................................................................................................	47	

Appendix	G:	Python	Code	.............................................................................................................................................................	48	



3	
	

	 	 	

		 	 								Abstract	
	

The	aim	of	this	report	is	to	explain	the	method	used	to	implement	a	Brain	Computer	Interface	(BCI)	for	motor	

impaired	patients.	These	patients	have	become	incapable	of	moving	due	to	various	reasons	such	as	a	stroke	or	

paralysis.	 This	 system	 that	 will	 aid	 them	 to	 communicate	 consists	 of	 a	 screen	 with	 a	 user-interface	 that	 will	

display	a	keyboard	with	letters	flashing	periodically.	The	user	will	be	able	to	select	the	letters	by	simply	staring	at	

the	desired	letter	for	a	short	period	of	time.	The	letter	will	then	appear	on	the	screen	and	at	the	same	time,	some	

suggested	words	will	be	displayed.	The	 letter	detection	 is	based	on	a	phenomenon	called	P300	that	consists	of	

detecting	peaks	on	the	electroencephalogram	(EEG)	when	the	subject	receives	an	unexpected	stimulus,	such	as	a	

letter	flashing.	

	

Since	the	main	aim	of	this	project	is	to	determine	if	it	is	possible	to	implement	a	low-cost	BCI	speller,	open-

source	material	was	used	throughout	the	whole	development.	Effectively,	two	prototypes	were	built	for	testing.	

One	of	them	is	a	headset	developed	to	amplify,	filter	and	record	EEG	signals.	The	other	one	is	the	software	for	the	

interface	 and	 signal	 processing	 of	 the	 EEG	 signal.	 Both	 are	 completely	 independent,	 the	 first	 one	 can	 operate	

without	the	second,	and	vice	versa.	

	

The	 headset	 has	 proven	 to	 be	 able	 to	 detect	 and	 amplify	 EEG	 signals	when	 tested	 using	 the	 oscilloscope.	

Nevertheless,	 it	 still	 has	 compatibility	 issues	with	 several	 operating	 systems	and	 thus,	 its	 efficacy	 could	not	 be	

completely	measured.	On	 the	 other	 hand,	 the	 software	 has	 been	 tested	 using	 a	 different	 headset	 available	 at	

Imperial	College.	The	results	were	positive	as	an	accuracy	of	60%	was	achieved	(with	no	word	predictor	or	speller),	

with	a	margin	of	improvement	if	certain	parameters	were	changed	(the	positioning	of	the	electrodes	for	example).	

	

The	 general	 conclusion	 is	 that	 there	 is	 no	 reason	 to	 believe	 that	 a	 full	 low-cost	 BCI	 speller	 is	 not	 feasible.	

There	is	still	testing	and	improvements	to	be	done,	but	the	results	so	far	have	shown	a	high	reliability	at	this	stage.	
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1. Introduction	and	Background	
	

The	 upcoming	 era	 is	 one	 of	 great	 technological	 advances	 that	 will	 change	 life	 as	 it	 is	 known.	 Whilst	

developments	that	will	allow	mankind	to	interact	with	artificial	intelligence	will	be	seen,	it	is	also	expected	that	

the	average	life	expectancy	and	life	quality	will	also	significantly	increase.	Nowadays	however,	although	people	

can	reach	an	older	age	with	 improved	 living	conditions,	certain	medical	diseases	have	not	been	cured	yet.	For	

instance,	neurological	conditions	such	as	multiple	sclerosis	or	Parkinson’s	disease	may	imply	the	partial	or	total	

loss	of	functionality	of	the	body,	and	so	far,	no	solution	to	these	conditions	has	been	discovered.		

	

People	that	suffer	from	such	neurological	diseases	may	often	be	affected	up	to	such	a	point	that	they	suffer	

from	motor	 impairment.	 There	 are	 different	 symptoms	 of	motor	 impairment:	 weakness	 due	 to	 a	 spinal	 cord	

injury,	 fatigue	 in	multiple	sclerosis,	 impaired	sensation	and	movement	after	a	stroke	or	 impaired	balance	from	

Parkinson’s	disease.	 In	 some	cases,	 several	of	 these	 impairments	may	co-exist	 in	a	 single	person,	which	might	

disable	 them	from	walking	or	 talking.	 	Motor	 impairment	 is	quite	prevalent	around	the	globe.	For	example,	 in	

2003,	 approximately	 350,000	 Australians	 experienced	 a	 stroke,	 from	 which	 half	 of	 these	 patients	 could	 not	

recover	properly.	(NeuRA,	2016)	

	

This	 major	 health	 problem	 calls	 for	 a	 solution.	 In	 the	 special	 case	 of	 patients	 with	 a	 total	 loss	 of	 body	

functionality,	 technology	 has	 to	 aid	 their	 communication	 with	 the	 outside	 world.	 Such	 a	 solution	 is	 being	

implemented	using	 a	Brain	Computer	 Interface	 (BCI).	 	 A	BCI	 is	 a	 system	 that	 is	 used	 to	 recognise	brain	 signal	

patterns	and	thus	enable	communication	or	control	without	movement.	This	device	detects	specific	patterns	of	

the	 user’s	 brain	 activity	 that	 reflect	 a	 certain	message	 that	 the	 user	wants	 to	 send,	 such	 as	 spelling.	 (Guger,	

Vaughan	&	Allison,	2014)	These	systems	normally	work	following	five	consecutive	stages:	signal	acquisition,	pre-

processing	or	signal	enhancement,	feature	extraction,	classification	and	then	control	interface.	(Nicolas-Alonso	&	

Gomez-Gil,	 2012)	 One	 of	 the	 ways	 that	 a	 BCI	 can	 work	 is	 via	 the	 flickering	 of	 images	 or	 letters,	 which	 will	

stimulate	the	user’s	response	 in	the	visual	cortex.	These	signals	will	 then	be	recorded	via	electrodes	placed	on	

the	scalp	and	used	to	translate	the	user’s	intentions.	

	

Different	 disciplines	 such	 as	 Medicine	 or	 Biomedical	 Engineering	 have	 been	 investigating	 how	 to	 create	

reliable	BCI	systems,	however	the	current	solutions	are	extremely	expensive,	from	£500	to	£1000	or	even	more.	

(OpenBCI,	2016)	These	high	prices	make	these	products	unaffordable	for	some	patients	as	well	as	the	facilities	

where	patients	are	treated.	For	this	reason,	the	aim	of	this	project	is	to	develop	a	low-cost	BCI	system	that	will	

thus	be	affordable	for	these	patients.	

2. Design	Criteria	
	

Any	 product	 that	 is	 going	 to	 be	 designed	 and	 later	 produced	 needs	 to	 follow	 certain	 specifications	 and	

design	criteria,	mostly	specified	by	the	future	user,	in	order	to	be	as	effective	as	possible.	To	do	this,	the	group	

decided	to	specify	these	criteria	in	the	Product	Design	Specification	(Please	refer	to	Appendix	A).		
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The	specifications	for	an	electronic	device	that	would	be	used	on	a	daily	basis	by	motor	impaired	people	had	

to	address	 the	 social,	economic	and	environmental	 contexts	 in	which	 it	would	be	applied	as	a	product.	 It	was	

therefore	 decided	 that	 the	 most	 important	 design	 criteria	 to	 meet	 were	 the	 following:	 safety,	 performance,	

aesthetics	and	appearance,	reliability,	installation,	product	cost,	packing,	documentation	and	ergonomics.	

	

First	of	all,	certain	safety	measures	have	to	be	taken	into	account.	Firstly,	since	the	product	 is	powered	by	

electricity,	an	electrical	barrier	that	isolates	the	user	and	the	device	needs	to	be	present.	In	addition,	it	would	not	

be	 recommended	 for	 people	who	 suffer	 from	 epilepsy	 since	 its	 continuous	 use	 for	 long	 periods	 of	 time	may	

result	 in	 unpleasant	 side	 effects.	 For	 this	 reason,	 a	 well-documented	 pack	 is	 necessary	 to	 warn	 about	 these	

safety	measures.	These	documents	would	 include	an	 installation	pack,	where	clear	 instructions	on	how	to	use	

and	test	the	device	would	be	included.	This	installation	manual	would	need	to	be	user-friendly,	including	many	

images	and	big	text	so	that	the	utilisation	of	the	device	is	as	simple	as	possible.	

	

Other	 criteria	 that	 have	 to	be	 taken	 into	 account	 are	 reliability	 and	performance,	 since	both	of	 them	are	

closely	linked.	The	reliability	of	the	product	is	crucial,	since	the	whole	aim	of	the	project	is	to	effectively	help	a	

motor	 impaired	person	to	communicate	via	a	keyboard	on	a	computer	screen.	Therefore,	the	output	of	 letters	

that	correspond	to	the	targeted	letters	that	the	user	is	intending	to	print,	would	need	to	be	at	least	90%	accurate	

for	a	 final	product	as	 the	group	 is	aware	that	certain	conditions,	such	as	excessive	noise	or	 fatigue	 in	the	user	

may	cause	errors	when	processing	 the	brain	 signal.	 For	 this	 reason,	with	a	90%	accuracy,	even	 if	one	 letter	 is	

missed	out	of	a	10	letter	word	for	example,	the	assistant	that	will	be	aiding	the	user	should	be	able	to	deduce	the	

intended	letter.	Such	reliability	can	only	be	possible	if	the	performance	of	the	device	is	near	to	optimum.	For	this	

reason,	 the	 project	was	 downscaled	 as	 a	whole	 to	make	 it	manageable.	 The	 original	 idea	 of	 using	 two	 signal	

phenomena	was	reduced	to	just	focusing	on	making	one	of	these	signal-processing	methods	to	work,	therefore	

to	be	as	reliable	as	possible	in	this	first	initial	stage.	In	addition	to	this	and	in	order	to	increase	the	typing	speed	

and	reliability,	a	word	predictor	system	will	also	be	added	to	the	keyboard	(similar	to	word	predictors	in	mobile	

phone	keyboards).	This	is	a	very	powerful	feature	that	has	not	been	exploited	in	BCI	spellers	so	far.	

	

In	terms	of	ergonomics	and	the	aesthetics	and	appearance	of	the	product,	the	group	has	decided	to	modify	

the	 criteria	 in	 this	 area	 from	what	was	presented	 in	 the	 Interim	Report	due	 to	 the	 fact	 that	 a	product	 that	 is	

aesthetically	pleasing	at	first	sight	and	is	comfortable	for	the	user	will	be	a	better	overall	solution.	For	this	reason,	

certain	components	of	the	product	have	been	refined.	For	instance,	the	headset	must	be	lightweight,	thus	plastic	

printing	fibre	is	used	to	make	it.	It	could	also	be	available	in	different	sizes	and	colours	depending	on	the	user’s	

preference	and	head	size.	Moreover,	the	entire	electrical	circuit	will	now	be	enclosed	in	a	tightly	sealed	laser-cut	

box	 that	 could	 be	 personalized	 to	 include	 the	 user’s	 name,	 as	 well	 as	 the	 option	 to	 be	made	 from	 different	

materials	such	as	wood	or	special	plastic	fibre.	This	box	would	be	part	of	our	first	prototype	solution,	as	the	aim	

would	 be	 to	 develop	 a	 final	 product	 that	 incorporates	 all	 the	 electrodes	 and	 circuit	 into	 the	 headset,	 thus	

reducing	space	and	weight.	Despite	that,	this	final	headset	design	would	allow	for	customisability	too.	
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In	 addition,	 the	 user-interface	 has	 now	 been	 developed	 by	 the	 group	 in	 order	 for	 it	 to	 work	 both	 in	

Windows	 and	 Linux	 operating	 systems,	 and	 the	 colours	 that	 were	 being	 used	 have	 changed.	 Now,	 the	

background	colour	is	blue,	which	upon	testing	has	been	determined	to	be	the	least	tiring	for	the	eyes	after	long	

periods	of	time	(Neuroeng,	2012),	and	the	letters	are	now	flashed	in	yellow.	The	software	for	the	user-interface	

has	been	programmed	in	a	way	that	certain	features,	such	as	letter	size	or	colour,	could	be	easily	modified	by	the	

user.	

	

Lastly,	one	of	the	main	objectives	of	the	project	 is	reducing	the	cost	of	the	entire	BCI.	The	current	market	

options	oscillate	around	a	price	of	£500	for	the	most	basic	options	and	can	rise	up	to	£1000	(OpenBCI,	2016).	For	

this	 reason,	 the	 designing	 of	 the	 whole	 device	 has	 to	 revolve	 around	 the	 idea	 that	 the	 total	 cost	 has	 to	 be	

minimal	so	that	many	facilities	that	take	care	of	motor-impaired	patients	can	buy	the	product.	The	total	price	is	

therefore	estimated	to	be	around	£250	(OpenEEG,	2015),	which	is	the	budget	that	was	allocated	to	the	group.	

The	total	price	would	also	include	packing,	which	would	be	a	tightly	sealed	box	with	fitted	Styrofoam	in	order	to	

prevent	dust	from	corrupting	the	electronic	circuit	or	damaging	the	headset	with	the	placed	electrodes.	

3. Concept	Designs	Considered	

For	the	design	two	different	modules	need	to	be	considered:	the	hardware	equipment	to	record	EEG	signals	

and	the	software	to	process	the	signals	and	interface	with	the	user.	

3.1. Hardware:	Low	Cost	EEG	Equipment	

3.1.1. Concept	1:	OpenEEG	

OpenEEG	is	a	fully	open	project	developed	in	2003	for	EEG	recording.	It	allows	the	construction	of	a	headset	

with	 up	 to	 6	 differential	 channels	 (i.e.	 up	 to	 12	 electrodes,	 two	 per	 channel).	 Differential	 channels	 provide	 a	

higher	Signal-to-Noise	Ratio	(SNR)	and	spatial	resolution	than	the	conventional	channels	(Sheng-Feng	Yen	et	al.	

2009).	 In	addition,	the	electrodes	may	be	placed	anywhere	on	the	scalp	and	thus	may	be	placed	wherever	the	

signal	 is	better	 for	 the	product’s	purposes.	 Its	cost	varies	depending	on	the	type	of	electrodes	chosen	and	the	

number	 of	 desired	 channels.	 For	 example,	 for	 a	 4-channel	 device	 the	 cost	would	 be	 around	 £250	 (OpenEEG,	

2015).	 On	 the	 other	 hand,	 OpenEEG	 is	 a	 project	 developed	 more	 than	 10	 years	 ago	 and	 although	 it	 has	 a	

moderately	active	community,	it	does	not	have	any	costumer	or	User	Support	Service	and	thus	in	case	of	running	

into	unexpected	problems,	a	solution	might	not	be	easily	found.	

	

Apart	from	that,	this	design	also	needs	a	headset	structure	design.	This	headset	needs	to	be	able	to	reach	

the	targeted	head	positions.	The	headset	would	need	to	be	light	and	easy	to	fit.	This	can	be	done	using	any	of	the	

3D	printed	headsets	shown	on	the	picture	below.	A	cabling	system	would	also	be	needed	along	with	an	electrode	

socket	array	and	a	box	containing	all	the	electronics,	all	of	which	are	fully	described	in	the	Concept	Development	

section.		
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This	 concept	 should	 be	 only	 considered	 for	 prototyping	 since	 a	 final	 product	 would	 require	 a	 complete	

update	of	the	electronics	(designed	in	2003)	in	order	to	make	it	cheaper	and	smaller.	

	

		 	
									Figure	1:	The	group’s	self-made	headset	using	OpenEEG	active	electrodes	

3.1.2. Concept	2:	Emotiv	Epoc	Headset	

Emotiv	 has	 developed	 an	 EEG	 headset	 that	 allows	 signal	 monitoring	 using	 up	 to	 14	 channels.	 However,	

Emotiv	 Epoc’s	 electrodes	 are	 fixed	 and	 thus	 they	 cannot	 be	 placed	 in	 the	 optimal	 head	 locations	 for	 P300	

detection	 (more	 information	 about	 P300	 in	 section	 3.2).	 Besides,	 Emotiv	 Epoc	 channels	 are	 conventional	 EEG	

channels	 (i.e.	 one	 electrode	 per	 channel),	 not	 differential	which	means	 that	 the	 acquired	 signal	 is	 potentially	

worse	than	that	achieved	using	a	differential	headset.	 (Sheng-Feng	Yen	et	al.	2009)	Thus,	using	more	channels	

would	be	advised	 in	order	 to	get	a	better	 signal.	 In	addition,	 the	price	of	 this	product	 is	£505	 (Emotiv,	2015),	

which	is	above	the	proposed	total	budget	for	the	product.	On	the	other	hand,	Emotiv	Epoc	is	fully	documented	

and	 it	 has	 a	 Customer	 Service	 currently	 running	 which	 means	 it	 would	 be	 easier	 to	 deal	 with	 unexpected	

problems	concerning	the	hardware.	 It	 is	also	a	product	with	a	 large	community	behind	 it	 that	has	proved	that	

this	device	works	in	a	wide	range	of	applications.	

	
							Figure	2:	Emotiv	Epoc	Headset	at	Imperial	College	

3.2. Software:	Signal	Processing	and	Interface	

3.2.1. Concept	1:	P300	based	Interface	

The	 P300	 technique	 involves	 the	 use	 of	 a	matrix	 of	 letters	 and	 characters	 on	 the	 screen,	 with	 rows	 and	

columns	being	flashed	 in	a	seemingly	random	manner.	As	stated	on	Neuroeng	(2012),	when	a	symbol	that	the	
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user	is	focusing	on	flashes,	the	unexpected	visual	stimulus	generates	an	electrophysiological	response	(EVP).	This	

EVP	is	represented	by	a	peak	in	electric	potential	of	the	brain	waves	over	the	visual	cortex,	roughly	300ms	after	it	

is	observed,	hence	the	name	P300.	After	several	sequences	of	flashes,	each	symbol	in	the	matrix	would	have	a	

distinct	and	distinguishable	array	of	brain	wave	peaks	 that	can	 then	be	used	 to	 tell	 the	users	what	 letter	 they	

were	 trying	 to	 spell.	 Since	 this	 technique	 relies	 only	on	 coordinating	 the	 flash	 and	 the	 response	 to	 that	 flash,	

there	is	potentially	no	limit	to	the	number	of	symbols	that	can	be	detected.	By	using	this	technique,	a	bit	rate	of	

up	to	20-25	bits/min	can	be	achieved.	(Nicolas-Alonso	&	Gomez-Gil,	2012)	Nevertheless,	the	group	design	would	

combine	this	P300	technique	with	a	speller	and	word	predictor	that	will	significantly	improve	the	bit	rate.	

	

User	training	requires	very	little	skill,	and	takes	under	20	minutes.	Moreover,	by	varying	flashing	frequency	

and	 number	 of	 flashes	 per	 decision,	 the	 time	 taken	 to	 spell	 one	 letter	 lies	 in	 the	 range	 of	 10<t<50	 seconds.	

Combined	with	the	predictive	text	algorithm,	the	average	time	taken	to	spell	a	word	can	be	configured	to	be	as	

little	as	1	minute.	

	

The	interface	itself	would	be	an	on-screen	keyboard	which	will	randomly	flash	letters.	The	user	would	have	

to	focus	on	looking	at	a	particular	letter	in	order	to	type	it	on	the	screen.	After	a	few	letters	have	been	entered,	

three	predicted	words	would	appear	on	the	matrix.	

	
				Figure	3:	P300	Interface,	using	Pygame	

3.2.2. Concept	2:	Steady	State	VEP	based	Interface	

Visually	evoked	potentials	(VEPs)	follow	a	different	neurophysiological	phenomenon	to	P300.	VEPs	are	brain	

wave	 cadences	 in	 the	 visual	 cortex,	 parameterised	 by	 frequency,	 morphology	 and	 field.	 (Nicolas-Alonso	 &	

Gomez-Gil,	2012)	For	this	BCI	Speller,	only	frequency	will	be	varied.	Whenever	the	user	is	stimulated	by	a	flashing	

image	at	a	certain	frequency	(between	8	and	20	Hz)	a	peak	on	the	power	spectral	density	of	the	EEG	signal,	read	

on	the	visual	cortex,	appears.		

	

In	contrast,	the	time	taken	to	make	a	decision	in	SSVEP	is	on	average	faster	than	P300,	falling	in	the	range	of	

10	to	20	seconds	and	provides	up	to	60-100	bits/min.	(Nicolas-Alonso	&	Gomez-Gil,	2012)	The	downside	to	this	

strategy	 is	 that	 none	 of	 the	 flashing	 frequencies	 can	 be	 an	 integer	 multiple	 of	 the	 other	 (due	 to	 harmonics	

interference),	and	also	needs	to	be	a	factor	of	60	(computer	screen	refresh	rate).	In	addition,	these	frequencies	
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must	be	greater	 than	6Hz	or	 the	brainwave	will	be	 indistinguishable	 from	regular	brain	activity.	This	 limits	 the	

number	of	options	to	12,	15	and	20Hz.		

	

The	 interface	 will	 implement	 this	 procedure	 using	 three	 flashing	 boxes	 on	 a	 screen,	 each	 flashing	 at	 a	

different	 frequency.	 When	 the	 user	 focuses	 on	 a	 flashing	 box,	 a	 signal	 is	 observed	 in	 the	 visual	 cortex,	 the	

frequency	of	which	corresponds	to	that	of	the	flashing	box.	To	this	end,	it	is	a	simple	matter	to	use	a	band-pass	

filter	and	determine	which	box	the	user	is	focusing	on.	

	
Figure	4:	Four	screen	captures	of	the	SSVEP	based	Interface	running	when	letter	A	is	being	targeted.		

4. Concept	Selection	

The	 concept	 selection	 method	 was	 done	 with	 a	 weighting	 and	 rating	 matrix.	 In	 this	 matrix,	 the	 most	

important	features	to	be	considered	are	listed,	along	with	a	weighting	from	1-10	on	each.	The	different	criteria	

will	 be	 scored	 in	 this	 range	 depending	 on	 their	 importance	 for	 the	 overall	 design.	 In	 the	 end,	 there	will	 be	 a	

weighted	 total	 for	each	concept,	and	 thus	 the	concept	with	 the	most	points	will	be	 the	preferred	choice.	This	

method	is	commonly	used	for	assessing	the	relative	merits	of	a	range	of	options.	In	the	group’s	case,	there	will	

be	 two	of	 these	matrices,	one	 for	hardware	and	one	 for	 signal-acquiring	 software.	The	matrices	 shown	below	

illustrate	how	the	selection	process	was	performed	using	this	method.	

				 	
							Table	1:	Scoring	and	Weighting	Matrix	for	Hardware	



10	
	

											 	
												Table	2:	Scoring	and	Weighting	Matrix	for	Software	

As	a	result	of	the	matrix	selection,	OpenEEG	will	be	used	for	the	final	prototype.	However,	since	the	group	

was	 given	 access	 to	 Emotiv	 Epoc	 at	 Imperial	 College,	 it	 will	 be	 used	 for	 software	 testing	 purposes	 while	 the	

OpenEEG	headset	is	being	built.	With	respect	to	the	headset	structure	it	was	decided	that	the	WalkEEG	Headset	

Structure	(Thingiverse,	2016)	would	be	used	since	it	is	easier	to	customise	and	it	is	fully	open	source.	

	

As	 for	 software,	according	 to	 the	matrix	 selection,	 the	P300-based	 interface	will	be	 implemented.	Despite	

the	fact	that	SSVEP	detection	is	faster	than	P300,	 in	this	particular	application	there	is	a	trade-off	between	the	

typing	speed	and	the	number	of	letters	that	can	be	used.	For	that	reason,	the	P300	system	is	faster	in	the	end.	

Thus,	a	P300-based	interface	will	be	used.	However,	there	is	the	possibility	of	implementing	a	hybrid	system	that	

uses	 both,	 P300	 for	 the	 letter	 and	 SSVEP	 for	 predicted	words	while	 typing.	 This	way	 the	 typing	 speed	would	

significantly	increase.		This	was	the	original	idea	of	the	project,	but	it	had	to	be	removed	for	overall	feasibility.		

5. Concept	Development	

5.1. Hardware	Development	

As	 stated	 in	 the	 Concept	Design	 section,	 the	 aim	 is	 to	 build	 a	 4-channel	 EEG	Headset	 from	 the	OpenEEG	

project.	This	headset	will	include	the	following	parts,	some	of	which	can	be	acquired	and	some	that	have	to	be	

designed	by	the	group:	

Developed	by	the	group:	

• The	cap	or	headset	structure	to	place	the	electrodes	

• Electrode	socket	array	

• Low-noise	cabling	connecting	each	part	

• Casing	containing	all	the	electronics	and	power	supply	

Acquired	from	electronics	supplier	Olimex:	

• Two	EEG	Olimex	Amplifier	Boards	

• One	EEG	Olimex	Digital	Board	

• 6	Active	Olimex	Electrodes	
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A	computer	is	also	required	to	process	the	signal	and	interface	with	the	user.	An	AVR	programmer	is	also	

needed	to	program	the	ATMega-8	microcontroller	on	the	digital	board.	(Refer	to	Appendix	E	for	the	whole	code)	

5.1.1. Headset	Structure	

As	stated	before,	the	WalkEEG	Headset	structure	will	be	used.	It	can	be	printed	at	the	Imperial	College	3D	

printing	facilities.	Two	different	colours	were	chosen	in	order	to	make	it	 look	more	appealing.	The	idea	behind	

this	is	to	allow	the	users	to	choose	their	preferred	colours	for	the	headset.	The	electrodes	are	attached	following	

the	most	sensitive	places	on	the	scalp	in	order	to	detect	P300	signals	(Please	refer	to	Appendix	F	for	an	image	of	

the	positioning	of	electrodes	on	the	scalp).	

														 														 	
										Figure	5:	Differential	electrode	positioning	in	the	headset	for	optimum	P300	detection		

5.1.2. Electrode	Socket	Array	

This	 part	 of	 the	 design	 consists	 on	 developing	 an	 effective	 way	 of	 connecting	 the	 3.5mm	 socket	 of	 the	

electrodes	to	the	board.	

																			 												 	
							Figure	6:	3.5	mm	electrode	socket	array,	which	is	the	input	to	the	board	

According	to	the	electrode	supplier,	Olimex,	each	electrode	must	be	connected	in	the	following	way:	

	

	 			
									Figure	7:	Schematic	of	Channel	1	Differential	Electrodes	inputs	𝐶ℎ1 +  𝑎𝑛𝑑 𝐶ℎ1 −	
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This	means	that	two	of	the	inputs	of	the	electrode	are	just	for	powering	the	device,	and	only	the	third	one	

carries	 the	 signal.	 The	 signal	 is	 very	 prone	 to	 noise	 since	 it	 is	 directly	 taken	 from	 the	 scalp	 and	 moderately	

amplified	by	the	electrode	circuitry.	This	means	that	the	cable	to	be	used	to	connect	the	signal	input	must	be	as	

short	and	close	to	the	board	as	possible.	For	𝑉𝑐𝑐	and 𝐺𝑛𝑑	connection	this	is	not	so	relevant	since	any	noise	on	

the	power	 inputs	will	 be	 present	 on	both	differential	 electrodes.	 The	 final	 signal	 for	 a	 channel	 is	 obtained	by	

subtracting	the	signal	present	on	each	electrode,	thus	the	noise	due	to	the	power	supply	will	cancel.		

	

The	100Ω	resistors	and	the	𝑉𝑐𝑐	and 𝐺𝑛𝑑	power	rails	will	be	set	on	a	breadboard	in	between	each	amplifier	

board.	Despite	the	fact	that	a	small	noise	fluctuation	on	the	power	rail	is	not	important	in	terms	of	the	acquired	

signal,	 a	 copper	 plate	will	 be	 used	below	 the	breadboard	 to	 connect	 the	𝐺𝑛𝑑	connection	 since	 the	 voltage	 at	

which	the	electrodes	operate	must	be	kept	constant.	Finally,	the	electrode	socket	array	is	set	as	shown:	

	
									Figure	8:	Electrode	socket	array	

This	design	makes	 sure	 that	 the	 sockets	are	as	 close	 to	 the	EEG	Amplifier	Boards	as	possible.	 The	3.5mm	

socket	can	be	glued	to	a	wood	or	plastic	shaft	using	a	glue	gun.	The	socket	can	be	glued	to	the	shaft	since	the	

glue	is	non-conductive.	

5.1.3. Casing	for	the	Electronics	and	Boards	Cabling	

A	simple	box	can	be	used	to	keep	all	the	electronics	of	the	circuit.	This	box	can	be	built	by	using	the	 laser	

cutting	 facilities	 at	 Imperial	 College.	 It	 is	 imperative	 that	 the	 box	 is	 as	 small	 as	 possible,	 and	 hides	 all	 the	

electronic	components	except	for	the	electrodes,	the	power	supply	and	the	USB	cable.	The	box	can	be	made	out	

of	wood	or	plastic	and	the	group’s	logo	will	be	engraved	on	the	cover,	as	well	as	labels	for	the	electrode	inputs,	

power	supply	and	USB	cable	to	facilitate	ease	of	setup.	

	

In	order	to	further	compact	this	design,	the	digital	board	will	be	placed	above	the	breadboard	using	a	shelf.	

There	will	be	a	small	aperture	in	the	front	where	the	electrode	socket	array	will	be	visible	to	plug	the	electrodes	

as	well	as	a	small	aperture	 in	the	back	for	the	power	supply	and	USB	cable.	The	boards	will	be	secured	to	the	

bottom	of	the	board	and	the	shelf	by	using	4	screws	and	nuts	at	the	corner	of	each	board.	The	breadboard	can	

be	 simply	 glued	 to	 the	 bottom	 of	 the	 box.	 Finally,	 a	 34-pin	 ribbon	 cable	 will	 connect	 the	 boards	 and	 the	

breadboard,	and	a	9V	battery	will	be	used	as	the	power	supply.	
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	 	 	 				Figure	9:	The	group’s	box	for	the	casing	of	all	the	electronic	circuit	 	

5.2. Software	Development:	Signal	Processing	

Once	 the	 signal	has	been	acquired	by	 the	EEG	hardware,	 it	 needs	 to	be	processed	 in	order	 to	distinguish	

when	and	what	the	user	is	trying	to	type.	In	order	to	do	this,	P300	evoked	potentials	will	be	used.	P300	evoked	

potentials	 are	 positive	 peaks	 in	 the	 EEG	 recorded	 signal	 due	 to	 infrequent	 or	 unexpected	 auditory	 or	 visual	

stimuli,	 which	 appear	 300ms	 after	 that	 stimulus	 has	 taken	 place.	 (Nicolas-Alonso	 &	 Gomez-Gil,	 2012)	 In	 this	

particular	 case	 these	 stimuli	 will	 be	 the	 letters	 randomly	 flashing	 on	 the	 on-screen	 keyboard.	Whenever	 the	

letter	being	targeted	by	the	user	is	flashed	a	peak	will	appear	on	the	EEG	signal	approximately	300ms	after	the	

flashing.	

	

In	order	 to	be	able	 to	detect	 these	peaks	 it	 is	necessary	 to	distinguish	 them	 from	random	noise.	 For	 that	

reason,	 a	 training	 session	 would	 be	 required	 before	 using	 this	 equipment	 on	 its	 intended	 regular	 use.	 The	

training	consists	of	the	following	four	steps	before	the	online	use	is	ready.	These	steps	will	be	called	Scenarios:	

	

I. Scenario	1:	Recording	of	the	training	session	

II. Scenario	2:	Training	a	spatial	filter	(using	the	signal	recorded	on	Scenario	1)	

III. Scenario	3:	Training	a	classifier	(using	the	signal	recorded	on	Scenario	1)	

IV. Scenario	4:	Regular	online	use	

	

This	 whole	 process	 can	 be	 done	 using	 the	OpenVibe	 Designer	 software	 (OpenVibe,	 2015)	which	 includes	

examples	 on	 how	 to	 perform	 the	 previous	 steps	 and	 has	 a	 user-friendly	 box-based	 user	 interface	 (similar	 to	

Simulink	and	Labview)	as	well	as	allowing	the	use	of	Python	scripts	(more	information	on	section	5.3).	The	EEG	

signal	in	OpenVibe	is	acquired	through	an	Acquisition	Client	that	allows	the	use	of	OpenEEG	hardware	as	well	as	

Emotiv	Epoc.	All	these	scenarios	can	be	found	in	Appendix	D.	

	

5.2.1. Recording	of	the	Training	Session	Scenario	

This	scenario	will	do	the	following:	

	 	 -	Play	the	On-screen	keyboard	interface	
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	 	 -	Display	a	set	of	Target	Letters	that	must	be	looked	at	by	the	user		

	 	 -	Record	when	the	Randomly	Flashed	Letters	flash.	

-	Record	the	raw	EEG	signal	

A	full	picture	with	explanations	of	the	program	can	be	found	in	Appendix	D.	

5.2.2. Training	a	Spatial	Filter	Scenario	

This	 scenario	 will	 take	 the	 signal	 previously	 recorded	 and	 the	 sets	 of	 Flashed	 and	 Target	 Letters.	 This	

scenario	can	be	run	without	any	user	intervention.	The	raw	EEG	signal	will	be	filtered	through	a	4th	order	pass-

band	Butterworth	 filter	with	 cut-off	 frequencies	of	1	and	20	Hz,	which	 is	 the	band	of	 the	most	 relevant	brain	

waves	(delta	(1-4	Hz),	theta	(4-7	Hz),	alpha	(8-12),	beta	(12-20).	(Nicolas-Alonso	&	Gomez-Gil,	2012)		

	

After	 this,	 the	 filtered	 signal	 will	 be	 epoched	 (divided	 into	 time	 windows).	 The	 epoching	 will	 trigger	

whenever	a	target	letter	is	flashed.	The	epoch	duration	will	last	0.6s	since	the	P300	spike	occurs	approximately	

300ms	after	the	flashing,	therefore	a	wider	window	of	time	is	taken	in	case	it	triggers	before	or	after.		

								 	
Figure	10:	Two	EEG	signals	on	channels	F7	and	F8.	Above	the	EEG	signals	and	below	the	epoched	signal.	At	the	

red	line	a	Targeted	Letter	was	flashed	and	thus,	a	time	window	of	0.6s	of	the	EEG	signals	above	is	passed.	

The	purpose	of	this	is	to	compare	which	channels	react	more	to	the	flashing,	so	they	can	be	used	as	signal	

references,	which	react	less,	so	it	can	be	used	as	noise	references.	This	is	done	by	generating	a	number	of	output	

channels	from	the	input	channel,	each	output	channel	being	a	linear	combination	of	the	input	channels,	so	that	

the	channels	with	a	greater	Signal	 to	Noise	Ratio	are	boosted	while	the	ones	with	a	 lower	SNR	are	weakened.	

The	number	of	outputs	can	vary,	however,	after	testing	a	range	of	1	to	12	output	channels	from	12	inputs,	it	was	

found	that	the	best	results	were	achieved	when	using	3	to	5	outputs	(refer	to	section	6.2:	Testing	the	software	

for	more	information).	

	
						Figure	11:		Results	of	a	user	trying	to	spell	PEARS	without	the	filter	(left)	and	with	the	filter	(right)	

5.2.3. Training	Classifier	Scenario	

This	scenario	will	take	the	signal	recorded	and	filtered	through	the	Butterworth	filter	described	above	and	

through	a	Spatial	Filter	using	the	configuration	trained	in	the	previous	scenario.	This	configuration	is	basically	the	

number	of	output	and	input	channels	and	the	coefficients	of	the	linear	combination	of	channels	described	above.		
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This	signal	then	follows	the	next	process:	

	

• If	there	is	a	match	between	the	Target	Letter	and	the	Flashed	Letter	an	epoch	of	0.6s	is	triggered,	its	

average	value	is	calculated	and	then	it	is	stored	in	a	vector	(left	branch	of	figure	12).	

• If	there	is	no	match	between	the	Target	Letter	and	the	Flashed	Letter	the	same	process	is	followed	but	

it	is	stored	in	a	different	vector.	

	

	

	

	

	

	

	

	

	 	

	 	 	 	 	

	

	

			

	

	 	 	 	 	

	 	 	 	

	 	 	

After	reading	the	whole	file,	there	will	be	2	vectors,	one	with	the	average	values	of	a	match	(i.e.	the	signal	

received	 when	 the	 user	 was	 looking	 at	 a	 letter	 being	 flashed)	 and	 the	 values	 of	 a	 mismatch	 (i.e.	 the	 signal	

received	when	the	user	was	looking	at	a	letter	not	being	flashed).	Then,	these	two	vectors	are	taken	and	a	Linear	

Discriminant	 Analysis	 (LDA)	 is	 performed	 in	 order	 to	 recognise	 a	 pattern	 between	matched	 and	mismatched	

letters.	This	is	done	in	the	Classifier	trainer	box.		

	

The	 result	 of	 this	 is	 a	 file	 that	will	 be	 used	 in	 the	On-line	 Scenario	 to	 tell	whether	 and	 input	𝑥	(an	 epoch	

average	of	the	signal)	belongs	to	the	match	or	mismatch	class.	Although	the	LDA	is	processed	by	OpenVibe,	it	is	

worth	 pointing	 out	 that	 this	 is	 done	 by	 doing	 the	 dot	 product	 between	 the	 vector	𝑥	and	 a	 vector	𝑤	which	 is	

defined	as 𝑤 = !!!!!
∑

,	with	𝜇! 𝑎𝑛𝑑 𝜇!	being	the	mean	of	each	class	and	∑	being	the	covariance	matrix.	If	this	

dot	product	is	greater	than	a	threshold,	then	𝑥 belongs	to	the	first	class.	(Wikipedia,	2016)	

5.2.4. Online	Scenario	

This	scenario	is	the	one	to	be	used	on	a	regular	basis	once	the	training	is	finished.	Its	process	is	similar	to	the	

previous	one.	The	signal	passes	through	the	Butterworth	and	Spatial	Filter.	Then,	an	epoch	is	triggered	each	time	

			Figure	12:	Training	Classifier	Scenario	
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a	row	or	column	of	the	keyboard	flashes.	After	this,	the	average	of	the	epoch	is	taken	and	then	it	is	passed	as	a	

vector	𝑥	to	a	Classifier	Processor	 that	will	 use	 the	 information	 from	 the	previous	 scenario	 to	 compute	 the	dot	

product	 described	 above	 (called	 Hyperplane	 Distance).	 Finally,	 a	Voting	 Classifier	 box	 decides	 if	 the	 distance	

received	is	above	or	below	the	threshold.	It	waits	a	number	of	𝑛	flashes	to	decide	which	one	of	them	was	more	

likely	 to	be	a	match	 (the	one	with	 the	highest	Hyperplane	Distance).	Once	a	match	 is	decided	 it	 is	 sent	 to	 the	

Python	UI	box	that	will	display	the	decided	letter.		

	

Since	 there	 are	 6	 rows	 and	 6	 columns,	 12	 branches	 are	 needed	 in	 order	 to	 do	 the	 epoch-average-

classification	 process,	 since	 each	 row	 and	 column	 flashes	 independently.	 The	 number	𝑛	can	 be	 changed.	 The	

larger	it	is,	the	most	accurate	the	result	will	be,	but	the	longer	it	will	take	to	get	the	result.	The	time	that	the	user	

has	 to	wait	 before	 getting	 a	 result	 is 𝑇 = 2𝑡𝑓 · 𝑛	,	where	𝑡! 	is	 the	 time	 between	 two	 flashes.	 The	 factor	 2	 is	

present	 because	 two	 coordinates	 (row	 and	 column)	 are	 needed	 in	 order	 to	 get	 a	 letter	 (rows	 and	 columns	

flashing	will	always	alternate).		

	

	

5.3. Software	Development:	Interface	

The	P300	user	interface	is	an	on-screen	keyboard	that	will	allow	users	to	choose	what	to	type	just	by	looking	

at	 the	characters	displayed.	When	 running,	 row	and	column	segments	on	 the	keyboard	will	 flash	 randomly	 to	

stimulate	signals	from	the	user’s	brain	that	can	be	detected	via	the	headset	and	then	send	to	be	processed.	Since	

the	 P300	 interface	 developed	 by	 OpenVibe	 provided	 limited	 options	 for	 customisation,	 the	 group	 decided	 to	

design	its	own	user	interface	for	the	P300	speller.	Moreover,	additional	functionalities	were	added,	including	text	

prediction	and	features	to	make	the	interface	double	as	a	text	editor.	

	

The	 programming	 language	 chosen	 to	 develop	 the	 interface	was	 Python,	 as	 it	 is	 a	 robust,	 cross-platform	

programming	 language	 that	 is	 compatible	with	OpenVibe.	Two	versions	of	 the	user	 interface	were	developed.	

											Figure	13:	Row	detection	branch	of	the	Online	Scenario	
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The	first	version	was	developed	using	Pygame,	a	multimedia	library	for	Python.	As	the	hardware	was	still	being	

developed,	another	version	of	 the	software	that	was	compatible	with	the	Emotiv	Epoc	was	needed	(as	Emotiv	

was	used	 for	 testing).	 From	 this,	 a	 second	version	using	Pyglet	was	developed,	another	multimedia	 library	 for	

Python.	All	the	code	can	be	found	in	Appendix	G.	

5.3.1. Display	design	

												 					

						Figure	14:	The	second	version	of	the	user-interface	using	Pyglet.	The	first	version	was	shown	in	section	3.2.1		

	

The	 general	 interface	 design	 includes	 a	 user	 input	 display	 on	 top,	 and	 a	 keyboard	 display	 at	 the	 bottom.	

After	 some	 research	 (Neuroeng,	 2012)	 and	 experimenting,	 the	 group	 realised	 that	 using	 highlights	 for	 flashes	

was	not	as	effective	as	enlarging	 the	characters	 in	yellow.	A	blue	background	also	gave	a	better	 response	and	

thus	 was	 preferred	 over	 a	 black	 one.	 The	 group	 also	 decided	 to	 use	 P300	 for	 the	 predictive	 text.	 This	 was	

because	the	original	idea	was	to	use	the	SSVEP	signal	to	perform	this	operation	of	choosing	the	predicted	word.	

However,	due	to	time	constraints	of	the	project,	SSVEP	was	discarded	and	therefore	the	predictive	text	choice	

was	developed	within	the	P300	matrix.	

5.3.2. Customisability	

	
Figure	15:		Screenshot	of	Pyglet	program	where	the	parameters	of	the	user-interface	can	be	customised	
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In	terms	of	customisability,	there	were	a	few	useful	parameters	that	needed	to	be	varied:	background	colour,	

flashing	 colours,	 flashing	 frequency,	 text	 sizes,	 and	highlight	dimensions.	 The	option	of	using	highlights	or	not	

was	 added	 as	 well.	 With	 such	 a	 flexible	 way	 of	 changing	 parameters,	 it	 is	 easy	 to	 experiment	 with	 various	

different	display	styles	to	find	out	which	scheme	works	best	and	gives	the	most	accurate	and	reliable	results.	In	

the	future,	a	UI	will	be	created	in	a	way	that	users	can	modify	these	settings	without	needing	to	refer	to	the	code.	

5.3.3. OpenVibe	compatibility	

	
Figure	16:	Program	flowchart	describes	connection	between	Pyglet	UI	and	OpenVibe	

OpenVibe	supports	the	addition	of	Python	scripts	into	its	program	flow,	such	that	the	script	is	run	within	the	

scenario	 that	 the	group	 set	up.	By	 instantiating	 the	provided	OVBox	 class	 in	 the	 script,	 the	group	was	able	 to	

access	attributes	and	methods	of	that	class,	which	provide	ways	to	handle	input	and	output	between	the	Python	

user	interface	and	the	OpenVibe	stimulation	streams.	However,	the	current	architecture	of	OpenVibe	does	not	

fully	 support	 all	 Python	 libraries,	 which	 has	 placed	 constraints	 on	 the	 ease	 of	 development	 within	 the	

environment.		

	

A	 further	 complication	 that	 was	 faced	 while	 developing	 the	 user	 interface	 for	 OpenVibe	 was	 real	 time	

performance.	The	group’s	OpenVibe	scenario	depends	on	tight	timing	requirements	to	function	correctly,	which	

means	that	the	Python	script	had	to	be	fast	enough	to	not	slow	down	the	real-time	performance	of	OpenVibe.	

Despite	these	constraints,	the	group	was	able	to	integrate	its	own	software	into	OpenVibe	to	obtain	the	desired	

functionality.	

5.3.4. Predictive	Text	

To	 implement	 the	predictive	 text,	 an	algorithm	 found	 in	Norvig	 (2013)	was	used	 to	provide	 the	user	with	

three	predictive	 text	 choices.	The	algorithm	works	by	 first	 taking	 in	a	 large	 text	 file	 containing	about	a	million	

English	words.	These	words	are	used	as	data	to	train	a	probability	model	i.e.	count	the	number	of	times	the	word	

occurs	 in	 the	 file.	Words	not	provided	 in	the	text	 file	are	accounted	by	setting	all	unseen	words	to	seen	once.	

Then,	all	possible	corrections	of	a	given	word	are	enumerated.	With	this,	the	set	of	words	can	be	compared	with	
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the	input	word	by	the	edit	distance	(or	the	number	of	edits	required	to	transform	the	word	into	the	other).	 In	

this	algorithm,	it	is	assumed	that	the	lower	the	edit	distance	the	better.	Once	the	set	of	words	with	the	shortest	

edit	 distance	 to	 the	 word	 is	 acquired,	 the	 word	 with	 the	 highest	 occurrence,	 based	 on	 the	 training	 done	

previously,	 is	chosen.	This	predictive	 text	 together	with	a	BCI	 speller	 is	 completely	 innovative	and	 it	has	not	

been	seen	in	any	speller	found	so	far.	

6. Testing	the	prototype	

6.1. Hardware	testing	

Tests:	Once	the	hardware	had	been	built	the	following	tests	were	performed:	

• At	the	signal	output	of	the	Amplifier	Boards	(Connection	SJ201	and	SJ204	in	Appendix	C):	Test	that	

the	signal	reacts	to	the	electrodes	being	touched	using	an	oscilloscope.		

• Test	 that	 the	microcontroller	 on	 the	digital	 board	ATMega8	 is	well	 programmed.	 For	 that,	Atmel	

Studio	and	Avrdude	software	will	be	used.	

• Test	 that	 signal	 is	 received	 from	 the	electrodes	on	OpenVibe	and	 that	once	 the	headset	 is	on	 its	

place	a	spike	can	be	seen	at	each	channel	waveform	when	the	user	clenches	the	jaw.	

	

Results:	The	first	two	tests	were	completely	successful	although	minor	modifications	to	the	code	provided	

by	the	EEG	project	should	be	made	in	order	to	update	the	code	for	the	ATmega8,	since	it	was	out-dated.	(Please	

refer	 to	 Appendix	 E)	 The	 third	 testing	 point	 is	 currently	 under	 compatibility	 issues	 with	 Windows	 8.1	 and	

Windows	10,	which	stop	the	signal	from	being	received	after	a	few	seconds	of	recording.	

	

Solution:	There	are	two	options	to	solve	the	compatibility	issue.		

• Use	a	Computer	with	Windows	XP	or	7	to	run	OpenVibe.	

• Create	 a	 new	 driver	 or	 use	 an	 alternative	 driver	 (there	 are	 generic	 drivers	 for	 development	

applications	on	OpenVibe).	In	order	to	use	an	alternative	driver,	a	new	protocol	of	communication	

would	be	most	likely	required.	This	basically	means	that	the	code	on	the	ATmega8	microprocessor	

on	the	digital	board	would	need	to	be	rewritten.	

The	first	solution	was	tested	on	a	Windows	7	laptop	with	the	same	results,	and	it	was	also	tested	using	

the	 compatibility	mode	of	Windows	XP	with	 no	 improvement.	 That	 leaves	 only	 the	 second	proposed	

solution,	which	has	not	been	implemented	yet.	

6.2. Software	testing	

Tests:	The	software	testing	consists	of	the	following	tests:	

• Test	 that	 a	 signal	 is	 being	 received	 and	 recorded	 from	 Emotiv	 Epoc	 headset	 at	 the	 Communications	

Department	 Laboratory	 at	 Imperial	 College	 London.	 The	 Emotiv	 Epoc	 headset	 provides	 software	 that	

can	be	used	to	detect	whether	the	signal	is	good	enough	for	recording	or	not.	

• Record	real	signals	from	several	users	in	order	to	determine:	

o How	many	outputs	the	Spatial	Filter	should	have	
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o Which	flashing	frequency	is	most	appropriate			

o How	many	 letters	 flashings	are	necessary	to	have	a	consistently	correct	output	 (number	𝑛	on	

section	5.2.4)	

o Which	colours	are	both	effective	and	less	tiring	for	the	user	

Results:		

• The	signal	is	properly	received	and	recorded.		

• Results	 from	 real	 signals	 recorded	 (these	 results	 have	 not	 been	 obtained	 using	 the	 speller	 or	 word	

predictor):	

o After	a	preliminary	trial	it	was	found	that	the	optimal	number	of	outputs	for	the	spatial	filter	is	

between	 3	 and	 4,	 which	 confirms	 the	 recommendations	 in	 the	 OpenVibe	 documentation	

(OpenVibe,	2015).	

Number	of	Spatial	

filter	outputs	

Number	of	correctly	

spelled	letters	out	of	5	

(%success)	

	 Number	of	Spatial	filter	

outputs	

Number	of	correctly	spelled	

letters	out	of	5	(%success)	

1	 1	(20%)	 	 8	 1	(20%)	

2	 2	(40%)	 	 9	 1	(20%)	

3	 5	(100%)	 	 10	 2	(40%)	

4	 5	(100%)	 	 11	 2	(40%)	

5	 5	(80%)	 	 12	 2	(40%)	

6	 4	(80%)	 	 No	spatial	Filter	 2	(40%)	

7	 3	(60%)	 	 	 	

Table	3:	Comparison	of	the	number	of	spatial	filters	used	during	different	tests,	and	the	success	percentage	with	

each	number	(results	obtained	with	n=48	and	flashing	frequency	=	3.5Hz)	

o 8	 training	 sessions	 and	 8	 corresponding	 attempts	 to	 spell	 the	word	 “brain“	were	 recorded.	 Each	

training	 and	 attempt	 was	 recorded	 at	 a	 different	 flashing	 frequency.	 The	 tests	 were	 randomly	

presented,	 i.e.	 the	 user	 did	 not	 know	 what	 was	 going	 to	 be	 the	 next	 frequency.	 The	 following	

results	were	obtained:	

Flashing	frequency	(Hz)	 Percentage	of	Success	

1.5	 0%	

2	 20%	

2.5	 20%	

3	 20%	

3.5	 60%	

4	 60%	

4.5	 0%	

5	 0%	

Table	4:	Comparison	of	the	flashing	frequency	used	during	8	different	tests,	and	the	success	percentage	(results	

obtained	with	n=48	and	number	of	spatial	filter	outputs	=	3)	
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This	 shows	how	at	 frequencies	around	3-3.5	Hz	 the	 results	 seem	 to	be	 significantly	better.	Nevertheless,	

more	testing	is	required	in	order	to	confirm	that	this	frequency	is	the	optimal	one	since	all	these	tests	were	done	

by	the	same	user.	Longer	randomly	picked	words	should	also	be	tested.	The	spatial	filter	number	of	outputs	was	

varied	 from	 1	 to	 12	 for	 the	most	 successful	 recorded	 sessions	 and	 it	 was	 confirmed	 that	 a	 filter	with	 3	 or	 4	

outputs	tends	to	work	better.	

Number	of	spatial		

filter	outputs	
1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	

Success	at	Session	at	

3.5	Hz	(%)	
20	 40	 60	 60	 60	 40	 40	 40	 60	 40	 20	 20	

Success	at	Session	at	

4	Hz	(%)	
40	 60	 60	 40	 40	 40	 60	 40	 40	 20	 20	 20	

Table	5:	Comparison	of	the	number	of	spatial	filters	used	during	different	tests	at	frequencies	3.5	and	4	Hz,	and	

the	success	percentage	(results	obtained	with	n=48)	

o By	using	5	different	users’	 feedback	who	 took	 training	and	spelling	sessions	of	40	min	on	a	black	

and	white	and	a	blue	and	yellow	interface,	it	has	been	determined	that	the	second	one	is	less	tiring	

to	 look	 at	 for	 long	 periods	 of	 time	 as	 suggested	 in	 “P300	 brain	 computer	 interface:	 current	

challenges	and	emerging	trends”	Neuroeng	(2012).		

o It	is	still	needed	to	test	the	optimal	number	of	flashes	to	average	over	on	the	Voting	Classifier	Box.	

An	arbitrarily	large	number	n=48	was	chosen.	

	

There	is	still	room	for	 improvement.	Results	would	be	significantly	better	 if	the	speller	and	word	predictor	

were	used.	Besides,	 as	discussed	earlier,	 Emotiv	Epoc	electrodes	are	not	placed	 in	 the	optimal	areas	 for	P300	

detection	 and	 it	 uses	 conventional	 EEG,	 not	 differential.	 Thus,	 it	 is	 expected	 that	 using	 a	 headset	 with	 the	

characteristics	as	the	one	the	group	has	developed,	the	results	should	notably	improve.	

7. Project	Management	

Initial	meetings	were	held	at	 the	beginning	of	 the	Autumn	term	to	discuss	 the	work	required	to	complete	

this	 project.	 Subsequently,	 the	 project	 was	 compartmentalised	 into	 three	 sub-projects:	 hardware,	 signal	

processing	and	user	 interface.	The	 latter	two	were	done	entirely	utilising	software.	To	this	end,	the	group	was	

subdivided	 into	 three	 sub	 groups,	 each	 responsible	 for	 one	 of	 the	 aforementioned	 categories.	 Delegation	 of	

group	members	 to	 specific	 tasks	 was	 done	 based	 on	 their	 knowledge	 and	 capabilities	 in	 the	 particular	 field.	

Personal	preference	was	also	taken	into	account.	 	The	table	below	illustrates	the	division	of	work	amongst	the	

group	members:	

Category	 Subgroup	
Hardware	 Samuel,	Jorn,	Javier	
User	Interface	 Aaron,	Jun	
Signal	Processing	 Nicolas,	Vinay	

									Table	6:		Distribution	of	workload								
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Following	 this	was	 the	 scheduling	of	meetings	 for	 the	Autumn	and	Spring	 terms.	Small	deliverables	were	

established	at	the	end	of	every	meeting,	to	be	presented	at	the	beginning	of	the	next	meeting.	This	was	done	to	

streamline	 the	 project’s	 advancement	 and	 frequently	 monitor	 the	 group’s	 progress	 relative	 to	 the	 long-term	

schedule.	 This	 ensured	 that	 if	 any	 division	was	 falling	 behind	 the	 prescribed	 timeline,	 it	would	 be	 highlighted	

before	the	situation	became	severe.		As	seen	in	the	Gantt	chart	below,	deliverables	were	met	at	the	prescribed	

times	 for	 the	most	part,	with	no	 task	other	 than	 the	delivery	of	 components	 taking	more	 than	1	week	 longer	

than	expected.	

									 	
		 						 	Figure	17:	Gantt	Chart	of	the	group's	expected	and	actual	completion	of	deliverables	

	

In	addition,	precautionary	measures	were	formulated	in	the	event	that	this	project	proved	to	be	unfeasible.	

With	 respect	 to	 hardware,	 if	 OpenEEG	 could	 not	 be	 assembled	 and	 tested	 within	 the	 allotted	 time	 frame,	

permission	was	granted	by	the	EEE	department’s	BCI	research	group	to	use	their	Emotiv	Epoc	headset.		Similarly,	

if	an	entire	keyboard	was	demonstrably	implausible,	the	magnitude	of	the	experiment	would	be	reduced	to	less	

than	 10	 possible	 characters,	 facilitating	 simple	 operations	 such	 as	 controlling	 a	 wheelchair	 and	 dialling	 a	

telephone	number.	

	

Finally,	rules	to	handle	 inappropriate	conduct	and	other	red	flag	 issues	were	established	at	the	end	of	the	

first	meeting.	It	was	decided	that	problems	of	this	nature	would	first	be	reported	to	the	group	leader,	and	in	the	

event	that	it	could	not	be	resolved	in	this	way,	then	the	project	supervisor	would	be	notified.	In	retrospect,	there	

have	not	been	any	conflicts	in	need	of	action	from	the	group	leader	or	the	project	supervisor.	

7.1. Costs	
Component	 Cost	Per	Unit(£)	 Quantity	 Total(£)	
EEG-Analogue-Asm	 58.25	 2	 116.50	
EEG-Digital-Asm	 38.83	 1	 38.83	
EEG-Active-Electrode	 6.99	 8	 55,92	
Perspex	Sheet	 3.00	 2	 6.00	
9V	Battery	 3.50	 1	 3.50	
34	Pin	Ribbon	Cable	 5.00	 1	 5.00	
3.5mm	Female	Connector	 0.50	 10	 5.00	
Serial	Port	Adapter	 10.00	 1	 10.00	
Total	Cost	 -	 -	 240.75	

									Table	7:		Total	device	cost	in	case	of	final	production								
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8. 	Conclusion	and	Future	Work	

The	work	developed	during	the	last	five	months	has	shown	that	it	is	possible	to	build	a	low-cost	EEG	headset,	

as	well	as	developing	a	software	solution	to	implement	a	speller	with	it.	Despite	this,	the	project	is	still	in	its	early	

development	and	a	large	amount	of	work	would	need	to	be	done	until	a	final	product	could	be	released.		

	

It	has	been	proved	that	the	speller	can	be	implemented	using	Emotiv	Epoc,	but	it	is	still	necessary	to	test	if	it	

works	with	OpenEEG.	In	order	to	do	that,	the	compatibility	problems	must	be	solved.	This	may	require	modifying	

the	current	drivers	to	 interface	OpenEEG	with	Windows	8.1	and	10.	After	this,	 it	 is	necessary	to	perform	a	full	

analysis	 on	 reliability	 and	 its	 dependence	 in	 the	 following	 parameters:	 flashing	 frequency,	 interface	 colours,	

spatial	 filter	 configuration	 and	 number	 of	 flashes	 for	 an	 optimal	 detection.	 This	 analysis	 should	 be	 done	 by	

testing	 the	 prototype	with	 randomly	 selected	 users,	 both	motor	 impaired	 and	 non-motor	 impaired.	 This	 step	

would	give	a	good	insight	into	whether	this	project	would	succeed	or	not.	

	

The	 next	 and	 final	 step	would	 be	 optimisation.	 It	 will	 entail	 updating	 the	 electronics	 as	well	 as	 trying	 to	

include	 them	 in	 the	 headset	 itself	 if	 possible	 (some	headsets	 already	 do	 this	 but	 for	 a	 higher	 price:	OpenBCI,	

Emotiv	Epoc,	etc).	In	addition,	the	same	reliability	analysis	stated	before	should	take	place	after	the	final	design	

is	made.	This	analysis	and	testing	should	also	include	how	long	the	device	is	operational	without	having	to	retrain	

the	On-line	Scenario.	Besides	it	should	also	be	tested	on	several	randomly	selected	people.	Despite	the	fact	that	

the	word	predictor	has	been	implemented	and	has	worked	correctly,	it	is	still	based	on	the	P300	phenomenon.	

Thus,	the	hybrid	P300-SSVEP	system	discussed	in	Section	4	(P300	for	letters,	SSVEP	for	predicted	words)	would	

also	be	implemented	and	tested	at	this	point.	The	group	would	expect	to	have	a	very	reliable	and	fast	BCI	speller	

after	this	point.		

	

In	 conclusion,	 the	 full	 process	 for	 developing	 a	 reliable	 BCI	 system	 would	 take	 between	 2	 to	 4	 years.	

Nevertheless,	it	has	been	proved	that	a	huge	investment	would	not	be	necessary	in	order	to	do	it,	and	thus	the	

final	product	cost	might	be	well	in	the	anticipated	margin	(around	£200).	In	addition	to	having	a	price	that	would	

be	less	than	other	similar	products,	innovation	is	present	in	different	aspects	of	the	device.	For	instance,	in	terms	

of	customisability,	the	user	would	be	able	to	choose	the	colour	of	the	headset	and	the	box,	as	well	as	adjusting	

the	 size	 of	 the	 headset	 to	 fit	 tightly	 on	 the	 head.	 Furthermore,	 the	 user-interface	 can	 be	 easily	 modified	 to	

change	letter	size	and	colour,	as	well	as	having	a	predictive	text	that	could	largely	improve	the	typing	speed.		

	

To	 sum	 up,	 it	 cannot	 be	 confirmed	 that	 the	 aim	 of	 this	 project	 –developing	 a	 low-cost	 BCI	 speller-	 is	 a	

hundred	percent	viable	at	this	stage.	However,	the	work	done	so	far	provides	a	solid	ground	towards	a	successful	

final	product	in	a	medium-range	term,	and	all	the	evidence	so	far	has	shown	that	this	would	be	feasible.	
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Appendix	A:	Product	Design	Specification	

Product	Design	Specification	
Project	:	BCI	 Date:	13	March	2016	
Author:	Group	8	 Version:	3	
	
1. Performance	

This	device	 is	 intended	 to	be	used	 to	 spell	 letters	on	a	 screen	by	 just	 looking	at	 an	on-screen	

keyboard.	 EEG	data	will	 be	 recorded	 from	 the	 subject	 via	 electrodes.	 Then	 a	 screen	will	 flash	

letters	on	the	keyboard.	If	the	targeted	letter	is	flashed	then	it	will	be	displayed	on	the	screen.	

This	should	produce	a	letter	each	15	seconds.	The	keyboard	will	include	a	word	predictor	system	

so	that	it	corrects	spelling	mistakes	and	makes	typing	faster.	

2. Environment	

The	 product	 would	 need	 to	 operate	 indoors	 since	 it	 is	 mainly	 composed	 of	 electronic	

components	that	could	be	damaged	if	exposed	to	weather	conditions.		

3. Life	in	Service	

Life	of	the	entire	device	should	be	around	3-5	years.	This	is	due	to	the	fact	that	we	expect	to	get	

more	reliable,	economic	and	updated	versions	of	this	product	in	that	time,	therefore	during	that	

period,	the	product	needs	to	remain	reliable	and	in	good	use.		

4. Maintenance	

Occasional	replacement	of	electrodes,	around	6	months.	The	box	where	the	boards	are	placed	is	

designed	to	that	it	can	be	easy	to	access	the	different	parts	in	case	replacing	some	components	

is	needed.	However,	most	times	this	should	be	done	by	qualified	personnel.	

5. Target	Product	Cost	

£	250.	This	amount	was	agreed	between	the	group	and	the	staff	in	charge	of	funding	the	project.	

The	 total	 cost	 is	 a	 sum	 of	 different	 components:	 PCB	 Amplifier	 boards,	 PCB	 Digital	 board,	

electrodes,	cables,	connections	and	casing.	This	does	not	include	the	cost	of	a	required	PC	with	

Windows	or	Linux	installed	in	order	to	use	this	device.	

6. Competition	

This	project	 is	not	meant	as	a	product	 to	be	 launched	 into	the	market,	but	more	 focused	 into	

expanding	the	research	on	the	BCI	area	and	explore	more	cost	effective	solutions.	Nevertheless,	

a	 company	 named	 Emotiv	 is	 currently	 selling	 full-mounted	 headsets,	 with	 their	 own	 user	

interface	 for	 a	 price	 of	 around	 £500,	 although	 their	 products	 are	 not	 directly	 intended	 to	 be	

used	 for	 this	 kind	of	 application.	 There	 is	 another	 company	 called	OpenBCI	which	has	 a	wide	
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range	of	products	related	to	Brain	Computer	Interface	applications.	Nevertheless,	the	price	of	a	

full	headset	is	above	£450.	

7. Shipping	

There	are	two	parts	of	the	product:	software	and	hardware.	Software	can	be	downloaded	from	

our	website.	Hardware	will	be	sent	via	any	regular	delivery	service.	

8. Packing	

A	 box	 with	 fitted	 Styrofoam.	 Preferably	 inside	 a	 box	 that	 is	 tightly	 sealed	 to	 prevent	 dust	

corrupting	the	electronic	components.	

9. Quantity	

The	product	will	be	created	on	demand	as	we	do	not	expect	to	have	a	production	process	longer	

than	 2	 weeks.	 The	 group	 would	 need	 to	 contact	 facilities	 aimed	 at	 treating	 motor	 impaired	

patients	to	determine	the	quantity	required	and	needed.	

10. Manufacturing	Facility	

An	environment	with	 soldering	 tools,	 laser	 cutters	 and	3-D	printers.	A	place	 similar	 to	 the	5th	

floor	electronics	lab	in	the	Electrical	and	Electronic	Engineering	Department	at	Imperial	College.		

11. Customer	

The	main	customer	for	which	this	product	is	 intended	would	be	a	motor-impaired	person	with	

high	 difficulty	 or	 impossibility	 to	 speak	 or	 type.	 However,	 the	 product	 would	 be	 sold	 to	

specialized	 facilities	 in	 which	 patients	 that	 suffer	 of	 this	 disease	 are	 being	 treated.	 The	 total	

product	cost	would	make	the	product’s	purchase	affordable	for	these	facilities.		

12. Size	

Two	parameters	to	consider:	headset	and	the	box	containing	the	electronic	components.		

Headset:	Different	headsets	would	be	built	to	adjust	to	different	head	geometries.	However,	as	

a	prototype,	the	group	decided	to	build	a	headset	of	approximately	24cmx14.5cm	(Lee,	J.,	Shin,	

S.H.	&	Istook,	C.L.,	2001)	

Box:	The	boards	will	be	placed	in	a	box	that	should	be	able	to	be	placed	in	a	wheel	chair.	Due	to	

the	 size	 of	 the	 current	 PCB	 boards	 and	 the	 large	 amount	 of	 connections,	 the	 box	 has	 been	

calculated	 to	 have	 dimensions	 of	 40cmx30cmx20cm.	 However,	 for	 future	 versions	 of	 this	

product	we	expect	it	to	be	at	least	one	third	of	this	size	if	not	smaller.	
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13. Weight	

Headset:	less	than	0.25	kg	as	more	weight	could	be	uncomfortable	for	the	user	

Box:	less	than	1	kg	as	more	weight	placed	on	the	lap	could	affect	the	user	if	the	product	is	used	

for	long	periods	of	time.	

14. Materials	

Our	product	 consists	of	3D	printed	polylactic	 acid	 (PLA)	plastic	 for	 the	headset	prototype	and	

laser-cut	acrylic	 for	 the	box	where	the	electronic	components	will	be	placed.	The	rest	 is	made	

out	of	standard	electronic	components	and	saline	gel	for	proper	conductivity	of	the	electrodes.	

15. Product	Life	Span	

Costumer-feedback	dependent	although	the	technology	used	for	the	product	is	expected	to	be	

relevant	for	the	next	3-5	years.		

16. Aesthetics,	Appearance	and	Finish	

The	 aesthetics,	 appearance	 and	 finish	 of	 the	 products	 are	 divided	 into	 three	 sub-parts	 of	 the	

whole	product:	headset,	box	containing	the	electronic	components	and	user-interface.	

Headset:	It	will	be	built	out	of	lightweight	plastic	printing	fiber,	therefore	it	will	be	comfortable	

to	wear	for	 long	periods	of	time.	Moreover,	there	could	be	a	wide	range	of	color	offer	for	the	

user	to	choose	from.	

Box:	 The	box	will	 be	 laser-cut	wood	or	plastic	 that	will	make	all	 the	 components	 to	 fit	 tightly	

inside.	It	can	also	be	added	the	user’s	name	into	the	box	to	add	personalization	as	well	as	color	

preference.	

Interface:	The	code	used	to	program	the	entire	interface	is	designed	so	that	it	is	easy	to	change	

the	color	of	the	interface	as	well	as	the	size	of	the	letters	and	keyboard.	This	would	allow	further	

user	personalization.	

17. Ergonomics	

The	ergonomic	design	is	one	of	the	most	important	aspects	of	our	product.	The	headset	should	

fit	 the	 user’s	 head	 comfortably,	 thus	 different	 headset	 sizes	 should	 be	 produced	 once	 the	

product	is	finalized.	The	interface	has	to	be	completely	intuitive	and	minimal	training	would	be	

required	for	day-to-day	use	(training	would	take	20-30	minutes,	and	ideally	will	not	be	necessary	

more	than	once	a	week).	

18. Standards	and	Specifications	

The	 product	 should	 be	 designed	 to	 fit	 current	 international	 standards	 regarding	 safety	 and	

guarantee.	This	 is	 the	case	 since	 the	user	 is	a	very	 specific	 sector	of	 the	population,	 thus,	 the	

product	has	to	be	ready	to	be	used	anywhere	in	the	world.	
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19. Quality	and	Reliability	

Crucial	for	our	product.	The	whole	aim	revolves	around	the	idea	that	a	person	that	is	not	able	to	

communicate	will	be	able	to	do	so	with	our	product.	For	this	reason,	a	reliability	of	at	least	90%	

is	expected	so	that	communication	can	be	meaningful.	 In	addition,	 regular	 feedback	has	to	be	

sent	by	the	user	in	order	to	improve	any	imperfections.		This	would	help	to	troubleshoot	certain	

aspects	in	the	user-interface	that	can	be	modified	in	order	to	improve	reliability.	

20. Shelf	Life	(storage)	

Approximately	 10	 years	 as	 electronic	 components	 can	 be	 used	 for	 many	 years	 without	

malfunctioning	 and	 software	 will	 not	 deteriorate.	 	 Only	 electrodes	 could	 be	 somewhat	

corrupted	at	an	earlier	time.	

21. Testing	

After	manufacture,	 each	product	 should	be	 tested	before	delivery	 to	 check	 that	 it	works.	 The	

testing	would	require	certain	standard	procedures:		

-Check	that	all	the	electrical	connections	between	the	electronic	components	are	working	

-Check	that	the	box	and	headset	do	not	have	any	faults	that	could	cause	an	early	malfunction	

-Test	the	whole	product	to	ensure	that	it	effectively	is	able	to	produce	letters	and	words	in	the	

screen	with	the	software	being	used	

22. Processes	

N/A.	

23. Time	Scale	

From	design	planning	to	the	building	of	a	prototype:	5	months	as	this	 is	the	time	given	before	

the	project	has	to	be	presented.	

From	 a	 prototype	 to	 final	 product:	 It	 would	 take	 at	 least	 a	 year	 to	 build	 a	 final	 product	 that	

would	be	sufficiently	reliable	that	it	could	be	sent	to	the	market.	Therefore,	it	could	take	up	to	2	

years.	

24. Safety	

Maintain	an	electrical	isolation	barrier	between	a	user	connected	to	the	product	and	the	device	

to	which	the	EEG	device	is	connected.	

The	product	should	not	be	used	during	a	lightning	storm	or	whenever	the	electrical	power	grid	

in	unstable.	



30	
	

Could	cause	unpleasant	side-effects	 for	a	small	number	of	people.	Usage	of	our	product	could	

lead	 to	 anxiety	 and/or	 leading	 to	 tics,	 insomnia	or	panic	 attacks.	 Stimulation	of	 latent	 seizure	

activity	to	full	(epileptic)	seizure	activity.	Mood	changes,	such	as	depression	or	anger	outbursts.	

25. Company	Constraints	

Limited	budget	and	man-power	as	well	as	supplier	reliance.	

26. 	Market	Constraints	

The	main	market	constraint	is	that	the	costumer	is	a	very	specific	type	of	user,	thus	expansion	of	

the	product	could	not	be	large	scale.	

27. 	Patents,	Literature	and	Product	Data	

The	whole	project	has	been	developed	based	on	an	open	source	project	called	Open	EEG	where	

information	on	how	to	build	a	BCI	system	was	published	in	their	website.	 In	addition,	an	open	

source	software	called	OpenVibe	was	used	to	do	all	the	signal	processing.	

28. Legal	

N/A.	

29. Political	and	Social	Implications	

Since	 our	 target	 costumer	 is	 very	 specific	we	 do	 not	 plan	 do	make	 a	major	 social	 or	 political	

impact.	 It	 could	however	have	a	 large	 impact	on	 the	 facilities	where	 these	patients	 are	being	

treated	since	communication	with	them	will	be	greatly	improved.	

30. Installation	

Our	 product	 requires	 a	 fully	working	Windows	 or	 Linux	 computer	with	 an	 installed	OpenVibe	

program.	The	computer	should	have	Python	as	well	as	a	monitor	 to	display	 the	 interface	with	

the	user.		

31. Documentation	

Our	 documentation	 will	 be	 open	 source.	 Will	 provide	 a	 user	 manual.	 Any	 non-trained	 user	

should	be	able	to	use	the	product	with	ease	if	all	the	installation	requirements	have	been	met.	

32. Disposal	

Disposal	as	any	electronic	component,	such	as	a	WEEE	directive.	They	could	as	well	be	sent	to	us	

so	that	we	could	make	use	of	the	components	that	still	work	and	therefore	recycle	the	products.	
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Appendix	B:	Minutes	of	Meetings	

• Meeting	1:	18	January	2016	

	 Present:	All	members	
	 Time:	2	hours	
-Issues	from	previous	meeting:		

-	Check	the	report	overall	before	submission	
-	Testing	of	the	software	
-	Start	looking	at	how	to	connect	the	PCB	boards	

-Action	points	and	decisions:		
-	Worked	on	 trying	 to	 implement	 the	software	on	OpenVibe	but	had	compatibility	problems	
with	Windows	
-Started	to	check	what	cables	would	be	needed	to	connect	all	the	hardware	parts	

-Tasks	for	next	meeting:	
-	Advance	with	software	development	
-	Try	to	book	Level	8	lab	to	start	doing	tests	with	the	Emotiv	Epoc	

-Scheduled	next	meeting:		
-	TBC	

	

• Meeting	2:	26	January	2016	

	 Present:	All	members	
	 Time:	2	hours	
-Issues	from	previous	meeting:		

-	Advance	with	software	development	
-	Try	to	book	Level	8	lab	to	start	doing	tests	with	the	Emotiv	Epoc	

-Action	points	and	decisions:		
-	Group	in	charge	of	developing	software	were	programming	
-	Cables	and	connections	were	determined	and	were	order	via	de	EEE	Online	Stores	
-	 Introduced	 on	 how	 to	 use	 the	 Emotiv	 Epoc	 so	 that	we	would	 be	 able	 to	 start	 using	 it	 for	
testing	
-	Some	initial	tests	with	Emotiv	headset	to	see	how	it	worked	

-Tasks	for	next	meeting:	
-	Figure	out	how	to	use	Emotiv	properly	with	OpenVibe	
-	Continue	developing	software	
-	Start	testing	PCB	boards	once	connections	arrive	

-Scheduled	next	meeting:		
-	1	February	2016	
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• Meeting	3:	1	February	2016	

	 Present:	All	members	
	 Time:	2:30	hours	
-Issues	from	previous	meeting:		

-	Figure	out	how	to	use	Emotiv	properly	with	OpenVibe	
-	Continue	developing	software	
-	Start	testing	PCB	boards	once	connections	arrive	

-Action	points	and	decisions:		
-	Work	on	the	development	of	the	OpenEEG	hardware	
-	Started	to	connect	PCB	board	to	a	small	breadboard	so	that	the	necessary	resistors	could	be	
placed	on	the	breadboard	and	therefore	the	connections	made	better	

-Tasks	for	next	meeting:	
-	Continue	with	software	development	
-	Book	Level	8	Labs	to	get	more	testing	with	Emotiv	done	

-Scheduled	next	meeting:		
-	4	February	2016	
	

• Meeting	4:	4	February	2016	

	 Present:	All	members	
	 Time:	2:30	hours	
-Issues	from	previous	meeting:		

-	Continue	with	software	development	
-	Book	Level	8	Labs	to	get	more	testing	with	Emotiv	done	

-Action	points	and	decisions:		
-	Continued	testing	with	Emotiv	Epoc	
-	Could	get	 the	raw	date	and	saw	that	brain	signals	worked	but	no	output	 file	with	 the	data	
was	created	
-	 Software	was	 developed	 during	 the	 session	 as	 the	 group	 realized	 that	 the	 incompatibility	
problems	with	Windows	 required	 a	 new	 software	 development	 to	make	 it	 compatible	with	
Windows	

-Tasks	for	next	meeting:	
-	Progress	on	new	software	for	Windows	
-	Build	hardware	and	3-D	print	headset	

-Scheduled	next	meeting:		
-	9	February	2016	
	

• Meeting	5:	9	February	2016	

	 Present:	All	members	
	 Time:	1:30	hours	
-Issues	from	previous	meeting:		

-	Progress	on	new	software	for	Windows	
-	Build	hardware	and	3-D	print	headset	

-Action	points	and	decisions:		
-	Connections	for	hardware	arrived	
-	 Started	 to	 connect	hardware	 together,	which	 included	 soldering	 and	pasting	 the	electrode	
sockets	to	the	PCBs	
-	Had	to	check	whether	the	connections	were	properly	made	

-Tasks	for	next	meeting:	
-	Advance	on	software	
-	Book	Level	8	labs	to	work	on	further	testing	with	Emotiv	

-Scheduled	next	meeting:		
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-	15	February	2016	
	

• Meeting	6:	15	February	2016	

	 Present:	All	members	
	 Time:	3	hours	
-Issues	from	previous	meeting:		

-	Advance	on	software	
-	Book	Level	8	labs	to	work	on	further	testing	with	Emotiv	

-Action	points	and	decisions:		
-	Further	testing	with	Emotiv	
-	 Changed	 several	 signal	 processing	 filters	 in	 OpenVibe	 to	 make	 sure	 that	 the	 signal	 was	
processed	correctly	
-	First	tests	made	outputs	of	1	letter	correct	out	of	5	or	even	no	correct	letter	
-	Added	a	Spatial	Filter	to	the	signal	processor	which	apparently	would	make	a	big	difference	
.-	 After	 adding	 the	 Spatial	 Filter,	 one	of	 the	 tests	 done	worked.	 The	user’s	 intention	was	 to	
write	Pears	and	the	program	effectively	processed	the	signals	and	spelled	Pears	

-Tasks	for	next	meeting:	
-	Continue	building	hardware	and	connect	everything	
-	Laser-cut	a	box	so	that	all	the	electronic	components	can	be	placed	inside	
-	Finish	3-D	printing	headset	

-Scheduled	next	meeting:		
-	24	February	2016	
	
	
	

	

• Meeting	7:	24	February	2016	

	 Present:	All	members	
	 Time:	3	hours	
-Issues	from	previous	meeting:		

-	Continue	building	hardware	and	connect	everything	
-	Laser-cut	a	box	so	that	all	the	electronic	components	can	be	placed	inside	
-	Finish	3-D	printing	headset	

-Action	points	and	decisions:		
-	Successfully	connected	the	entire	electrical	circuit	
-	The	group	was	able	to	power	up	the	device	
-	Having	problems	with	connecting	to	computer	
-	Box	was	laser-cut,	and	all	the	hardware	was	placed	inside	
-	3rd	rim	out	of	4	was	3-D	printed	and	mounted	on	existing	headset	

-Tasks	for	next	meeting:	
-	Book	level	8	lab	to	work	on	further	testing	with	Emotiv	
-	Have	software	basically	finished	to	start	testing	with	it	

-Scheduled	next	meeting:		
-		26	February	2016	
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• Meeting	8:	26	February	2016	

	 Present:	All	members	
	 Time:	3	hours	
-Issues	from	previous	meeting:		

-	Book	level	8	lab	to	work	on	further	testing	with	Emotiv	
-	Have	software	basically	finished	to	start	testing	with	it	

-Action	points	and	decisions:		
-	Worked	on	software	to	solve	minor	issues	
-	Further	testing	was	done	in	labs	
-	 This	 time,	 tests	 were	 not	 successful.	 No	 word	 chosen	 from	 the	 user	 to	 spell	 was	 written	
correctly.	At	most,	2	out	of	4	letters	were	correct.	
-	Determined	that	it	was	due	to	the	pre-built	user	interface	in	OpenVibe,	thus	will	have	to	start	
testing	with	own	software	

-Tasks	for	next	meeting:	
-	Finish	software	and	test	with	it	to	see	if	it	works	with	Emotiv	

-Scheduled	next	meeting:		
-	2	March	2016	

	

• Meeting	9:	2	March	2016	

	 Present:	All	members	
	 Time:	3	hours	
-Issues	from	previous	meeting:		

-	Book	Level	8	Lab	to	work	on	testing	with	our	own	software	
-Action	points	and	decisions:		

-	Tried	OpenVibe	with	our	own	software	
-	Did	testing	with	different	flashing	frequencies	to	determine	what	frequency	would	give	the	
optimum	results	
-	Checked	how	our	software	compared	to	the	one	already	present	in	Open	Vibe	

-Tasks	for	next	meeting:	
-	Finish	testing	and	building	minor	details	on	hardware	

-Scheduled	next	meeting:		
-	4	March	2016	
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Appendix	C:	OpenEEG	Schematics	

Obtained	from	OpenEEG	webpage	(OpenEEG	2015)	
Amplifier	Schematic:	
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Digital	Board	Schematic:	
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Appendix	D:	OpenVibe	Scenarios	

1. Scenario	1:	Signal	Acquisition	
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2. Scenario	2:	Spatial	Filter	trainer	
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3. Scenario	3:	Training	Classifier	
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4. Scenario	4:	Online	Scenario	
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Appendix	E:	Microcontroller	Code	

The	original	code	has	been	obtained	from	OpenEEG	webpage	(OpenEEG	2015)	and	then	slightly	modified	to	be	

up	to	the	last	AVR	modifications.	Modifications	are	in	red.	

	
/* 
 * ModularEEG firmware for one-way transmission, v0.5.4-p2 
 * Copyright (c) 2002-2003, Joerg Hansmann, Jim Peters, Andreas Robinson 
 * Modification for Atmega48 (c) 2005, Yuri Smolyakov 
 * License: GNU General Public License (GPL) v2 
 * Compiles with AVR-GCC v3.3. 
 * 
 * Note: -p2 in the version number means this firmware is for packet version 
2. 
 */ 
 
////////////////////////////////////////////////////////////// 
/* 
////////// Packet Format Version 2 //////////// 
// 17-byte packets are transmitted from the ModularEEG at 256Hz, 
// using 1 start bit, 8 data bits, 1 stop bit, no parity, 57600 bits per 
second. 
// Minimial transmission speed is 256Hz * sizeof(modeeg_packet) * 10 = 43520 
bps. 
 
struct modeeg_packet 
{ 
    uint8_t     sync0;      // = 0xA5 
    uint8_t     sync1;      // = 0x5A 
    uint8_t     version;    // = 2 
    uint8_t     count;      // packet counter. Increases by 1 each packet 
    uint16_t    data[6];    // 10-bit sample (= 0 - 1023) in big endian 
(Motorola) format 
    uint8_t     switches;   // State of PD5 to PD2, in bits 3 to 0 
}; 
 
// Note that data is transmitted in big-endian format. 
// By this measure together with the unique pattern in sync0 and sync1 it is 
guaranteed, 
// that re-sync (i.e after disconnecting the data line) is always safe. 
 
// At the moment communication direction is only from Atmel-processor to PC. 
// The hardware however supports full duplex communication. This feature 
// will be used in later firmware releases to support the PWM-output and 
// LED-Goggles. 
*/ 
 
////////////////////////////////////////////////////////////// 
/* 
 * Program flow: 
 * 
 * When 256Hz timer expires: goto SIGNAL(SIG_OVERFLOW0) 
 * SIGNAL(SIG_OVERFLOW0) enables the ADC 
 * 
 * Repeat for each channel in the ADC: 
 * Sampling starts. When it completes: goto SIGNAL(SIG_ADC) 
 * SIGNAL(SIG_ADC) reads the sample and restarts the ADC. 
 * 
 * SIGNAL(SIG_ADC) writes first byte to UART data register 
 * (UDR) which starts the transmission over the serial port. 
 * 
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 * Repeat for each byte in packet: 
 * When transmission begins and UDR empties: goto SIGNAL(SIG_UART_DATA) 
 * 
 * Start over from beginning. 
 */ 
 
#include <avr/io.h> 
#include <inttypes.h> 
#include <avr/interrupt.h> 
#include <avr/wdt.h> 
 
#define outb(port,val) \ 
(port) = (val) 
#define inp(port) \ 
(port) 
#define sbi(port,bit) \ 
(port) |= (1 << (bit)) 
#define cbi(port,bit) \ 
(port) &= ~(1 << (bit)) 
#define BV(bit) \ 
(1 << (bit)) 
 
#define NUMCHANNELS 6 
#define HEADERLEN 4 
#define PACKETLEN (HEADERLEN + NUMCHANNELS * 2 + 1) 
 
#define FOSC 7372800        // Clock Speed 
#define SAMPFREQ 256 
#define TIMER0VAL 256 - ((FOSC / 256) / SAMPFREQ) 
 
#define BAUD 57600 
#define BAUDL FOSC/16/BAUD - 1 
#define BAUDH (BAUDL)>>8 
 
 
#if defined (__AVR_ATmega48__) || defined (__AVR_ATmega88__) 
    #define SIG_UART_DATA SIG_USART_DATA 
    #define ADCSR   ADCSRA 
    #define UCSRB   UCSR0B 
    #define UDRIE   UDRIE0 
    #define UDR     UDR0 
    #define TIMSK   TIMSK0 
    #define TCCR0   TCCR0B 
#endif 
 
//char const channel_order[] = {0, 3, 1, 4, 2, 5}; 
char const channel_order[] = {0, 1, 2, 3, 4, 5}; 
 
// The transmission packet 
volatile uint8_t TXBuf[PACKETLEN]; 
 
// Next byte to read or write in the transmission packet 
volatile uint8_t TXIndex; 
 
// Current channel being sampled 
volatile uint8_t CurrentCh; 
 
///////////////////////////////////////////// 
// Sampling timer (timer 0) interrupt handler 
SIGNAL(TIMER0_OVF_vect){ 
    outb(TCNT0, TIMER0VAL); //Reset timer to get correct sampling frequency 
    CurrentCh = 0; 
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    // Write header and footer: 
    // Increase packet counter (fourth byte in header) 
    TXBuf[3]++; 
 
    //Get state of switches on PD2..5, if any (last byte in packet) 
    TXBuf[2 * NUMCHANNELS + HEADERLEN] = (inp(PIND) >> 2) & 0x0F; 
 
    cbi(UCSRB, UDRIE);  //Ensure UART IRQ's are disabled 
    sbi(ADCSR, ADIF);   //Reset any pending ADC interrupts 
    sbi(ADCSR, ADIE);   //Enable ADC interrupts 
 
    //The ADC will start sampling automatically as soon 
    //as sleep is executed in the main-loop 
} 
 
/////////////////////////////////////////// 
// AD-conversion-complete interrupt handler 
SIGNAL(ADC_vect) { 
    volatile uint8_t i; 
 
    i = 2 * CurrentCh + HEADERLEN; 
 
    TXBuf[i+1]  = inp(ADCL);    // Fill buffer from ADC 
    TXBuf[i]    = inp(ADCH); 
 
    CurrentCh++; 
    if (CurrentCh < NUMCHANNELS) { 
        outb(ADMUX, channel_order[CurrentCh]);  //Select the next channel 
        //The next sampling is started automatically 
    } else { 
        outb(ADMUX, channel_order[0]);  //Prepare next conversion, on 
channel 0 
 
            // Disable ADC interrupts to prevent further calls to SIG_ADC 
        cbi(ADCSR,  ADIE); 
 
        // Hand over to SIG_UART_DATA, by starting 
        // the UART transfer and enabling UDR IRQ's 
        outb(UDR,  TXBuf[0]); 
        sbi(UCSRB, UDRIE); 
 
        TXIndex = 1; 
    } 
} 
 
////////////////////////////////////////////////////////// 
// UART data transmission register-empty interrupt handler 
SIGNAL(USART_UDRE_vect) { 
    outb(UDR, TXBuf[TXIndex]);  //Send next byte 
 
    TXIndex++; 
    if (TXIndex == PACKETLEN){  //See if we're done with this packet 
        cbi(UCSRB, UDRIE);      //Disable SIG_UART_DATA interrupts 
        //Next interrupt will be a SIG_OVERFLOW0 
    } 
} 
 
//////////////////////////////////////////////////////// 
// Initialize PWM output (PB1 = 14Hz square wave signal) 
void pwm_init(void) { 
    // Set timer/counter 1 to use 10-bit PWM mode. 
    // The counter counts from zero to 1023 and then back down 
    // again. Each time the counter value equals the value 
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    // of OCR1(A), the output pin is toggled. 
    // The counter speed is set in TCCR1B, to clk / 256 = 28800Hz. 
    // Effective frequency is then clk / 256 / 2046 = 14 Hz 
 
#if defined (__AVR_ATmega8__) || defined (__AVR_ATmega48__) || defined 
(__AVR_ATmega88__) 
    outb(OCR1AH, 2);        // Set OCR1A = 512 
    outb(OCR1AL, 0); 
    outb(TCCR1A, BV(COM1A1) + BV(WGM11) + BV(WGM10)); // Set 10-bit PWM mode 
    outb(TCCR1B, (1 << CS12));  // Start and let run at clk / 256 Hz 
#else   //__AVR_AT90S4433 
    outb(OCR1H, 2);     // Set OCR1 = 512 
    outb(OCR1L, 0); 
    outb(TCCR1A, BV(COM11) + BV(PWM11) + BV(PWM10)); // Set 10-bit PWM mode 
    outb(TCCR1B, (1 << CS12));  // Start and let run at clk / 256 Hz 
#endif 
} 
 
//////////////// 
// Initialize uC 
void init(void) { 
    //Set up the ports 
    outb(DDRD,  0xC2); 
    outb(DDRB,  0x07); 
    outb(PORTD, 0xFF); 
    outb(PORTB, 0xFF); 
 
    //Select sleep mode = idle 
#if defined (__AVR_ATmega48__) || defined (__AVR_ATmega88__) 
    outb(SMCR, (inp(SMCR)  | BV(SE)) & (~BV(SM0) | ~BV(SM1) | ~BV(SM2))); 
#elif defined (__AVR_ATmega8__) 
    outb(MCUCR,(inp(MCUCR) | BV(SE)) & (~BV(SM0) | ~BV(SM1) | ~BV(SM2))); 
#else // __AVR_AT90S4433__ 
    outb(MCUCR,(inp(MCUCR) | BV(SE)) & (~BV(SM))); 
#endif 
 
    // Initialize the ADC 
    // Timings for sampling of one 10-bit AD-value: 
    // prescaler > ((XTAL / 200kHz) = 36.8 => 
    // prescaler = 64 (ADPS2 = 1, ADPS1 = 1, ADPS0 = 0) 
    // ADCYCLE = XTAL / prescaler = 115200Hz or 8.68 us/cycle 
    // 14 (single conversion) cycles = 121.5 us (8230 samples/sec) 
    // 26 (1st conversion) cycles = 225.69 us 
    outb(ADMUX, 0);     //Select channel 0 
 
    //Prescaler = 64, free running mode = off, interrupts off 
    outb(ADCSR, BV(ADPS2) | BV(ADPS1)); 
    sbi(ADCSR, ADIF);   //Reset any pending ADC interrupts 
    sbi(ADCSR, ADEN);   //Enable the ADC 
 
    // Analog comparator OFF 
    outb(ACSR, BV(ACD)); 
 
    //Initialize the UART 
#if defined (__AVR_ATmega48__) || defined (__AVR_ATmega88__) 
    outb(UBRR0H, BAUDH);        //Set speed to BAUD bps 
    outb(UBRR0L, BAUDL); 
    outb(UCSR0A, 0); 
    outb(UCSR0C, BV(UCSZ01) | BV(UCSZ00)); 
    outb(UCSR0B, BV(TXEN0));    //Enable transmitter 
#elif defined (__AVR_ATmega8__) 
    outb(UBRRH, BAUDH);         //Set speed to BAUD bps 
    outb(UBRRL, BAUDL); 
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    outb(UCSRA, 0); 
    outb(UCSRC, BV(URSEL) | BV(UCSZ1) | BV(UCSZ0)); 
    outb(UCSRB, BV(TXEN)); 
#else // __AVR_AT90S4433__ 
    outb(UBRR, BAUDL);          //Set speed to BAUD bps 
    outb(UCSRB, BV(TXEN)); 
#endif 
 
    // Initialize timer 0 
    outb(TCNT0, 0);         //Clear it 
    outb(TCCR0, 4);         //Start it. Frequency = clk / 256 
    outb(TIMSK, BV(TOIE0));     //Enable the interrupts 
} 
 
////////////////////////////////////////////////////////// 
int main(void) { 
 
    // Write packet header 
    TXBuf[0] = 0xA5;    //Sync 0 
    TXBuf[1] = 0x5A;    //Sync 1 
    TXBuf[2] = 2;       //Protocol version 
    TXBuf[3] = 0;       //Packet counter 
 
    // Initialize 
    init(); 
 
    // Initialize PWM (optional) 
    pwm_init(); 
 
    sei(); 
    // Now, we wait 
    // This is an event-driven program, 
    // so nothing much happens here 
    while (1) { 
        __asm__ __volatile__ ("sleep"); // sleep until something happens 
    } 
} 
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Appendix	F:	Optimal	Electrode	Positioning	for	P300	Detection	

	
Figure	18:	Optimal	electrode	positioning	for	P300	detection	(Red	circles)	according	to	Nicolas-Alonso	&	Gomez-Gil	
(2012)			
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Appendix	G:	Python	Code	

The	following	is	the	Python	code	used	to	implement	the	signal	acquisition:	

	

			1
		

#dependencies	
	

			2
		

from	 __future__	 import	 division,	 print_function,	
unicode_literals	
	

			3
		

import	os,	sys	
	

			4
		

from	pyglet.gl	import	*	
	

			5
		

from	pyglet	import	*	
	

			6
		

from	pyglet.window	import	*	
	

			7
		

import	primitives	
	

			8
		

import	user_input	
	

			9
		

import	word_predictor	
	

		10
		

import	random	
	

		11
		

import	string	
	

		12
		

import	ctypes	
	

		13
		

#set	stimulation	ids	
	

		14
		

OVTK_StimulationId_Target	=	33285	
	

		15
		

OVTK_StimulationId_Label_00	=	33024	
	

		16
		

OVTK_StimulationId_Label_01	=	33025	
	

		17
		

OVTK_StimulationId_Label_07	=	33031	
	

		18
		

#	Keyboard	matrix	
	

		19
		

text	=	[	['predtxt1','predtxt2','predtxt3','A','B',u"\u2190"],		
	

		20
		

																['C','D','E','F','G','ENTER'],		
	

		21
		

																['H','I','J','K','L','abc'],		
	

		22
		

																['M','N','O','P','Q','123'],		
	

		23
		

																['R','S','T','U','V','W'],		
	

		24
		

																['X','Y','Z','SPACE',u"\u25C4",	u"\u25BA"]	]	
	

		25
		

#	Get	window	parameters	
	

		26
		

user32	=	ctypes.windll.user32	
	

		27
		

width	=	user32.GetSystemMetrics(0)	
	

		28
		

height	=	user32.GetSystemMetrics(1)	
	

		29
		

width	=	width	
	

		30
		

height	=	height						
	

		31
		

#############################	 CONTROLS	
#############################	
	

		32 #P300	flash	modes	
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		33
		

isEnlargeTextMode	=	True	
	

		34
		

isHighlightTextMode	=	False	
	

		35
		

#condition	to	draw	flash	
	

		36
		

isDrawVertFlash	=	True	
	

		37
		

isDrawHorizFlash	=	True	
	

		38
		

#condition	to	draw	target	
	

		39
		

isDrawTarget	=	True	
	

		40
		

#target	parameters	
	

		41
		

targetSize	=	[width/6,height/12]	
	

		42
		

#general	UI	display	paramaters	
	

		43
		

backgroundColour	=	[0,0,1,1]	#1	corresponds	to	255	last	value	
is	alpha	
	

		44
		

#highlight	mode	parameters	
	

		45
		

targetColour	=	[0,1,0,1]	
	

		46
		

vertFlashColour	=	[0,1,1,1]	
	

		47
		

vertFlashSize	=	[width/6,height/2]	
	

		48
		

horizFlashColour	=	[0,1,1,1]	
	

		49
		

horizFlashSize	=	[width,height/12]	
	

		50
		

#text	parameters	
	

		51
		

keyboardFontSize	=	36	
	

		52
		

keyboardFontColour	=	[230,230,230,255]	
	

		53
		

keyboardEnlargeFontSize	=	50	
	

		54
		

keyboardEnlargeFontColour	=	[255,255,0,255]	
	

		55
		

#timing	
	

		56
		

targetDelay	=	30	
	

		57
		

#UIsuze	
	

		58
		

UISize	=	10	
	

		59
		

#UIscaling	based	on	UISize	
	

		60
		

widgetPositionY	=	UISize*height/12	
	

		61
		

widgetHeight	=	height-widgetPositionY	
	

		62
		

keyboardPositionTop	=	widgetPositionY	-	height/12	
	

		63
		

###############################################################
#####	
	

		64
		

#OpenVibe	class	
	

		65
		

class	MyOVBox(OVBox):	
	

		66
		

				def	__init__(self):	
	

		67 								OVBox.__init__(self)	
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		68
		

													
	

		69
		

				def	initialize(self):		
	

		70
		

								#	Called	once	when	starting	the	scenario	
	

		71
		

								self.loopCounter	=	0	
	

		72
		

								self.target	=	[0,0]	
	

		73
		

								 self.hashTable	 =	
{12:5,11:4,10:3,9:2,8:1,7:0,6:6,5:7,4:8,3:9,2:10,1:11}	
	

		74
		

								self.current_text	=	""	
	

		75
		

								 #	 Read	 files	 into	 lists	 for	 flashes	 and	 targets,	 and	
convert	strings	to	ints	
	

		76
		

								with	open('dep_files/flash_stims.txt')	as	f:	
	

		77
		

												self.flashes	=	f.read().splitlines()	
	

		78
		

												self.flashes	=	[int(x)	for	x	in	self.flashes]	
	

		79
		

								with	open('dep_files/target_stims.txt')	as	f:	
	

		80
		

												self.targets	=	f.read().splitlines()	
	

		81
		

												self.targets	=	[int(x)	for	x	in	self.targets]	
	

		82
		

								#	I/O	
	

		83
		

								self.initOutputs()	#	Set	output	stimulation	headers	
	

		84
		

								#	Pyglet	
	

		85
		

								#create	window	
	

		86
		

								self.win	=	window.Window(fullscreen	=	True)	
	

		87
		

								#colour	background	and	set	up	openGL	rendering	
	

		88
		

								 glClearColor(backgroundColour[0],	 backgroundColour[1],	
backgroundColour[2],	backgroundColour[3])	
	

		89
		

								glEnable(GL_BLEND)	
	

		90
		

								glBlendFunc(GL_SRC_ALPHA,	GL_ONE_MINUS_SRC_ALPHA)	
	

		91
		

								#set	up	keyboard	input	
	

		92
		

								self.keys	=	key.KeyStateHandler()	
	

		93
		

								self.win.push_handlers(self.keys)	
	

		94
		

								#set	up	user	input	text	display	
	

		95
		

								self.batch	=	pyglet.graphics.Batch()	
	

		96
		

								 self.widget	 =	 user_input.TextWidget('',	 0,	
int(widgetPositionY),	int(width),int(widgetHeight),	self.batch)	
	

		97
		

								self.text_input	=	""	
	

		98
		

								self.widget.caret.on_text(self.text_input)	
	

		99
		

								#set	up	user	keyboard	matrix	
	

	100
		

								self.matrix	=	[]	
	

	101 								for	j	in	range(0,	len(text)	):	
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	102
		

												row	=	[]	
	

	103
		

												for	i	in	range(0,	len(text[j])	):	
	

	104
		

																line	=	text[j][i]	
	

	105
		

																 ypos	 =	 keyboardPositionTop	 -	
(j)*(keyboardPositionTop/5)	
	

	106
		

																xpos	=	i*width/6	
	

	107
		

																temp	=	pyglet.text.Label(line,		
	

	108
		

																				font_name='Courier	New',	
	

	109
		

																				font_size=keyboardFontSize,	
	

	110
		

																				color=(keyboardFontColour[0],keyboardFontCo
lour[1],keyboardFontColour[2],keyboardFontColour[3]),	
	

	111
		

																				x=xpos,	y=ypos,	
	

	112
		

																				anchor_x='left',	anchor_y='bottom')	
	

	113
		

																row.append(temp)	
	

	114
		

												self.matrix.append(row)	
	

	115
		

								#set	up	window	rendering	
	

	116
		

								self.win.dispatch_events()	
	

	117
		

								self.win.flip()	
	

	118
		

								return	
	

	119
		

				def	endExperiment(self):	
	

	120
		

								print("Quitting	experiment.")	
	

	121
		

								self.closeOutputs()	
	

	122
		

								self.sendOutput(0,	OVTK_StimulationId_Label_00)	
	

	123
		

								self.win.close()	
	

	124
		

								return		
	

	125
		

				def	readFlash(self):	
	

	126
		

								if	len(self.flashes)	<	1:	
	

	127
		

												print("Reached	end	of	flashes	file.")	
	

	128
		

												self.endExperiment()	
	

	129
		

								else:	
	

	130
		

												return	self.flashes.pop(0)	
	

	131
		

								return	None	
	

	132
		

				def	getNextTarget(self):	
	

	133
		

								if	len(self.targets)	<	1:	
	

	134
		

												print("Reached	end	of	target	file.")	
	

	135
		

												self.endExperiment()	
	

	136 								else:	
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	137
		

												self.target[0]	=	self.targets.pop(0)		
	

	138
		

												self.target[1]	=	self.targets.pop(0)	
	

	139
		

								return		
	

	140
		

				def	drawTarget(self,	rowStim,	colStim):	
	

	141
		

								if	(isDrawTarget):	
	

	142
		

												rowNum	=	rowStim	-	OVTK_StimulationId_Label_01	
	

	143
		

												colNum	=	colStim	-	OVTK_StimulationId_Label_07	
	

	144
		

												x	=	colNum	*	width	/	6	
	

	145
		

												y	=	(5-rowNum)	*	(keyboardPositionTop/5)	
	

	146
		

												 primitives.drawRect(x,	 y,	 targetSize[0],	
targetSize[1],	
targetColour[0],targetColour[1],targetColour[2],targetColour[3]
)	
	

	147
		

								return	
	

	148
		

				def	startFlash(self,	rowcol):	
	

	149
		

								#	If	column	
	

	150
		

								if	(rowcol	<=	5	and	isDrawVertFlash):	
	

	151
		

												if	(isEnlargeTextMode):	
	

	152
		

																c	=	rowcol	
	

	153
		

																for	r	in	range(0,	len(self.matrix)):	
	

	154
		

																				 self.matrix[r][c].font_size	 =	
keyboardEnlargeFontSize	
	

	155
		

																				 self.matrix[r][c].color	 =	
(keyboardEnlargeFontColour[0],keyboardEnlargeFontColour[1],keyb
oardEnlargeFontColour[2],keyboardEnlargeFontColour[3])	
	

	156
		

												if	(isHighlightTextMode):	
	

	157
		

																 primitives.drawRect(rowcol*width/6,	 0,	
vertFlashSize[0],	 vertFlashSize[1],	
vertFlashColour[0],vertFlashColour[1],vertFlashColour[2],vertFl
ashColour[3])	
	

	158
		

								#	If	row	
	

	159
		

								elif	(rowcol	<=	11	and	isDrawHorizFlash):	
	

	160
		

												if	(isEnlargeTextMode):	
	

	161
		

																r	=	rowcol%6	
	

	162
		

																for	c	in	range(0,	len(self.matrix[r])):	
	

	163
		

																				 self.matrix[r][c].font_size	 =	
keyboardEnlargeFontSize	
	

	164
		

																				 self.matrix[r][c].color	 =	
(keyboardEnlargeFontColour[0],keyboardEnlargeFontColour[1],keyb
oardEnlargeFontColour[2],keyboardEnlargeFontColour[3])	
	

	165
		

												if	(isHighlightTextMode):	
	

	166 																 primitives.drawRect(0,	 rowcol%6*height/12,	
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		 horizFlashSize[0],	 horizFlashSize[1],	 horizFlashColour[0],	
horizFlashColour[1],	horizFlashColour[2],	horizFlashColour[3])	
	

	167
		

								return	
	

	168
		

				def	stopFlash(self,	rowcol):	
	

	169
		

								if	(isEnlargeTextMode	==	False):		
	

	170
		

												 return	 #	 No	 need	 to	 stopFlash	 if	 text	 is	 not	
enlarged	
	

	171
		

								#	If	column	
	

	172
		

								if	(rowcol	<=	5	and	isDrawVertFlash):	
	

	173
		

												c	=	rowcol	
	

	174
		

												for	r	in	range(0,	len(self.matrix)):	
	

	175
		

																self.matrix[r][c].font_size	=	keyboardFontSize	
	

	176
		

																 self.matrix[r][c].color	 =	
(keyboardFontColour[0],keyboardFontColour[1],keyboardFontColour
[2],keyboardFontColour[3])	
	

	177
		

								#	If	row	
	

	178
		

								elif	(rowcol	<=	11	and	isDrawHorizFlash):	
	

	179
		

												r	=	rowcol%6	
	

	180
		

												for	c	in	range(0,	len(self.matrix[r])):	
	

	181
		

																self.matrix[r][c].font_size	=	keyboardFontSize	
	

	182
		

																 self.matrix[r][c].color	 =	
(keyboardFontColour[0],keyboardFontColour[1],keyboardFontColour
[2],keyboardFontColour[3])	
	

	183
		

								return		
	

	184
		

				 def	 process(self):	 #	 Called	 on	 each	 box	 clock	 tick	 (this	
can	be	configured	by	right-clicking	the	box)	
	

	185
		

								self.win.dispatch_events()	
	

	186
		

								 glClear(GL_COLOR_BUFFER_BIT	 |	 GL_DEPTH_BUFFER_BIT)	 #	
Set	up	background	
	

	187
		

								if	self.win.has_exit:	
	

	188
		

												self.endExperiment()	
	

	189
		

								else:	
	

	190
		

												#	Show	a	target	for	the	first	target	
	

	191
		

												if	(self.loopCounter	<=	targetDelay):	
	

	192
		

																if	(self.loopCounter	==	0):	
	

	193
		

																				self.getNextTarget()	
	

	194
		

																				self.sendOutput(2,	self.target[0])	
	

	195
		

																				self.sendOutput(2,	self.target[1])	
	

	196
		

																self.drawTarget(self.target[0],	self.target[1])	
	

	197
		

												#	Flash	for	the	next	50	loops	
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	198
		

												elif	(self.loopCounter	<=	targetDelay	+	50):	
	

	199
		

																newStim	=	self.readFlash()	
	

	200
		

																#	Aim	row/column	flash	
	

	201
		

																if	(33025	<=	newStim	and	newStim	<=	33036):	
	

	202
		

																				 self.flash	 =	 self.hashTable[newStim	 -	
OVTK_StimulationId_Label_00]	
	

	203
		

																#	Start	flash	
	

	204
		

																elif	(newStim	==	32779):		
	

	205
		

																				self.startFlash(self.flash)	
	

	206
		

																#	Stop	flash	
	

	207
		

																elif	(newStim	==	32780):	
	

	208
		

																				self.stopFlash(self.flash)	
	

	209
		

																self.sendOutput(1,	newStim)	
	

	210
		

																#	Reset	counter	on	last	loop	
	

	211
		

																if	(self.loopCounter	==	targetDelay	+	50):		
	

	212
		

																				self.loopCounter	=	-1	
	

	213
		

												#get	input	from	user	
	

	214
		

												if	(self.keys[key.A]):	
	

	215
		

																self.text_input	=	"temp"	
	

	216
		

																 self.current_text	 =	 self.current_text	 +	
self.text_input	
	

	217
		

																self.widget.caret.on_text(self.text_input)	
	

	218
		

																self.text_input	=	""	
	

	219
		

												##	Predictive	text	
	

	220
		

												 corrected_text	 =	
word_predictor.correct(self.current_text)	
	

	221
		

												 ypos	 =	 keyboardPositionTop	 -	
(0)*(keyboardPositionTop/5)	
	

	222
		

												xpos		=	0*width/6	
	

	223
		

												temp0	=	pyglet.text.Label(corrected_text[0],		
	

	224
		

																				font_name='Courier	New',	
	

	225
		

																				font_size=keyboardFontSize,	
	

	226
		

																				color=(keyboardFontColour[0],keyboardFontCo
lour[1],keyboardFontColour[2],keyboardFontColour[3]),	
	

	227
		

																				x=xpos,	y=ypos,	
	

	228
		

																				anchor_x='left',	anchor_y='bottom')	
	

	229
		

												
	

	230
		

												 ypos	 =	 keyboardPositionTop	 -	
(0)*(keyboardPositionTop/5)	
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	231
		

												xpos		=	1*width/6	
	

	232
		

												temp1	=	pyglet.text.Label(corrected_text[1],		
	

	233
		

																				font_name='Courier	New',	
	

	234
		

																				font_size=keyboardFontSize,	
	

	235
		

																				color=(keyboardFontColour[0],keyboardFontCo
lour[1],keyboardFontColour[2],keyboardFontColour[3]),	
	

	236
		

																				x=xpos,	y=ypos,	
	

	237
		

																				anchor_x='left',	anchor_y='bottom')	
	

	238
		

													
	

	239
		

												 ypos	 =	 keyboardPositionTop	 -	
(0)*(keyboardPositionTop/5)	
	

	240
		

												xpos		=	2*width/6	
	

	241
		

												temp2	=	pyglet.text.Label(corrected_text[2],		
	

	242
		

																				font_name='Courier	New',	
	

	243
		

																				font_size=keyboardFontSize,	
	

	244
		

																				color=(keyboardFontColour[0],keyboardFontCo
lour[1],keyboardFontColour[2],keyboardFontColour[3]),	
	

	245
		

																				x=xpos,	y=ypos,	
	

	246
		

																				anchor_x='left',	anchor_y='bottom')	
	

	247
		

												self.matrix[0][0]	=	temp0	
	

	248
		

												self.matrix[0][1]	=	temp1	
	

	249
		

												self.matrix[0][2]	=	temp2	
	

	250
		

												#	Draw	keyboard	matrix	
	

	251
		

												for	r	in	range	(0,len(self.matrix)):	
	

	252
		

																for	c	in	range(0,	len(self.matrix[r])):	
	

	253
		

																				self.matrix[r][c].draw()	
	

	254
		

												#	Pyglet/GL	updates									
	

	255
		

												self.batch.draw()		
	

	256
		

												self.win.flip()	
	

	257
		

												self.loopCounter	+=	1	
	

	258
		

								return	
	

	259
		

				 def	 uninitialize(self):	 #	 Called	 once	 when	 stopping	 the	
scenario	
	

	260
		

								return	
	

	261
		

				def	initOutputs(self):	
	

	262
		

								print(len(self.output))	
	

	263
		

								for	index	in	range(len(self.output)):	
	

	264
		

												#	OV	protocol	requires	an	output	stim	header;	dates	
are	0	
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	265
		

												 self.output[index].append(OVStimulationHeader(0.,	
0.))	
	

	266
		

								return	
	

	267
		

				def	sendOutput(self,	index,	stimLabel):	
	

	268
		

								#	A	stimulation	set	is	a	chunk	which	starts	at	current	
time	and	end	time	is	the	time	step	between	two	calls	
	

	269
		

								 stimSet	 =	 OVStimulationSet(self.getCurrentTime(),	
self.getCurrentTime()+1./self.getClock())	
	

	270
		

								 stimSet.append(	 OVStimulation(stimLabel,	
self.getCurrentTime(),	0.)	)	
	

	271
		

								self.output[index].append(stimSet)	
	

	272
		

								return	
	

	273
		

				def	closeOutputs(self):	
	

	274
		

								for	index	in	range(len(self.output)):	
	

	275
		

												#	OV	protocol	requires	an	output	stim	end	
	

	276
		

												end	=	self.getCurrentTime()	
	

	277
		

												 self.output[index].append(OVStimulationEnd(end,	
end))	
	

	278
		

								return		
	

	279
		

box	=	MyOVBox()	

	


