
Deriving Fluents from Sensor Data for Mobile Robots

Mark Witkowski, David Randell and Murray Shanahan

Intelli gent and Interactive Systems Group
Department of Electrical and Electronic Engineering

Imperial College of Science, Technology and Medicine
Exhibition Road

London SW7 2BT
United Kingdom

{ m.witkowski, d.randell , m.shanahan} @ic.ac.uk

Abstract1

In this paper we consider some practical issues of
grounding logical symbols derived from low-level
sensor streams in the context of a miniature mobile
robot. We identify three distinct layers, primitive,
derived and synthetic, at which symbols may be
anchored in order to connect a model-based view of
the robot’s world with its sensory input. The Event
Calculus, a logical formalism for reasoning about
action, forms the basis of an abductive approach to
several related robot tasks, sensor data assimilation,
planning and map building.

1 Introduction

In formal logic, symbols are given an interpretation (i.e.
are given semantic values) by a function that maps them to
entities in a domain. These interpretations may be abstract
or concrete. Without this ascription of semantic values, the
logical system remains uninterpreted, and its constituent
symbols semantically inert. That is to say, the symbols
cannot be said to be about anything - the predicate and
constant names in the language do not denote or refer to
anything. Any sentences constructible in that formal
language (apart from those expressing tautologies)
consequently remain neither true nor false.

Within logic, the ascription of semantic values to the
set of symbols is simply stipulated. But in the case of an
autonomous robot using a logical language to represent and
reason about objects in its domain, the interpretation is
typically concrete. For example, the robot will need to
identify, represent and reason about physical objects,
including other robots, and their relationships. In order to
plan, it will also need to reason about sequences of states,
or events, either actual or hypothetical. Either way, the
robot has to be able to maintain the correspondence of the
symbols in its language, to the set of actual or inferred
entities in its domain, so that it can act effectively upon the
world. Following Coradeschi and Saff iotti (2000), the

Copyright © 2001, American Association for Artificial Intell igence
(www.aaai.org). All rights reserved.

process of establishing and maintaining the correspondence
between abstract representations and features of the real
world (derived from sensor data) will be referred to as
anchoring. The anchoring process defines the point of
contact between the symbolic system and the real world,
and ensures that the otherwise semantically inert symbolic
representations used by the robot can genuinely be said to
be about the world (Konolige et al. 1997; Coradeschi and
Saff iotti 2000). The anchoring issue first appeared in the
AI literature as the “symbol grounding problem”, after
Harnad (1990), although the general problem of the
relationship between sensation and meaning has long been
the subject of debate in philosophy (e.g. Frege 1892;
Russell 1905; Quine 1960).

In this paper, we describe techniques used to address
the problem of symbol grounding in a mobile robot.
Details of the underlying logic formalisation and
implementation approach described in this paper can be
found elsewhere (Shanahan and Witkowski 2000).
Specifically, we show how a stream of continuous data
from the robot’s sensors is meaningfully transformed into a
sequence of discrete symbols, which then participate in the
logical reasoning processes that determine the robot’s
actions. Various robot tasks are discussed, including
navigation, map building and localisation. Central to the
discussion is the notion of a fluent, a function whose value
changes over time. Fluents act as a pivot point between the
robot and the abstract, logical representation it uses. The
problems of map building, localisation and planning for
mobile robots have been effectively addressed using
numerical and probabili stic techniques (e.g. Thrun 1988).
In marked contrast our primary motivation is to investigate
(i) explicit logical representations of actions, events and
the juxtaposition of objects in the robot’s environment, and
(ii) show how well understood automated reasoning tasks
applied to these structures can be used to implement robot
control.

In section 2, we consider three levels at which symbols
may be said to be grounded. Section 3 summarises the
Event Calculus, a formalism for reasoning about action
that can be used to capture the relationship between sensor
events, the robot’s actions, and the actions of other agents.

Section 4 describes how fluents are derived from actual
sensor readings in a miniature Khepera robot.

Section 5 introduces the role of abductive reasoning
(reasoning from events to possible causes). Abduction
forms the basis of the strategy we use to control robots by
logic. Section 6 summarises how abduction may be used to
interpret the incoming sensor data to perform a number of
robot tasks. In the first task, sensor data assimilation,
abduction is used to discover plausible explanations for
incoming sensor fluents in the context of an existing map.
In the second tasks, map building, incoming fluents are
interpreted as new features that can be added to the robot’s
incomplete map of the environment. In the third case,
planning, the robot abduces a sequence of possible actions
to achieve some goal, such as being at a specified location.
In the final task, we briefly consider localisation, which
the robot carries out if no interpretation can be found for its
incoming sensor data that is consistent with the location it
currently thinks it is in.

In this paper it is not our intention to provide a detailed
description of, or justification for, the Event Calculus, as
several accounts are available elsewhere (for instance,
Shanahan 1997). Neither do we consider the logical
inference processes that underpin the abductive reasoning
methods, as these are also considered in detail elsewhere
(Shanahan 1996; Shanahan and Witkowski 2000). Rather,
we focus on the question of the grounding of the symbols
employed in the reasoning system that mediates between
the low-level sensory information supplied by the robot’s
sensors and the low-level control commands issued to its
actuators.

2 Levels of Anchoring
In order to identify the precise interface point between
logical symbolic descriptions of the world and the
incoming sensor data in a physically embodied system, we
identify several levels of increasing abstraction and
structure: (i) primitive, (ii) derived, and (iii) synthetic. At
the lowest (primitive) level raw sensor data streaming from
the sensors is measured. The values obtained are directly
tied to the sensors themselves and are continuous in nature.

At the second processing level, various sensor values
(over time) are combined. It is at this second level, and this
only, that events and states are recognised. This derived
information is characterised by the use of generic
descriptions of features of the robot’s perceived world. For
example, suff icient information from the combined sensory
values will be available to be able to match the sensor data
to a generic description of features, as distinct from a
specific instance of that feature type. That is to say, the
generation of sensory symbols, or rather the mapping of a
sensory-symbol type to incoming sensor data provides a
necessary but not suff icient condition in the recognition of
particular instances of corners, doorways, walls and any
other distinguishing features of the robot’s world.

Having now been able to recognise the signature of
specific features in the robot’s domain, and with a pre-
defined symbolic model of the world, the robot interacting
with its environment becomes capable of naming ground
instances of those features in the world, e.g. corner1,
corner2, and so on. Here, the interpretation stemming from
the model, not only allows recognition of a corner, as a
specific corner, but it also allows re-identification of that
corner. At this synthetic level, the same (derived) input,
related to the model provides a necessary and suff icient
condition for object naming and the maintenance of the
anchoring of the symbols to objects and features of the
robot’s world.

These three levels express a concrete interpretation of
the world, i.e. the objects so anchored refer to actual
physical features in the robot’s domain. An additional
abstract level is also recognised where alternative models
exist that do not (necessarily) denote actual physical
features, realised in the actual world. The three main levels
(the primitive, derived and synthetic) with their increasing
levels of abstraction should not be seen in terms of an
increase of complexity of information maintained; rather
they should be seen in terms of the distance of the point
where observations made reach suff icient bounds in order
to be verified against a model, and where, for example, re-
planning may be required in order to satisfy consistency of
logical model used. In this sense then, the anchoring
process points to the very heart of hypothesis generation
and testing, where a “sanity check” against the world is
rendered not only desirable, but more importantly possible.

Figure 1: The Miniature Office Environment

In this paper we discuss how a small mobile robot may

construct, using a logic representation, a complex synthetic
view of its world, building on a stream of simple sensor
events that arise following actions by the robot. The
robot’s environment is to be interpreted in terms of
“walls” , “corners” , “doors” and “rooms” , in keeping with
our intuitive view of an “off ice” environment. An example
is shown in the photograph of figure 1. A formal
description of the environment (for room4 only), and its
visualisation is shown in figure 2. This description can be
constructed solely from an interpretation placed on the
stream of sensor-derived fluents within a logical model.
The symbolic description shown here was created

automatically using a map building procedure, though such
maps may also be handcrafted.

Specific features in the environment, such as the
individual corners, doors and rooms, must be interpreted as
such, and assigned unique, synthetic names, consistent
with the logical model. Each of sensor-derived fluents
relates only to a simple, local feature, for instance, that the
robot has encountered - a corner, or a door. Each is
anonymous, incoming symbols are not specific to
individual features, but report a feature type.

Sensing on the Khepera robots (K-Team 1995) used is
very restricted. The robot must be within 2cm of a wall or
other feature to detect it. We also use odometry to
determine the length of travel along wall features. Despite
their limitations, these senses, together with certain
restrictions on the design of the environment are suff icient
to drive the logical model and create an interpretation of a
larger map.

/* Room 4 * /
next_corner(r4,c35,c36).
next_corner(r4,c36,c37).
next_corner(r4,c37,c38).
next_corner(r4,c38,c39).
next_corner(r4,c39,c40).
next_corner(r4,c40,c41).
next_corner(r4,c41,c42).
next_corner(r4,c42,c43).
next_corner(r4,c43,c44).
next_corner(r4,c44,c35).

door(d3,c35,c44).
door(d8,c37,c38).
door(d9,c41,c42).
inner(c36).
inner(c39).
inner(c40).
inner(c43).
connects(d3,r4,r1).
connects(d8,r4,r7).
connects(d9,r4,r8).

room4

Figure 2: Visualisation of rooms, and room 4 description

3 Fluents and the Event Calculus
When applying a logic formalism to robotics, it becomes
clear that the scheme used must be able to represent the
effects of actions and the consequential changes that occur
to the robot and the environment. Equally, it must be able
to represent the effects of exogenous events on the robot,
as detected via its sensors. To achieve this, the underlying
ontology (the primitive or given features of a language) of
the Event Calculus is based on fluents, the description of
entities that can change state with time; events (or actions),
that can cause the state of a fluent to change; and time
points, the instants of time at which changes occur. Fluents
can represent the state of a sensor, the position of a robot,

or the state a feature in the environment (for instance,
whether a door is open or not). Action events may be
initiated by the robot (possibly as the result of planning), or
represent other exogenous events within the environment,
causing fluents to change independently of the robot. Time
points are ordered. In a more formal treatment of the Event
Calculus this ordering would be made explicit, here it will
be assumed.

The Event Calculus also defines seven basic predicates,
which fully represent the ways in which fluents and actions
interact, and the time ordering between them:

• Initially(f), indicating that the fluent f holds a value of
true (Initially1) or false (Initially0) at time 0.

• HoldsAt(f,t), indicates that the fluent f holds true at an
instant, t.

• Happens(a,t1,t2), indicates that the action or event a
occurs during the time range bounded by t1 and t2. In
practice this will be quali fied by preconditions,
placing restriction on when a robot might perform an
action, or when an exogenous event is possible.

• Initiates(a,f,t), indicates that fluent f will hold after an
occurrence of action a at time t.

• Terminates(a,f,t), indicates that f will no longer hold
true after an occurrence of a at time t.

• Clipped(t1,f,t2), indicates that the state of fluent f has
altered during the range of times t1 to t2.

• Before(t1,t2), makes explicit the ordering relationship
between a pair of time points.

The Event Calculus has previously been proposed as a

solution to the frame-problem, (Shanahan 1997), as it
overcomes the need to explicitly maintain knowledge
about what does not change as a consequence of
performing actions or due to the occurrence of exogenous
events. This is clearly a major concern when applied to
robotics, but is by no means restricted to robotics tasks,
and the Event Calculus axioms may be used as a “wrapper”
to augment other logic representations where time, change
and the effects of actions must be considered. In principle,
it is possible to record a complete history of events and
changes to fluents (encoded as “ Initially” and “Happens”
formulae), though in a robot environment this may be
neither possible, nor desirable, if the reasoning process is
not to become overwhelmed with extraneous “memories” .

4 Deriving Fluents from Sensors
This section describes the effects of the action events and
generation of sensor event fluents that may be used to
characterise model off ice environments of the form shown
in figure 1 when used with miniature (6cm high) Khepera
mobile robots. As only two of the Khepera’s sensor
modaliti es are used, six of the eight infra-red proximity
sensors (with an effective range of about 2cm, and located
as indicated in the robot outline in figure 3), and wheel

odometry, a number of restrictions are placed on the design
of this environment, which must be rectili near. All rooms
must be connected only by doors and doorways must
follow strict dimensional criteria if the robot is to be able
to detect both doorposts with its sensors.

Sensor events within the Event Calculus program
detect discontinuities (“caused” by the corners, door-posts
and doorways) between features. At the robot level, these
sensor conditions only identify the type of feature, and
must be combined and named to provide a coherent
description and map of the environment.

In the model off ice environment, we use seven distinct
and mutually exclusive conditions to sense all the
significant transition events (fluents) used by the Event
Calculus programs (Left, Right, LeftAndFront,
RightAndFront, LeftGap, RightGap and InDoorway).
These are complemented by five action commands
(Forward, GoLeft, GoRight, Turn and Back). Fluents arise
from actions, and also terminate them.

The sensor fluents Left and Right indicate that the
robot is beside a wall (on its left or right hand side,
respectively) and may follow it Forward until the next
feature. The fluents LeftAndFront and RightAndFront
indicate that the robot has moved forward and encountered
another wall at a concave corner. The robot may then
perform a GoRight or GoLeft action to align itself with that
connecting wall (a Back action allows it to return along the
wall it i s on). The fluents LeftGap and RightGap indicate
that the robot has overshot the wall it i s following. This
occurs in two distinct cases, that of a convex corner (e.g.
c21 or c32 of figure 2) or when a doorpost is encountered
(e.g. c1, c26 or c38). The robot cannot directly
disambiguate these two cases using its sensors, and so
must perform a GoLeft (or GoRight) to follow round the
corner. Sensing a Left or Right indicates a concave corner,
an InDoorway that it was a doorpost. When in a door, the
robot may proceed with actions GoLeft or GoRight to enter
the next room, or perform a Turn (spin round by 180°)
followed by a GoLeft or GoRight to continue in the same
room.

Fluent events are detected by a combination of
changing sensor values and the context in which those
changes are detected. Figure 3 charts the values for
individual readings of the sensors, and the cumulative
rotations of the wheels (‘ left_w’ , diamond markers and
‘ right_w’ , square markers) for a sequence of three
consecutive actions, Forward, GoLeft then GoRight. This
gives rise to three fluents, LeftGap, InDoorway and Right,
as it approaches, enters and finally leaves a doorway in the
environment. At the beginning of the sequence the robot is
aligned with a wall to its left (consequently the last fluent
delivered would have been Left). The Forward action
initiates a period of wall -following, during which the robot
controller attempts to keep a constant distance from the
wall to its left while it progresses forward. This distance is
measured by the ‘ l_90’ (“ left at 90°”) infra-red proximity
sensor (triangle markers), and a simple servo-loop
established to maintain the value within a narrow target
range by differentially adjusting the left and right motor
speeds. The infra-red sensors return a 10bit value; the
value of 400 corresponds to approximately 1cm from the
wall . Note the small correction at the beginning of the
sequence, indicating that the robot was not exactly aligned
parallel with the wall by the previous command. Towards
the end of the Forward sequence the value of l_90 rises
slightly as the robot turns into the corner to compensate for
the otherwise diminishing sensor value. As the robot
overshoots the corner, the value from l_90 drops rapidly.
This precipitates the LeftGap fluent and terminates the
action. The robot is programmed to automatically reverse
to recapture the wall just prior to the gap.

In executing the next command, GoLeft, to enter the
doorway, it may be seen that the robot edges around the
corner (that is the doorpost) by keeping the speed of the
right motor constant and starting and stopping the left
motor to keep the l_90 sensor within a (broader) band of
values. The opposing doorpost is detected by the rapid rise
of sensor r_90 (horizontal bar markers) and the InDoorway
fluent generated. Had the previous LeftGap fluent been
part of a convex corner, the value of r_90 would have

0

2 00

4 00

6 00

8 00

1 00 0

1 20 0

1 40 0

Event number

S
e

n
s

e
 v

a
lu

e lef t_w

right_w

l_90

l_45

l_10

r_10

r_45

r_90

Fluent:
LeftGap

Fluent:
InDoorway

Fluent:
Right

Action: Forward

l_90
l_45

l_10

r_10

r_45
r_90

right

left

Action: GoLeft Action: GoRight

Figure 3: Deriving Fluents from Raw Sensor Events at the Robot Level

remained low, and a Left fluent would have been generated
after the robot had completed a 90° turn. It may be seen
that the GoRight action operates in a similar fashion to exit
the doorway and align the robot with the wall i n the next
room.

While fluents are reported to the logical layer as
instantaneous events, the robot internally treats this symbol
as a “state”, which persists until the next valid action. The
actions available in any of these states is restricted to only
those which can themselves lead to another valid fluent.
For instance, if the robot has detected a concave corner,
say RightAndFront, it may perform a GoLeft action to
align itself with the next wall , or a Back to return along the
right hand wall . It may not, in these circumstances, attempt
to drive or turn into the wall with a Forward or GoRight
action. These action commands and sensor fluents have
been embedded into an “extended BIOS” for the Khepera,
which may be downloaded into the robot’s RAM (or blown
into a replacement ROM), and become available to any
high-level control program via the Khepera’s RS232
communications link. In the next part of the paper we
consider how the logic based robot controller processes
fluents using abduction.

5 Abduction

Abduction is a form of reasoning which attempts to
provide explanations, by established proof procedures, for
given events. Abduction is therefore particularly relevant
to the application of reasoning in logic to robotics, where
we expect a stream of events to be generated by the normal
process of the robot sensing conditions arising (either
through its own actions, or through the occurrence of
extrinsic events) within the robot’s environment. For
example, a robot may encounter an obstacle in its path.
Several possible explanations might be considered. If that
obstacle is already recorded within the robot’s description
of the world, the obstacle’s presence is trivially explained,
and the robot may perform some action to avoid the
obstruction. However, if the robot were currently in an
unexplored part of its environment, the explanation would
clearly involve adding knowledge about the obstacle to the
robot’s model. If not, several alternate explanations could
be formulated from the robot’s description of the world
and it’s properties. It might be that an external agent had
deposited the obstacle while it was not being observed. If
the obstacle is modelled as “ immovable”, this explanation
may have to be discarded. Finally, in this example, the
robot may be forced to the conclusion that it has become
disoriented in its environment, and that object naming is
now without foundation.

Reasoning by abduction is related to, but differs from
deductive reasoning. The process of abduction is directed
toward an explanadum (a fact or observation to be
explained), given a background theory (in this case the
Event Calculus axioms, the robot program and other

components introduced in the previous section). As with
other forms of reasoning, only explanations supported by
the model may be generated. As already noted, abductive
reasoning may give rise to several alternative explanations,
which are (by definition) equally supported, although not
necessarily equally desirable. Boutili er and Becher (1995)
introduce a preference ordering in the context of belief
revision to resolve this problem. We note that the
generation of more than one explanation will have different
effects according to the task being addressed, sometimes
indicative, sometimes benign and sometimes detrimental.
Abductive reasoning has been used to good effect in
model-based diagnosis, where possible explanations of
mal-function must be formed (Davis 1984; de Kleer and
Willi ams 1987).

6 Abduction for Sensor Data Assimilation,
Map Building and Planning

A cognitive robot controller using the Event Calculus
properly consists of the set of Event Calculus axioms
(styled as “EC”), which define the underlying rules for
reasoning about time and change and a domain theory,
robot programs in the event calculus (styled “Σ”) that
describe various interactions between the actual robot and
its environment. An event calculus robot program will , in
turn, consist of:

1) The effects of the robot’s low-level actions on the
environment.

2) A description of impact of the environment on the
robot’s sensors.

3) The effects of high-level actions (for hierarchical
planning).

4) High-level actions in terms of component lower-level
actions.

5) The historical “narrative” of past events (styled as
“∆”).

6) A map of the environment encoded as Event Calculus
axioms.

7) Which predicates are abducible.

Robot control is embedded in a “sense-plan-act” cycle,
which continues ad-infinitum. Short bursts of planning
activity are inter-leaved with actions and sensor gathering.
Planning is a computationally demanding task, often more
so when conducted in a formal reasoning environment than
when performed by ad-hoc planning algorithms. To
alleviate this problem, plans are created hierarchically,
initially from high-level action descriptions. Once a high-
level plan is available (for instance, at the room level), only
the first step is expanded (and the first step of that, etc.)
until a starting sequence composed of only low-level
actions is formed. This is progression order planning
(Shanahan and Witkowski 2000).

This section considers how the abductive reasoning
scheme might be applied to a range of different tasks. In

each case the robot controller is presented with some event
(styled “Γ”), either actual, as in the case of an incoming
sensor event (ΓS), or desired, such as the goal in a plan
(ΓG), which must be explained or otherwise interpreted by
creating a residue of “Happens” formulae (styled “Ψ”) by
automated reasoning. In map building a novel sensor event
(representing an environmental feature) must be
assimilated into the robot’s map and model of its world. In
planning the robot must also generate sequences of actions,
recorded as “Happens” formulae, to achieve its goals.
Because these abductive processes are all similar we note
that the bulk of the event calculus description remains
identical across all the activities. According to the task, the
detailed processes invoked will differ, and in particular, the
set of items declared abducible changes (for example, to
generate plan items during planning but map descriptions
during map building, etc.)

6.1 Sensor Data Assimilation
In sensor assimilation, the explanation of a sensor event
(ΨS) is encapsulated by the abductive entailment:

 EC & Σ & ∆ & ΨS ΓS

That is, generate some new explanation, ΨS, that, when
taken with the Event Calculus axioms (EC), the existing
robot control program and map, (Σ), and the narrative of
past events, which entails the current sensor input ΓS. It is
this step that maintains the anchoring over time of
symbolic names (e.g. c23 or d3 of figure 2) to the physical
objects they denote. Note that this process is not one of
anchor tracking as the percept of the object is not
maintained over time, but rather one of anchor re-
acquisition. Normally, of course, a sensor event will be
consistent with the current map, and so be trivially
explained. Changes to the environment, such as a door
being closed, may equally be explained in this manner
according to the definition Σ. Due to the restrictions
inherent in the Khepera’s sensing, when a door is in place
(“closed”), it appears to form part of a long “wall ” , and the
next fluent encountered will be that of the next feature
around the room. Where the next fluent encountered can be
explained by the closure of a door, the new state of the
door can be noted and the fluent accepted.

The abduced residue must be consistent with the
current plan being executed, if it is not, the plan must be
abandoned and a new one initiated, taking account of the
changes. Where the residue is neither consistent with the
existing map nor be explained in terms of a new map
feature, the robot can conclude it has become disoriented in
the environment and initiate a localisation process.

6.2 Map Building

EC & Σ & ∆ & ΨM ΓS

Map building is a variant of this abductive scheme. If some
sensor event ΓS occurs that cannot be explained by the
map, but could be if the map were extended by the residue
ΨM, then new knowledge has been acquired and the map
can be augmented. New features in the map are
automatically named (using a successor function) and
added to the map description formulae. Clearly, in these
circumstances, the abductive process must give rise to a
single interpretation before the map can be extended. In
contrast to sensor data assimilation, this step creates new
symbols and anchors them to the new feature.

The accuracy of the Khepera’s odometry sense is
inadequate to localise a room feature to a unique place (this
effect may be noted from figure 2, where rooms appear not
to align as they should and walls appear to have varying
thickness). This error is suff icient to cause positional
ambiguity between a group of corners such as c8, c43, c46
and c56. We are therefore obliged to add integrity
constraints (Shanahan and Witkowski 2000), making
explicit, for instance, that a corner cannot be located in two
rooms to restrict the abductively generated alternatives.

We normally consider map building in this way to be a
specific process, rather than an opportunistic activity, with
a complete room explored by progressing around it in a
clockwise (or anti-clockwise) direction. Mapping a
complete environment consists of exploring a room, and
then planning a path through known space to a doorway
that leads to an unexplored room.

6.3 Planning

EC & Σ & ∆0 & ΨP ΓG

In planning, some desired event ΓG is postulated (such as
“HoldsAt(At(C19),t)”), given a current place in the
narrative of events (∆0) and a residue constructed (ΨP) then
describes a sequence of action events that lead to the
desired goal condition (for instance, “Happens(GoLeft,
T100), Happens(Forward, T101), Happens(GoRight,
T102), Happens(Forward, T103), Happens(GoLeft, T104),
Happens(GoRight, T105)”). In this case there may be
several, equally valid, residues, equating to multiple
possible paths through the environment. Several strategies
can be devised to select between them, apart, of course,
from taking the first plan formulated. Minimising the
number of steps is a reasonable measure, and minimising
distance travelled. In this instance though, timing
information is more significant, as the elapsed time to
traverse corners is generally greater than that to follow
walls. Such information is available at the lower, robot
level, but may not be made accessible to the logic level.

6.4 Localisation

EC & Σ & ∆R & ΨL ΓS

In localisation we can attempt to build a residue (ΨL)
comprising exactly one abductive explanation of the
current sensor fluent (ΓS) and the recent history (∆R, that
since the loss of localisation was detected), which is
uniquely consistent with the existing map, and so defines a
current, specific location within the map. While there are
multiple abductive explanations, the robot could still be at
one of a number of locations and further actions are
required to disambiguate these. Should the residue ΨL ever
become empty, the map is no longer valid, and must be
reconstructed.

7 Multiple Robots
We have conducted a number of experiments with multiple
robots operating in the same environment in order to
determine the issues that arise. These issues fall i nto four
categories: 1) To determine whether the existing set of
sensory fluents was adequate to detect other robots, and
indeed, to determine whether the sensors were adequate to
reliably detect another robot. 2) Changes to the Event
Calculus robot program to describe the effects of
encountering other robots, and to allow for additional
abductive explanations about contact with those robots. 3)
Changes to the planning mechanism to account for
additional robots, with the possibilit y of cooperation
between the devices. 4) The role and type of
communication between individual robots.

In general, other robots were found to be effectively
detected by the proximity sensors, but it was not possible
to (reliably) distinguish between an encounter with a
second robot with that with any other object. It is also the
case that pairs of robots might encounter each other at any
point within the environment. If this occurs on a long
“straight” , both detect a (spurious) concave corner. If one
robot is in a doorway, the other robot will , when following
a wall , treat it as a closed door, although the detour around
the curved aspect of the first robot will extend the apparent
length of the combined wall before the next feature.
Encounters between robots when both were turning into a
convex corner or doorway (a GoLeft or GoRight after a
RightGap or LeftGap), or when exiting from a doorway
were found to be particularly problematic. Four sensory
fluents were added to detect the conditions where two
robots meet while one (or both) are in the process of
turning a convex corner (e.g. c32 of figure 2), or entering
or leaving a doorway. The four fluents OCCL and OCCR
(Obstacle Convex Corner Left/Right) and OEDL and
OEDR (Obstacle Exit Door Left/Right) are specific to this
case, they do not occur with a single robot. Unlike the
other fluents, they may therefore be interpreted abductively
without ambiguity.

We have not modified the planning component to
operate in the multiple robot case, but note that, as the
robots may not pass each other, one must retreat to allow
the other to pass. This, and the entirely practical need to
ensure that the robots’ power and communications cables
do not become entangled, the planning and navigation task
will surely focus on avoiding encounters with other robots.

8 Discussion
In this paper we have described our approach to symbol
grounding, using miniature robots to ill ustrate the
processes involved. We have argued that it is possible to
construct sensory fluents from individual primitive sensor
readings. These fluents act as a pivot point between the
physical robot and a logical, synthetic, model of the world
the robot inhabits. We further indicated how abductive
reasoning may be applied to this stream of derived symbols
to interpret them as specific identified and named features
within that world. According to circumstances the
incoming fluents can confirm expectations held by the
robot controller, precipitate changes to planned activities,
or be integrated into a partial map of the environment,
extending the description the robot holds about its world.
By integrating a symbolic representation and the physical
world in this way we provide a means by which the robot
controller can be seen to be validating an otherwise purely
syntactic internal model.

We have referred to sensory fluents as derived, when
they appear as atomic to the robot, and therefore might be
better considered as primitive by our own classification.
While it would undoubtedly be impractical to do so (the
inferencing must operate within the time constraints due to
the dynamics of the robot), it would nevertheless be
possible to extend the robot logical model to provide an
interpretation that allowed for the derivation of the sensory
fluents from the individual sensor readings. For instance,
“primitive fluents” l_90_high (sensor l_90 >600),
l_90_mid (<=600 & >400) and l_90_low (<=400 & >20),
taken in the context of a forward action (first part of figure
3) would describe the wall following activity. Similarly,
l_10_high (>400) would generate the LeftAndFront
sensory fluent, while l_90_off (<=20) a LeftGap fluent.
Note that this is equivalent to an anchor maintenance
process, where a continuous stream of percepts is anchored
to a single object (i.e. the current wall or corner).

As previously noted, the odometry estimates generated
by the Khepera movements are far from perfect, and the
derived positions of features in the environment appear to
drift with successive actions. This is a problem common to
almost all mobile real robot implementations (for instance,
Thrun 1998). Our approach is to treat these as “crisp”
identifications, either the feature falls within an acceptable
bound (i.e. there is no other equivalent feature that allows a
conflicting interpretation), or it does not. This is in direct
contrast, say, to the use of fuzzy boundaries or partial

matching for anchoring tasks (for example, Coradeschi and
Saff iotti 1999, 2001). Equally, primitive and sensory
fluents are crisply generated when the conditions that
characterise them are encountered, and not otherwise. The
effect of positional drift is to cause anchoring to fail , in
which case plan regeneration or localisation must occur.

The Khepera based model presented here is a
simpli fication of what might be expected from a mobile
robot operating in a real environment, one shared with
people. It is characterised by a restricted fluent stream in a
heavily constrained working environment. Our work
continues with larger mobile robots, designed to work in a
full -scale environment, using stereoscopic vision as the
primary sense modality and wireless communications.

To provide a rigorous foundation to the analysis of
camera data, we have developed a visual Region Occlusion
Calculus (ROC), (Randell , Witkowski and Shanahan
2001). The Region Occlusion Calculus extends the earlier
Lines of Sight Calculus of Galton (1994) and builds on the
Region Connection Calculus of Randell , Cui and Cohn
(1992). ROC reduces the possible alignments of pairs of
objects in the visual field to 20 relations. Implicit in the use
of this calculus in a robotics application is the abilit y to
anchor specific regions in the visual image field to named
objects. This is, in effect, the object permanence
phenomenon - objects do not cease to exist or change their
identity when obscured. Such input inevitably generates
streams of many fluents as objects pass in front and behind
each other in the visual field. Abductive reasoning can as a
filter to remove sensory events that are expected/trivially
explained by the model (such as those caused when the
robot moves in a field of stationary objects). The
(hopefully) small residue of conditions, such as those
caused by objects that move in the field, or visual artefacts
such as shadows and reflections, will require detailed
explanation or inference.

Acknowledgements

Work described here has been supported by EPSRC project
GR/N13104, “Cognitive Robotics II ” .

References

Boutili er, C. and Becher, V. 1995. Abduction as Belief

Revision” , Artificial Intelli gence, 77:43-94
Coradeschi, S. and Saff iotti, A. 1999. Anchoring Symbols

to Vision Data by Fuzzy Logic. In: Hunter, A. and
Parsons, S. (eds.) Quantitative and Qualitative
Approaches to Reasoning with Uncertainty, LNAI,
Berlin: Springer (pre-print)

Coradeschi, S. and Saff iotti, A. 2001. Perceptual
Anchoring of Symbols for Action. In proc. 17th IJCAI,
407-412

Coradeschi, S. and Saff iotti, A. 2000. Anchoring Symbols
to Sensor Data; Preliminary Report. In Proc. 17th AAA I,
129-135

Davis, R. 1984. Diagnostic Reasoning Based on Structure
and Behavior. Artificial Intelli gence 24:347-410

de Kleer, J. and Willi ams, B. C. 1987. Diagnosing Multiple
Faults. Artificial Intelli gence 32:97-130

Frege, G. 1892. Über Sinn und Bedeutung (On Sense and
Meaning). Zeitschrift für Philosophie und Philosophische
Kritik. Translation: Geach, P. and Black, M. eds. 1980.
Translations from the Philosophical Writings of Gottlob
Frege, 25-50. Oxford: Blackwell .

Galton, A.P. 1994. Lines of Sight. AISB Workshop on
Spatio-temporal Reasoning

Harnad, S. 1990. The Symbol Grounding Problem. Physica
D, 42:335-346

K-Team. 1995. Khepera User Manual. K-Team SA, Ch. du
Vasset, CP111, 1028 Préverenges, Switzerland, Version
4.06, November 1995

Konolige, K., Myers, K., Ruspini, E. and Saff iotti, A.
1997. The Saphira Architecture: A Design for
Autonomy. Journal of Experimental and Theoretical
Artificial Intelli gence 9(1):215-235

Quine, W. V. 1960. Word and Object. MIT Press
Randell , D., Cui, Z. and Cohn, A.G. 1992. A Spatial Logic

Based on Regions and Connections. In proc. 3rd Int.
Conf. On Knowledge Representation and Reasoning,
165-176.

Randell , D., Witkowski, M. and Shanahan, M. 2001. From
Images to Bodies: Modelli ng and Exploiting Spatial
Occlusion and Motion Parallax. In proc. 17th IJCAI, 57-
63

Russell , B. 1905. On Denoting. Mind XIV:479-493
Shanahan, M. P. 1996. Robotics and the Common Sense

Informatic Situation. In proc. 12th Euro. Conf. on
Artificial Intelli gence (ECAL-96), 684-688

Shanahan, M. P. 1997. Solving the Frame problem: A
Mathematical Investigation of the Common Sense Law
of Inertia, MIT Press.

Shanahan, M. P. and Witkowski, M. 2000. High-level
Robot Control Through Logic. In proc. Agent Theories,
Architectures and Languages (ATAL-2000), Boston,
100-113

Thrun, S. 1998. Learning Maps for Indoor Mobile Robot
Navigation. Artificial Intelli gence, 99:85-111

