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Abstract1 
 
In this paper we consider some practical issues of 
grounding logical symbols derived from low-level 
sensor streams in the context of a miniature mobile 
robot. We identify three distinct layers, primitive, 
derived and synthetic, at which symbols may be 
anchored in order to connect a model-based view of 
the robot’s world with its sensory input. The Event 
Calculus, a logical formalism for reasoning about 
action, forms the basis of an abductive approach to 
several related robot tasks, sensor data assimilation, 
planning and map building.  

1    Introduction 

In formal logic, symbols are given an interpretation (i.e. 
are given semantic values) by a function that maps them to 
entities in a domain. These interpretations may be abstract 
or concrete. Without this ascription of semantic values, the 
logical system remains uninterpreted, and its constituent 
symbols semantically inert. That is to say, the symbols 
cannot be said to be about anything - the predicate and 
constant names in the language do not denote or refer to 
anything. Any sentences constructible in that formal 
language (apart from those expressing tautologies) 
consequently remain neither true nor false. 

Within logic, the ascription of semantic values to the 
set of symbols is simply stipulated. But in the case of an 
autonomous robot using a logical language to represent and 
reason about objects in its domain, the interpretation is 
typically concrete. For example, the robot will need to 
identify, represent and reason about physical objects, 
including other robots, and their relationships. In order to 
plan, it will also need to reason about sequences of states, 
or events, either actual or hypothetical. Either way, the 
robot has to be able to maintain the correspondence of the 
symbols in its language, to the set of actual or inferred 
entities in its domain, so that it can act effectively upon the 
world. Following Coradeschi and Saff iotti (2000), the 
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process of establishing and maintaining the correspondence 
between abstract representations and features of the real 
world (derived from sensor data) will be referred to as 
anchoring. The anchoring process defines the point of 
contact between the symbolic system and the real world, 
and ensures that the otherwise semantically inert symbolic 
representations used by the robot can genuinely be said to 
be about the world (Konolige et al. 1997; Coradeschi and 
Saff iotti 2000). The anchoring issue first appeared in the 
AI literature as the “symbol grounding problem”, after 
Harnad (1990), although the general problem of the 
relationship between sensation and meaning has long been 
the subject of debate in philosophy (e.g. Frege 1892; 
Russell  1905; Quine 1960). 

In this paper, we describe techniques used to address 
the problem of symbol grounding in a mobile robot. 
Details of the underlying logic formalisation and 
implementation approach described in this paper can be 
found elsewhere (Shanahan and Witkowski 2000). 
Specifically, we show how a stream of continuous data 
from the robot’s sensors is meaningfully transformed into a 
sequence of discrete symbols, which then participate in the 
logical reasoning processes that determine the robot’s 
actions. Various robot tasks are discussed, including 
navigation, map building and localisation. Central to the 
discussion is the notion of a fluent, a function whose value 
changes over time. Fluents act as a pivot point between the 
robot and the abstract, logical representation it uses. The 
problems of map building, localisation and planning for 
mobile robots have been effectively addressed using 
numerical and probabili stic techniques (e.g. Thrun 1988). 
In marked contrast our primary motivation is to investigate 
(i) explicit logical representations of actions, events and 
the juxtaposition of objects in the robot’s environment, and 
(ii ) show how well understood automated reasoning tasks 
applied to these structures can be used to implement robot 
control.  

In section 2, we consider three levels at which symbols 
may be said to be grounded. Section 3 summarises the 
Event Calculus, a formalism for reasoning about action 
that can be used to capture the relationship between sensor 
events, the robot’s actions, and the actions of other agents. 



Section 4 describes how fluents are derived from actual 
sensor readings in a miniature Khepera robot.  

Section 5 introduces the role of abductive reasoning 
(reasoning from events to possible causes). Abduction 
forms the basis of the strategy we use to control robots by 
logic. Section 6 summarises how abduction may be used to 
interpret the incoming sensor data to perform a number of 
robot tasks. In the first task, sensor data assimilation, 
abduction is used to discover plausible explanations for 
incoming sensor fluents in the context of an existing map. 
In the second tasks, map building, incoming fluents are 
interpreted as new features that can be added to the robot’s 
incomplete map of the environment. In the third case, 
planning, the robot abduces a sequence of possible actions 
to achieve some goal, such as being at a specified location. 
In the final task, we briefly consider localisation, which 
the robot carries out if no interpretation can be found for its 
incoming sensor data that is consistent with the location it 
currently thinks it is in.  

In this paper it is not our intention to provide a detailed 
description of, or justification for, the Event Calculus, as 
several accounts are available elsewhere (for instance, 
Shanahan 1997). Neither do we consider the logical 
inference processes that underpin the abductive reasoning 
methods, as these are also considered in detail elsewhere 
(Shanahan 1996; Shanahan and Witkowski 2000). Rather, 
we focus on the question of the grounding of the symbols 
employed in the reasoning system that mediates between 
the low-level sensory information supplied by the robot’s 
sensors and the low-level control commands issued to its 
actuators. 

2    Levels of Anchoring 
In order to identify the precise interface point between 
logical symbolic descriptions of the world and the 
incoming sensor data in a physically embodied system, we 
identify several levels of increasing abstraction and 
structure: (i) primitive, (ii ) derived, and (iii ) synthetic. At 
the lowest (primitive) level raw sensor data streaming from 
the sensors is measured. The values obtained are directly 
tied to the sensors themselves and are continuous in nature.  

At the second processing level, various sensor values 
(over time) are combined. It is at this second level, and this 
only, that events and states are recognised. This derived 
information is characterised by the use of generic 
descriptions of features of the robot’s perceived world. For 
example, suff icient information from the combined sensory 
values will be available to be able to match the sensor data 
to a generic description of features, as distinct from a 
specific instance of that feature type. That is to say, the 
generation of sensory symbols, or rather the mapping of a 
sensory-symbol type to incoming sensor data provides a 
necessary but not suff icient condition in the recognition of 
particular instances of corners, doorways, walls and any 
other distinguishing features of the robot’s world.  

Having now been able to recognise the signature of 
specific features in the robot’s domain, and with a pre-
defined symbolic model of the world, the robot interacting 
with its environment becomes capable of naming ground 
instances of those features in the world, e.g. corner1, 
corner2, and so on. Here, the interpretation stemming from 
the model, not only allows recognition of a corner, as a 
specific corner, but it also allows re-identification of that 
corner. At this synthetic level, the same (derived) input, 
related to the model provides a necessary and suff icient 
condition for object naming and the maintenance of the 
anchoring of the symbols to objects and features of the 
robot’s world.  

These three levels express a concrete interpretation of 
the world, i.e. the objects so anchored refer to actual 
physical features in the robot’s domain. An additional 
abstract level is also recognised where alternative models 
exist that do not (necessarily) denote actual physical 
features, realised in the actual world. The three main levels 
(the primitive, derived and synthetic) with their increasing 
levels of abstraction should not be seen in terms of an 
increase of complexity of information maintained; rather 
they should be seen in terms of the distance of the point 
where observations made reach suff icient bounds in order 
to be verified against a model, and where, for example, re-
planning may be required in order to satisfy consistency of 
logical model used. In this sense then, the anchoring 
process points to the very heart of hypothesis generation 
and testing, where a “sanity check” against the world is 
rendered not only desirable, but more importantly possible. 
 

 
Figure 1: The Miniature Office Environment 

 
In this paper we discuss how a small mobile robot may 

construct, using a logic representation, a complex synthetic 
view of its world, building on a stream of simple sensor 
events that arise following actions by the robot. The 
robot’s environment is to be interpreted in terms of 
“walls” , “corners” , “doors” and “rooms” , in keeping with 
our intuitive view of an “off ice” environment. An example 
is shown in the photograph of figure 1. A formal 
description of the environment (for room4 only), and its 
visualisation is shown in figure 2. This description can be 
constructed solely from an interpretation placed on the 
stream of sensor-derived fluents within a logical model. 
The symbolic description shown here was created 



automatically using a map building procedure, though such 
maps may also be handcrafted.  

Specific features in the environment, such as the 
individual corners, doors and rooms, must be interpreted as 
such, and assigned unique, synthetic names, consistent 
with the logical model. Each of sensor-derived fluents 
relates only to a simple, local feature, for instance, that the 
robot has encountered - a corner, or a door. Each is 
anonymous, incoming symbols are not specific to 
individual features, but report a feature type.  

Sensing on the Khepera robots (K-Team 1995) used is 
very restricted. The robot must be within 2cm of a wall or 
other feature to detect it. We also use odometry to 
determine the length of travel along wall features. Despite 
their limitations, these senses, together with certain 
restrictions on the design of the environment are suff icient 
to drive the logical model and create an interpretation of a 
larger map. 

 

/* Room 4 * /
next_corner(r4,c35,c36).
next_corner(r4,c36,c37).
next_corner(r4,c37,c38).
next_corner(r4,c38,c39).
next_corner(r4,c39,c40).
next_corner(r4,c40,c41).
next_corner(r4,c41,c42).
next_corner(r4,c42,c43).
next_corner(r4,c43,c44).
next_corner(r4,c44,c35).

door(d3,c35,c44).
door(d8,c37,c38).
door(d9,c41,c42).
inner(c36).
inner(c39).
inner(c40).
inner(c43).
connects(d3,r4,r1).
connects(d8,r4,r7).
connects(d9,r4,r8).

room4

 
Figure 2: Visualisation of rooms, and room 4 description 

3    Fluents and the Event Calculus 
When applying a logic formalism to robotics, it becomes 
clear that the scheme used must be able to represent the 
effects of actions and the consequential changes that occur 
to the robot and the environment. Equally, it must be able 
to represent the effects of exogenous events on the robot, 
as detected via its sensors. To achieve this, the underlying 
ontology (the primitive or given features of a language) of 
the Event Calculus is based on fluents, the description of 
entities that can change state with time; events (or actions), 
that can cause the state of a fluent to change; and time 
points, the instants of time at which changes occur. Fluents 
can represent the state of a sensor, the position of a robot, 

or the state a feature in the environment (for instance, 
whether a door is open or not). Action events may be 
initiated by the robot (possibly as the result of planning), or 
represent other exogenous events within the environment, 
causing fluents to change independently of the robot. Time 
points are ordered. In a more formal treatment of the Event 
Calculus this ordering would be made explicit, here it will 
be assumed.  

The Event Calculus also defines seven basic predicates, 
which fully represent the ways in which fluents and actions 
interact, and the time ordering between them: 
 

• Initially(f), indicating that the fluent f holds a value of 
true (Initially1) or false (Initially0) at time 0. 

• HoldsAt(f,t), indicates that the fluent f holds true at an 
instant, t. 

• Happens(a,t1,t2), indicates that the action or event a 
occurs during the time range bounded by t1 and t2. In 
practice this will be quali fied by preconditions, 
placing restriction on when a robot might perform an 
action, or when an exogenous event is possible. 

• Initiates(a,f,t), indicates that fluent f will hold after an 
occurrence of action a at time t. 

• Terminates(a,f,t), indicates that f will no longer hold 
true after an occurrence of a at time t. 

• Clipped(t1,f,t2), indicates that the state of fluent f has 
altered during the range of times t1 to t2. 

• Before(t1,t2), makes explicit the ordering relationship 
between a pair of time points. 

 
The Event Calculus has previously been proposed as a 

solution to the frame-problem, (Shanahan 1997), as it 
overcomes the need to explicitly maintain knowledge 
about what does not change as a consequence of 
performing actions or due to the occurrence of exogenous 
events. This is clearly a major concern when applied to 
robotics, but is by no means restricted to robotics tasks, 
and the Event Calculus axioms may be used as a “wrapper” 
to augment other logic representations where time, change 
and the effects of actions must be considered. In principle, 
it is possible to record a complete history of events and 
changes to fluents (encoded as “ Initially” and “Happens” 
formulae), though in a robot environment this may be 
neither possible, nor desirable, if the reasoning process is 
not to become overwhelmed with extraneous “memories” .     

4    Deriving Fluents from Sensors 
This section describes the effects of the action events and 
generation of sensor event fluents that may be used to 
characterise model off ice environments of the form shown 
in figure 1 when used with miniature (6cm high) Khepera 
mobile robots. As only two of the Khepera’s sensor 
modaliti es are used, six of the eight infra-red proximity 
sensors (with an effective range of about 2cm, and located 
as indicated in the robot outline in figure 3), and wheel 



odometry, a number of restrictions are placed on the design 
of this environment, which must be rectili near. All rooms 
must be connected only by doors and doorways must 
follow strict dimensional criteria if the robot is to be able 
to detect both doorposts with its sensors.   

Sensor events within the Event Calculus program 
detect discontinuities  (“caused” by the corners, door-posts 
and doorways) between features. At the robot level, these 
sensor conditions only identify the type of feature, and 
must be combined and named to provide a coherent 
description and map of the environment.  

In the model off ice environment, we use seven distinct 
and mutually exclusive conditions to sense all the 
significant transition events (fluents) used by the Event 
Calculus programs (Left, Right, LeftAndFront, 
RightAndFront, LeftGap, RightGap and InDoorway). 
These are complemented by five action commands 
(Forward, GoLeft, GoRight, Turn and Back). Fluents arise 
from actions, and also terminate them.  

The sensor fluents Left and Right indicate that the 
robot is beside a wall (on its left or right hand side, 
respectively) and may follow it Forward until the next 
feature. The fluents LeftAndFront and RightAndFront 
indicate that the robot has moved forward and encountered 
another wall at a concave corner. The robot may then 
perform a GoRight or GoLeft action to align itself with that 
connecting wall (a Back action allows it to return along the 
wall it i s on). The fluents LeftGap and RightGap indicate 
that the robot has overshot the wall it i s following. This 
occurs in two distinct cases, that of a convex corner (e.g. 
c21 or c32 of figure 2) or when a doorpost is encountered 
(e.g. c1, c26 or c38). The robot cannot directly 
disambiguate these two cases using its sensors, and so 
must perform a GoLeft (or GoRight) to follow round the 
corner. Sensing a Left or Right indicates a concave corner, 
an InDoorway that it was a doorpost. When in a door, the 
robot may proceed with actions GoLeft or GoRight to enter 
the next room, or perform a Turn (spin round by 180°) 
followed by a GoLeft or GoRight to continue in the same 
room.  

Fluent events are detected by a combination of 
changing sensor values and the context in which those 
changes are detected. Figure 3 charts the values for 
individual readings of the sensors, and the cumulative 
rotations of the wheels (‘ left_w’ , diamond markers and 
‘ right_w’ , square markers) for a sequence of three 
consecutive actions, Forward, GoLeft then GoRight. This 
gives rise to three fluents, LeftGap, InDoorway and Right, 
as it approaches, enters and finally leaves a doorway in the 
environment. At the beginning of the sequence the robot is 
aligned with a wall to its left (consequently the last fluent 
delivered would have been Left). The Forward action 
initiates a period of wall -following, during which the robot 
controller attempts to keep a constant distance from the 
wall to its left while it progresses forward. This distance is 
measured by the ‘ l_90’ (“ left at 90°” ) infra-red proximity 
sensor (triangle markers), and a simple servo-loop 
established to maintain the value within a narrow target 
range by differentially adjusting the left and right motor 
speeds. The infra-red sensors return a 10bit value; the 
value of 400 corresponds to approximately 1cm from the 
wall . Note the small correction at the beginning of the 
sequence, indicating that the robot was not exactly aligned 
parallel with the wall by the previous command. Towards 
the end of the Forward sequence the value of l_90 rises 
slightly as the robot turns into the corner to compensate for 
the otherwise diminishing sensor value. As the robot 
overshoots the corner, the value from l_90 drops rapidly. 
This precipitates the LeftGap fluent and terminates the 
action. The robot is programmed to automatically reverse 
to recapture the wall just prior to the gap. 

In executing the next command, GoLeft, to enter the 
doorway, it may be seen that the robot edges around the 
corner (that is the doorpost) by keeping the speed of the 
right motor constant and starting and stopping the left 
motor to keep the l_90 sensor within a (broader) band of 
values. The opposing doorpost is detected by the rapid rise 
of sensor r_90 (horizontal bar markers) and the InDoorway 
fluent generated. Had the previous LeftGap fluent been 
part of a convex corner, the value of r_90 would have 

0

2 00

4 00

6 00

8 00

1 00 0

1 20 0

1 40 0

Event number

S
e

n
s

e
 v

a
lu

e lef t_w

right_w

l_90

l_45

l_10

r_10

r_45

r_90

Fluent:
LeftGap

Fluent:
InDoorway

Fluent:
Right

Action: Forward

l_90
l_45

l_10

r_10

r_45
r_90

right

left

Action: GoLeft Action: GoRight

 
Figure 3: Deriving Fluents from Raw Sensor Events at the Robot Level 



remained low, and a Left fluent would have been generated 
after the robot had completed a 90° turn. It may be seen 
that the GoRight action operates in a similar fashion to exit 
the doorway and align the robot with the wall i n the next 
room. 

While fluents are reported to the logical layer as 
instantaneous events, the robot internally treats this symbol 
as a “state”, which persists until the next valid action. The 
actions available in any of these states is restricted to only 
those which can themselves lead to another valid fluent. 
For instance, if the robot has detected a concave corner, 
say RightAndFront, it may perform a GoLeft action to 
align itself with the next wall , or a Back to return along the 
right hand wall . It may not, in these circumstances, attempt 
to drive or turn into the wall with a Forward or GoRight 
action. These action commands and sensor fluents have 
been embedded into an “extended BIOS” for the Khepera, 
which may be downloaded into the robot’s RAM (or blown 
into a replacement ROM), and become available to any 
high-level control program via the Khepera’s RS232 
communications link. In the next part of the paper we 
consider how the logic based robot controller processes 
fluents using abduction.   

5    Abduction 

Abduction is a form of reasoning which attempts to 
provide explanations, by established proof procedures, for 
given events. Abduction is therefore particularly relevant 
to the application of reasoning in logic to robotics, where 
we expect a stream of events to be generated by the normal 
process of the robot sensing conditions arising (either 
through its own actions, or through the occurrence of 
extrinsic events) within the robot’s environment. For 
example, a robot may encounter an obstacle in its path. 
Several possible explanations might be considered. If that 
obstacle is already recorded within the robot’s description 
of the world, the obstacle’s presence is trivially explained, 
and the robot may perform some action to avoid the 
obstruction. However, if the robot were currently in an 
unexplored part of its environment, the explanation would 
clearly involve adding knowledge about the obstacle to the 
robot’s model. If not, several alternate explanations could 
be formulated from the robot’s description of the world 
and it’s properties. It might be that an external agent had 
deposited the obstacle while it was not being observed. If 
the obstacle is modelled as “ immovable”, this explanation 
may have to be discarded. Finally, in this example, the 
robot may be forced to the conclusion that it has become 
disoriented in its environment, and that object naming is 
now without foundation.  

Reasoning by abduction is related to, but differs from 
deductive reasoning. The process of abduction is directed 
toward an explanadum (a fact or observation to be 
explained), given a background theory (in this case the 
Event Calculus axioms, the robot program and other 

components introduced in the previous section). As with 
other forms of reasoning, only explanations supported by 
the model may be generated. As already noted, abductive 
reasoning may give rise to several alternative explanations, 
which are (by definition) equally supported, although not 
necessarily equally desirable. Boutili er and Becher (1995) 
introduce a preference ordering in the context of belief 
revision to resolve this problem. We note that the 
generation of more than one explanation will have different 
effects according to the task being addressed, sometimes 
indicative, sometimes benign and sometimes detrimental. 
Abductive reasoning has been used to good effect in 
model-based diagnosis, where possible explanations of 
mal-function must be formed (Davis 1984; de Kleer and 
Willi ams 1987).    

6    Abduction for Sensor Data Assimilation, 
Map Building and Planning 

A cognitive robot controller using the Event Calculus 
properly consists of the set of Event Calculus axioms 
(styled as “EC”), which define the underlying rules for 
reasoning about time and change and a domain theory, 
robot programs in the event calculus (styled “Σ” ) that 
describe various interactions between the actual robot and 
its environment. An event calculus robot program will , in 
turn, consist of: 
 

1) The effects of the robot’s low-level actions on the 
environment.  

2) A description of impact of the environment on the 
robot’s sensors. 

3) The effects of high-level actions (for hierarchical 
planning). 

4) High-level actions in terms of component lower-level 
actions. 

5) The historical “narrative” of past events (styled as 
“∆” ).  

6) A map of the environment encoded as Event Calculus 
axioms. 

7) Which predicates are abducible. 
 

Robot control is embedded in a “sense-plan-act” cycle, 
which continues ad-infinitum. Short bursts of planning 
activity are inter-leaved with actions and sensor gathering. 
Planning is a computationally demanding task, often more 
so when conducted in a formal reasoning environment than 
when performed by ad-hoc planning algorithms. To 
alleviate this problem, plans are created hierarchically, 
initially from high-level action descriptions. Once a high-
level plan is available (for instance, at the room level), only 
the first step is expanded (and the first step of that, etc.) 
until a starting sequence composed of only low-level 
actions is formed. This is progression order planning 
(Shanahan and Witkowski 2000).  

This section considers how the abductive reasoning 
scheme might be applied to a range of different tasks. In 



each case the robot controller is presented with some event 
(styled “Γ” ), either actual, as in the case of an incoming 
sensor event (ΓS), or desired, such as the goal in a plan 
(ΓG), which must be explained or otherwise interpreted by 
creating a residue of “Happens” formulae (styled “Ψ” ) by 
automated reasoning. In map building a novel sensor event 
(representing an environmental feature) must be 
assimilated into the robot’s map and model of its world. In 
planning the robot must also generate sequences of actions, 
recorded as “Happens” formulae, to achieve its goals. 
Because these abductive processes are all similar we note 
that the bulk of the event calculus description remains 
identical across all the activities. According to the task, the 
detailed processes invoked will differ, and in particular, the 
set of items declared abducible changes (for example, to 
generate plan items during planning but map descriptions 
during map building, etc.) 

6.1    Sensor Data Assimilation 
In sensor assimilation, the explanation of a sensor event 
(ΨS) is encapsulated by the abductive entailment: 
 
 EC & Σ & ∆ & ΨS     ΓS  
 

That is, generate some new explanation, ΨS, that, when 
taken with the Event Calculus axioms (EC), the existing 
robot control program and map, (Σ), and the narrative of 
past events, which entails the current sensor input ΓS. It is 
this step that maintains the anchoring over time of 
symbolic names (e.g. c23 or d3 of figure 2) to the physical 
objects they denote.  Note that this process is not one of 
anchor tracking as the percept of the object is not 
maintained over time, but rather one of anchor re-
acquisition. Normally, of course, a sensor event will be 
consistent with the current map, and so be trivially 
explained. Changes to the environment, such as a door 
being closed, may equally be explained in this manner 
according to the definition Σ. Due to the restrictions 
inherent in the Khepera’s sensing, when a door is in place 
(“closed”), it appears to form part of a long “wall ” , and the 
next fluent encountered will be that of the next feature 
around the room. Where the next fluent encountered can be 
explained by the closure of a door, the new state of the 
door can be noted and the fluent accepted. 

The abduced residue must be consistent with the 
current plan being executed, if it is not, the plan must be 
abandoned and a new one initiated, taking account of the 
changes. Where the residue is neither consistent with the 
existing map nor be explained in terms of a new map 
feature, the robot can conclude it has become disoriented in 
the environment and initiate a localisation process. 

6.2    Map Building 
  

EC & Σ & ∆ & ΨM     ΓS  

 
Map building is a variant of this abductive scheme. If some 
sensor event ΓS occurs that cannot be explained by the 
map, but could be if the map were extended by the residue 
ΨM, then new knowledge has been acquired and the map 
can be augmented. New features in the map are 
automatically named (using a successor function) and 
added to the map description formulae. Clearly, in these 
circumstances, the abductive process must give rise to a 
single interpretation before the map can be extended. In 
contrast to sensor data assimilation, this step creates new 
symbols and anchors them to the new feature. 

The accuracy of the Khepera’s odometry sense is 
inadequate to localise a room feature to a unique place (this 
effect may be noted from figure 2, where rooms appear not 
to align as they should and walls appear to have varying 
thickness). This error is suff icient to cause positional 
ambiguity between a group of corners such as c8, c43, c46 
and c56. We are therefore obliged to add integrity 
constraints (Shanahan and Witkowski 2000), making 
explicit, for instance, that a corner cannot be located in two 
rooms to restrict the abductively generated alternatives.  

We normally consider map building in this way to be a 
specific process, rather than an opportunistic activity, with 
a complete room explored by progressing around it in a 
clockwise (or anti-clockwise) direction. Mapping a 
complete environment consists of exploring a room, and 
then planning a path through known space to a doorway 
that leads to an unexplored room.  

6.3    Planning 
 
EC & Σ & ∆0 & ΨP     ΓG  

 
In planning, some desired event ΓG is postulated (such as 
“HoldsAt(At(C19),t)” ), given a current place in the 
narrative of events (∆0) and a residue constructed (ΨP) then 
describes a sequence of action events that lead to the 
desired goal condition (for instance, “Happens(GoLeft, 
T100), Happens(Forward, T101), Happens(GoRight, 
T102), Happens(Forward, T103), Happens(GoLeft, T104), 
Happens(GoRight, T105)” ). In this case there may be 
several, equally valid, residues, equating to multiple 
possible paths through the environment. Several strategies 
can be devised to select between them, apart, of course, 
from taking the first plan formulated. Minimising the 
number of steps is a reasonable measure, and minimising 
distance travelled. In this instance though, timing 
information is more significant, as the elapsed time to 
traverse corners is generally greater than that to follow 
walls. Such information is available at the lower, robot 
level, but may not be made accessible to the logic level. 

 
 



6.4    Localisation 
  

EC & Σ & ∆R & ΨL     ΓS  
 

In localisation we can attempt to build a residue (ΨL) 
comprising exactly one abductive explanation of the 
current sensor fluent (ΓS) and the recent history (∆R, that 
since the loss of localisation was detected), which is 
uniquely consistent with the existing map, and so defines a 
current, specific location within the map. While there are 
multiple abductive explanations, the robot could still be at 
one of a number of locations and further actions are 
required to disambiguate these. Should the residue ΨL ever 
become empty, the map is no longer valid, and must be 
reconstructed.    

7    Multiple Robots 
We have conducted a number of experiments with multiple 
robots operating in the same environment in order to 
determine the issues that arise. These issues fall i nto four 
categories: 1) To determine whether the existing set of 
sensory fluents was adequate to detect other robots, and 
indeed, to determine whether the sensors were adequate to 
reliably detect another robot. 2) Changes to the Event 
Calculus robot program to describe the effects of 
encountering other robots, and to allow for additional 
abductive explanations about contact with those robots. 3) 
Changes to the planning mechanism to account for 
additional robots, with the possibilit y of cooperation 
between the devices. 4) The role and type of 
communication between individual robots. 

In general, other robots were found to be effectively 
detected by the proximity sensors, but it was not possible 
to (reliably) distinguish between an encounter with a 
second robot with that with any other object. It is also the 
case that pairs of robots might encounter each other at any 
point within the environment. If this occurs on a long 
“straight” , both detect a (spurious) concave corner. If one 
robot is in a doorway, the other robot will , when following 
a wall , treat it as a closed door, although the detour around 
the curved aspect of the first robot will extend the apparent 
length of the combined wall before the next feature. 
Encounters between robots when both were turning into a 
convex corner or doorway (a GoLeft or GoRight after a 
RightGap or LeftGap), or when exiting from a doorway 
were found to be particularly problematic. Four sensory 
fluents were added to detect the conditions where two 
robots meet while one (or both) are in the process of 
turning a convex corner (e.g. c32 of figure 2), or entering 
or leaving a doorway. The four fluents OCCL and OCCR 
(Obstacle Convex Corner Left/Right) and OEDL and 
OEDR (Obstacle Exit Door Left/Right) are specific to this 
case, they do not occur with a single robot. Unlike the 
other fluents, they may therefore be interpreted abductively 
without ambiguity.  

We have not modified the planning component to 
operate in the multiple robot case, but note that, as the 
robots may not pass each other, one must retreat to allow 
the other to pass. This, and the entirely practical need to 
ensure that the robots’ power and communications cables 
do not become entangled, the planning and navigation task 
will surely focus on avoiding encounters with other robots.  

8     Discussion 
In this paper we have described our approach to symbol 
grounding, using miniature robots to ill ustrate the 
processes involved. We have argued that it is possible to 
construct sensory fluents from individual primitive sensor 
readings. These fluents act as a pivot point between the 
physical robot and a logical, synthetic, model of the world 
the robot inhabits. We further indicated how abductive 
reasoning may be applied to this stream of derived symbols 
to interpret them as specific identified and named features 
within that world. According to circumstances the 
incoming fluents can confirm expectations held by the 
robot controller, precipitate changes to planned activities, 
or be integrated into a partial map of the environment, 
extending the description the robot holds about its world. 
By integrating a symbolic representation and the physical 
world in this way we provide a means by which the robot 
controller can be seen to be validating an otherwise purely 
syntactic internal model.  

We have referred to sensory fluents as derived, when 
they appear as atomic to the robot, and therefore might be 
better considered as primitive by our own classification. 
While it would undoubtedly be impractical to do so (the 
inferencing must operate within the time constraints due to 
the dynamics of the robot), it would nevertheless be 
possible to extend the robot logical model to provide an 
interpretation that allowed for the derivation of the sensory 
fluents from the individual sensor readings. For instance, 
“primitive fluents” l_90_high (sensor l_90 >600), 
l_90_mid (<=600 & >400) and l_90_low (<=400 & >20), 
taken in the context of a forward action (first part of figure 
3) would describe the wall following activity. Similarly, 
l_10_high (>400) would generate the LeftAndFront 
sensory fluent, while l_90_off (<=20) a LeftGap fluent. 
Note that this is equivalent to an anchor maintenance 
process, where a continuous stream of percepts is anchored 
to a single object (i.e. the current wall or corner).  

As previously noted, the odometry estimates generated 
by the Khepera movements are far from perfect, and the 
derived positions of features in the environment appear to 
drift with successive actions. This is a problem common to 
almost all mobile real robot implementations (for instance, 
Thrun 1998). Our approach is to treat these as “crisp” 
identifications, either the feature falls within an acceptable 
bound (i.e. there is no other equivalent feature that allows a 
conflicting interpretation), or it does not. This is in direct 
contrast, say, to the use of fuzzy boundaries or partial 



matching for anchoring tasks (for example, Coradeschi and 
Saff iotti 1999, 2001). Equally, primitive and sensory 
fluents are crisply generated when the conditions that 
characterise them are encountered, and not otherwise. The 
effect of positional drift is to cause anchoring to fail , in 
which case plan regeneration or localisation must occur. 

The Khepera based model presented here is a 
simpli fication of what might be expected from a mobile 
robot operating in a real environment, one shared with 
people. It is characterised by a restricted fluent stream in a 
heavily constrained working environment. Our work 
continues with larger mobile robots, designed to work in a 
full -scale environment, using stereoscopic vision as the 
primary sense modality and wireless communications.  

To provide a rigorous foundation to the analysis of 
camera data, we have developed a visual Region Occlusion 
Calculus (ROC), (Randell , Witkowski and Shanahan 
2001). The Region Occlusion Calculus extends the earlier 
Lines of Sight Calculus of Galton (1994) and builds on the 
Region Connection Calculus of Randell , Cui and Cohn 
(1992). ROC reduces the possible alignments of pairs of 
objects in the visual field to 20 relations. Implicit in the use 
of this calculus in a robotics application is the abilit y to 
anchor specific regions in the visual image field to named 
objects. This is, in effect, the object permanence 
phenomenon - objects do not cease to exist or change their 
identity when obscured. Such input inevitably generates 
streams of many fluents as objects pass in front and behind 
each other in the visual field. Abductive reasoning can as a 
filter to remove sensory events that are expected/trivially 
explained by the model (such as those caused when the 
robot moves in a field of stationary objects). The 
(hopefully) small residue of conditions, such as those 
caused by objects that move in the field, or visual artefacts 
such as shadows and reflections, will  require detailed 
explanation or inference.  
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