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Abstract. This paper reports on an investigation using occlusion 
calculi to interpret digital images. Using a minimal set of digital, 
region-relation detectors, and assuming a continuous interpretation 
of physical space, we show how existing calculi can be augmented 
and embedded in the Event Calculus to interpolate and recover a 
larger set of occlusion relations than are otherwise available at the 
basic detector level.1  

1     INTRODUCTION 
Abstracting and reasoning about high-level symbolic spatial 
information about extended bodies (or regions) has long been a 
motivating ontological assumption used in Qualitative Spatial 
Reasoning (QSR) research. That several suitably expressive QSR 
logics have subsequently turned out to have interesting and useful 
computational properties has added to this general degree of 
confidence in their use [2,3]. QSR applications cover such diverse 
areas as querying spatial databases linked to GIS, the encoding of 
vague concepts, and in processing visual information using real-
world images [3,10]. In terms of practical applications however, 
few have applied themselves to the task of deploying these logics 
on simulated or real-world machine-vision systems.  

Given the relative absence of published work along these latter 
lines, plus the fact that QSR has now been an active research topic 
in AI for at least 17 years, it is perhaps time to enquire why, and 
despite the large number of spatial logics QSR has spawned, QSR 
has not made more headway here than it has. To this end, we have 
honed in on a subset of QSR logics known as occlusion calculi [5, 
8, 10, 11] and in particular have singled out Galton’s Lines Of 
Sight (LOS-14) calculus [5] with which to interpret 3D convex 
bodies in terms of their projected images. We wish to examine to 
what extent occlusion calculi can be used to interpret idealised, 
real-world two-dimensional digital images returned by a camera.  

If we assume (as we do) that our regions are derived directly as 
the segmented images of physical bodies, then spatial occlusion 
events becomes a significant issue as several ontological 
assumptions of existing QSR logics (e.g. that the extent of the 
regions in question is known a priori, and that the embedding 
space is continuous) no longer hold. As we show, these and other 
assumptions have significant ramifications for digital geometry [7] 
and QSR logics in general. 

In order to strengthen and simplify our example, we (i) modify 
the ontological base on which the original LOS-14 calculus was 
built to handle a discrete (digitised) rather than a continuous model 
of space, (ii) embed the logic in an abductive inferential framework 
using the Event Calculus and exploit Conceptual Neighbourhood 
Diagrams (CNDs) in order to interpolate (by abduction) spatial 
relations not directly encoded in our set of region-relation 
detectors, (iii) simplify the segmentation process by individuating 
regions as aggregates of pixels falling within a specific colour-hue 
range, and (iv) assume a computational model of region identity, to 
track regions over time (e.g. [12]). 
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 The rest of this paper is structured as follows. In section 2 we 
introduce occlusion calculi. Three important limiting assumptions 
are challenged, (i) that the extent of regions is known a priori, (ii) 
that embedding space is continuous, and (iii) that region boundary 
information can be reliably extracted from real images.  In section 
3 we introduce a discrete mereotopological theory. This is used to 
define the logical properties of regions and relations extracted from 
segmented digitised images, and specify the logical properties of a 
small set of region, and region-relation detectors. In section 4 the 
detectors are mapped to the relation set of LOS-14. Section 5 
presents an overview of a practical implementation of the 
detectors. In section 6, the Event Calculus is used to abductively 
infer occlusion relations from an assumed temporal succession of 
detector states extracted from a sequence of images. Concluding 
remarks are made in section 7. 

2    OCCLUSION CALCULI 
Region-based Occlusion Calculi for vision applications originated 
with Galton’s Lines of Sight paper (LOS-14) [5]; this was followed 
by The Region Occlusion Calculus (ROC-20) [10], [11], and 
Kohler’s Occlusion Calculus [8]. These calculi spring from the 
general development of QSR formalisms, calculi and algebras that 
have been developed over the years for modelling sub-theories of 
space. In contrast to other QSR spatial formalisms, occlusion 
calculi adopt a distinctive viewpoint-centred model of space where 
visual spatial relations on bodies (or regions) are mapped to 
corresponding spatial relations on their images. 
 At least two of these logics (LOS-14 and ROC-20) assume a 
continuous embedding model of space, and each factors out a 
Jointly Exhaustive and Pairwise Disjoint (JEPD) set of relations. 
Constraints on the interpretation of the regions, primitive functions 
and relations used, mean the degree of theory overlap between 
them varies. For example, Galton’s LOS-14, defined on discrete 
convex bodies, identifies 14 JEPD relations (see Figure 1), 
whereas ROC-20 relaxing this convexity constraint identifies 20. 
All the relations defined in LOS-14 have analogues in ROC-20, and 
both are built on the set of relations identified in the spatial logic 
RCC-8 [9]. In contrast, Kohler’s Occlusion Calculus builds on the 
weaker set of relations defined in the spatial logic RCC-5 [2].  

As is common with many QSR theories, each JEPD relation set 
is re-worked into a conceptual neighbourhood diagram (CND). 
These diagrams encode the continuous transitions allowed between 
pairs of spatial relations [4]. For example, in LOS-14, a direct 
transition exists between C/2 (clears), and JC/2 (just clears) but not 
between C/2 and PH/2 (partially hides); where here and elsewhere, 
the R/n notation used, identifies an n-ary relation. The same CND 
can also be used to justify interpolated relations, as in the case 
where JC/2 is inferred given a detected transition between C/2 and 
PH/2 – see Figure 1. 

  



2.1 Occlusion Calculi: some assumptions 
Given that all the occlusion calculi described here are to a large 
extent, theoretically motivated, their ontological assumptions need 
to be carefully examined given we seek to ground the logical 
primitives in real image data.  

The first assumption noted is that the extent of the bodies is 
assumed known a priori, or is at least directly inferable from other 
information present. However, in the presence of opacity, the mode 
and extent of visual overlap between bodies is more often than not 
indeterminate. For example, consider the CND of LOS-14 depicted 
in Figure 1. Of the 14 possible occlusion relations, 12 rely on part 
of one body being hidden by another, while only 8 have both 
bodies directly visible. On the assumption that the physical bodies 
giving rise to image regions are opaque, and therefore that their 
hidden extent cannot be determined from any given viewpoint, 
only three distinct relations of this type can be reliably 
distinguished. This is discussed in detail later.   
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Figure 1:  The conceptual neighbourhood diagram LOS-14 

 
 The second assumption is that all the existing occlusion calculi 
assume a continuous model of space. As is now well known, the 
spatial logic RCC8 used in [5,7,9] disallows atomic regions; 
otherwise the whole calculus is rendered inconsistent [9]. Yet 
clearly, the space modelled by pixel-arrays is discrete, and if 
individual pixels here cannot be treated as atomic regions, how 
then can digital images provide a model for these calculi? The 
continuous vs. discrete issue for QSR formalisms is also discussed 
in [6], [13] where discrete variants of the RCC8 calculus are 
motivated and developed. Also, and related to this point, is how we 
interpret the primitives of these logics. Take for example the 
relation C/2 used in LOS-14 (see Figure 1), or its analogue relation 
NonOccludesDC/2 used in ROC-20. Whether we choose to 
interpret these relations in terms of lines of sight (as in LOS-14) or 
as a pencil of half-lines extending from some viewpoint point v, to 
infinity (as in ROC-20), a fundamental difference arises when 
using the projective plane defined on the real numbers compared 
with a viewer-centred discrete interpretation of space. In the first 
case, the spatial relation C(A,B) is always true whatever the image 
scale assumed. But in the latter case, whether or not A and B are 
visually separated depends upon other parameters of the physical 
system being modelled, such as the image scale or the resolution of 
the imaging system. This is, of course, an example of the 
granularity issue that is well known in AI research. 
 The third and last assumption highlighted here is that region-
boundary information can be reliably extracted from digitised 
images. The emphasis on boundaries is a direct consequence of 
adopting mereotopological logics, for it is precisely the mode of 

contact between the visual boundaries of regions that determines 
what spatial relation is true. However, the reliable interpretation of 
boundary information from real-world digital images is 
problematic and detectors based on this information tend to be 
brittle and often unreliable in use. 

These assumptions are of course by no means exhaustive. For 
example, sensor noise, fast sampling rates, the effects of variable 
lighting conditions, of shadows and specular reflections all affect 
the segmentation of the raw digital data returned by any current 
physical imaging system. However, the main assumptions 
stemming from the ontology and models used in occlusion calculi 
have been identified. It is specifically these assumptions that we 
now address in a dynamic QSR framework.  

3 DISCRETE MEREOTOPOLOGY 
We use Galton’s two-sorted mereotopological logic [6] as a 
specification language to define the logical properties of our region 
and region-relation detectors defined on aggregates of pixels as 
regions. Two sorts are declared: pixels (cells in Galton’s case) and 
regions as aggregates of pixels.  

In [6], definitions of the classical mereological relations and 
the Boolean composition of regions are given and interpreted set-
theoretically. A null region ∅  is declared, that contains no pixels, 
and the universal region U, that contains every pixel in the 
embedding space. Containment of a pixel x in a region X is 
modelled as set membership, i.e. as x∈X; and adjacency of two 
pixels is captured by the reflexive, symmetric relation A(x,y), 
meaning pixel x is adjacent to or equal to pixel y. We use a square-
based pixel array, and adjacency here is interpreted as 8-adjacency, 
meaning every non-boundary pixel of the array is surround by 8 
neighbours forming a combined 3x3 pixel matrix.  
 The basic relation-based definitions proceed as follows. 
Inclusion between regions is defined as: X⊆Y ≡ ∀x∈X →x∈Y, and 
the (non-null) part/whole relation as: P(X,Y) ≡ X⊆Y & X≠∅. 
Overlap is defined as: O(X,Y) ≡ X∩Y≠∅.  For the weaker relation 
of connection (or contact) between regions, the adjacency relation 
now appears: C(X,Y) ≡ ∃x∃y [x∈X & y∈Y & A(x,y)]. This enables 
the external connection relation: EC(X,Y) and the remaining 
discrete analogue counterparts of the RCC8 relations and other 
related concepts (For example, Galton defines neighbourhood, 
boundary, interior, closure and covers metric spaces, change and 
continuity) to be defined. To avoid confusion with the RCC8 
relations these will be referred to as RCC8D [6].  We will use only 
three of these RCC8D relations: DisConnected, DC(X,Y); 
Externally Connected, EC(X,Y); and Non Tangential Proper Part, 
NTPP(X,Y), mirroring the detectors. Taking U-X as the region 
difference between U and X, these are defined as follows: DC(X,Y) 
≡ ¬C(X,Y), EC(X,Y) ≡ C(X,Y) & ¬O(X,Y), and NTPP(X,Y) ≡ 
DC(X,U-Y). 

While CNDs exist for discrete mereotopological logics (e.g. 
RCC8D), the effect of the digital sampling serves to significantly 
increase the number of possible distinct relation-relation transitions 
when compared with their continuous counterparts. Here, we 
assume an underlying continuous model of physical space while 
sampling the relations into a discrete representation. This has the 
advantage of (i) allowing physically realisable interpretations of 
‘anomalous’ transitions close to the resolution limit of the 
detectors, and (ii) exploiting much stronger constraints on possible 
transitions than directly supported by the discrete model of space. 

  



3.1 Extensions 
A finite disjoint set of individual region-membership predicates: 
R1,...,Rn, is defined on aggregates of pixels. The exact nature of the 
membership property Ri need not concern us here; but will 
typically range over some physical property predicated on bodies, 
such as colour as assumed in our worked example. As uniform 
patches of colour are used as the basis of both object (or body) and 
region-identity, and is used by our region segmentation algorithm 
to label individual regions, we can state the equivalence: R(X) ≡ 
∀x[x∈X → R({x})]. Another property, that of a maximally-
connected region, Max(X), is also adopted; in which aggregates of 
adjacent pixels satisfying property Ri are clustered into connected 
subsets. This ensures a minimal number of explicitly labelled 
regions at the detector level: Max(X) ≡ Vi

n
= 1 [Ri(X) &∀x∀y[x∈X & 

y∉X & A(x,y)] → ¬Ri({y})]. While not developed here, individual 
regions can then be classified into connected and disconnected (i.e. 
scattered) regions, see [6] for details. Finally, an additional 
property of well-formed region (wfr) is defined on aggregated sets 
of pixels as satisfying the definition: Region(X) ≡ Vi

n
= 1 [Ri(X) 

&∀x[x∈X→ ∃y∃z∃u[& y∈X & z∈X & u∈X & x≠y & x≠z & x≠u & 
y≠z & u≠u & z≠u & A(x,y) & A(x,z) & A(x,u)]]].  A well-formed 
region defines a set of pixels X, satisfying some property R, where 
every pixel element of X has at least 3 distinct immediate 
neighbours of that set. Regions not satisfying this condition are 
passed to our algorithm for pre-processing prior to segmentation 
and labelling of the regions.  

4  REGION CONTACT DETECTORS 
The simplest detectors report whether or not a labelled region X 
(from viewpoint v) is detected: visible(X,v) = true, iff from v, pixel-
region X is detected in the pixel-array, otherwise false. This allows 
us to infer when, for example, visible(a,v)=false, that a exists but is 
hidden from v. These relations (with their reified regions) re-appear 
as the primitive relation: Visible(x,v) in the object language. 

The pixel-aggregate detector definitions for DC*, EC* and 
NTPP* are now as follows (see Figure 2 for examples):  

 
DC*(X,Y) ≡ Vi

n
= 1, j = 1 [Ri(X) & Rj(Y)] & 

¬∃x∃y [x∈X & y∈Y & A(x,y)]]  
EC*(X,Y) ≡ Vi

n
= 1, j = 1  [Ri(X) & Rj(Y)] & 

 ∃x∃y [x∈X & y∈Y & A(x,y)] & ¬ NTPP*(X,Y) 
NTPP*(X,Y) ≡  Vi

n
= 1, j = 1  [Ri(X) & Rj(Y)] &  
[NTPP(X,Y’) & Y’=X+Y] 

 
 Each of these relations are mapped to three implemented 
detectors, dc*, ec* and ntpp*, with ntppi* as the inverse of ntpp*.  
Note that the ntpp* detector does not of itself embody the 
transitive property of the (RCC8 and RCC8D) relation NTPP/2, as 
the detector operates locally. Thus, if ntpp*(A,B) and ntpp*(B,C), 
then dc*(A,C) will be initially reported.  However, as the domain 
model restricts bodies to convex regions, we infer ntpp*(A,C) via 
its mapping to NTPP/2. The justification for labelling embedded 
nested regions as NTPP* (as shown in Figure 2) follows from the 
(RCC8 and RCC8D) theorem: ∀xyz[NTPP(sum(x,y),z) → 
[NTPP(x,z) & NTPP(y,z)]], i.e. every part of a non-tangential part 
of region forms a non-tangential relationship to the whole. 

In terms of the LOS-14 occlusion relations mapping to the 
relation detectors, only one is clearly unambiguous, namely C, 
which maps to DC*; while the others: JC,PH,PHi,JF,JFi map to 
EC*; and F, which maps to NTPP*, are either ambiguous or 

reintroduce some other assumption into the interpretation.  In the 
case of the latter, for example, a one-one mapping is only possible 
if we make (as we do) the additional convexity assumption.  
Having now reduced the 14 occlusion relations down to a detector 
that can only distinguish three classes of relations, how then can 
we recover the missing ones? 
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Figure 2:  Discrete digitised regions 

4.1 Mapping between Bodies and Regions 
To illustrate the interplay between bodies and digitised regions we 
now embed the relations: DC*, EC* and NTPP* (and the inverse 
relation NTPPI*) into LOS-14. An explicit viewpoint variable, v, 
and an image function image(x,v), that maps body x, and viewpoint 
v to its projected image is added, and each dyadic LOS-14 relation, 
is re-worked into a ternary relation – see [10] for further details. 
 The first set of axioms map the occlusion relations to their 
RCC8D spatial relations on images; then following the group of 
definitions, another group of axioms map between selected LOS-14 
relations and the primitive region-relation detectors. For brevity we 
omit from the antecedents of these axioms conjuncts that encode 
the visibility or otherwise of bodies given particular occlusion 
relationships. However, these can be inferred from the model used 
to illustrate the CND in Figure 1.  
 
∀x∀y∀v[C(x,y,v) →  DC(image(x,v),image(y,v))]  
∀x∀y∀v[JC(x,y,v)→ EC(image(x,v),image(y,v))] 
∀x∀y∀v [PH(x,y,v) →  PO(image(x,v),image(y,v))] 
∀x∀y∀v [JF(x,y,v) →  TPP(image(x,v),image(y,v))] 
∀x∀y∀v [F(x,y,v) →  NTPP(image(x,v),image(y,v))] 
∀x∀y∀v [JH(x,y,v) →  TPPi(image(x,v),image(y,v))] 
∀x∀y∀v [H(x,y,v) →  NTPPi(image(x,v),image(y,v))]  
∀x∀y∀v [EH(x,y,v) →  EQ(image(x,v),image(y,v))] 
 

PHi(x,y,v) ≡def.  PH(y,x,v), JHi(x,y,v) ≡def.  JH(y,x,v) 
JFi(x,y,v) ≡def.  JF(y,x,v), Hi(x,y,v)  ≡def.  H(y,x,v) 
Fi(x,y,v)  ≡def.  F(y,x,v), EHi(x,y,v)  ≡def.  EH(y,x,v) 
 

∀x∀y∀v[C(x,y,v) → DC*(image(x,v),image(y,v))] 
∀x∀y∀v[Φ(x,y,v) → EC* (image(x,v),image(y,v))] 

where: Φ∈{JC,PH,JF,JFi,PHi} 
∀x∀y∀v [F(x,y,v) → NTPP*(image(x,v),image(y,v))] 

5   THE DETECTOR ALGORITHM 
This section summarises the main points of the algorithm (and 
program) used to implement the detectors and transform input 

  



bitmap images to regions and extract the QSR relations between 
them. The (C++) program accepts as input bitmap images (of size 
x by y) and, in step 1, assigns a region value in the range 0 to 
maxr-1 (max regions) for each unique colour value encountered 
(the array r). Test images may be prepared using the block fill tool 
in any standard bitmap manipulation program. The program also 
allows camera images to be grabbed directly using a Videre Mega-
D firewire camera or imported via bitmap images. Prior to use, real 
images are subjected to a hue separation process to extract distinct 
regions. The resulting region based image is subjected to a region-
conditioning process that implements the notion of well-formed 
region (wfr) introduced earlier in section 3.1. Every pixel with 
fewer that three like neighbours is converted to the identity of the 
majority of adjacent pixels (or arbitrarily where the count is equal). 
The process is applied iteratively until the segmentation results in a 
set of labelled regions X1,…,Xn  that satisfy Region(X1) &…& 
Region(Xn).  This sequence of activities is indicated below by 
get_regions(). The process has the additional effect of 
overcoming the effects of region boundary pixel aliasing inherent 
in digital imaging, and of removing “speckle” noise pixel groups.  
The image regions are considered to be embedded in a background 
area, which is not taken as a region. 
 In step 2 the relations array, which records the detector 
relations between all combinations of regions, is initialised to dc* 
(DCSTAR).  The image sized array mask is used to track those 
pixels and regions that have been processed. It is initialised to 
discount all background pixels. 
 In step 3 each region value is compared to its neighbour (here, 
neighbour() returns the coordinates of an adjacent pixel) and 
processes each region as it encounters each new region edge. 
TraceOutline() recursively traces around the outside edge of 
the new region building a mask (omask) of those connected edge 
pixels. Note that here all_neighbours() successively returns 
the coordinates of all eight connected pixels. Next, FillRegion() 
applies a recursive flood-fill to the current region, noting the edge 
pixels encountered (IsEdge()). Any edge pixel (that also belongs 
to a region) that has previously been tagged in omask as an outside 
region indicates that the current and touching regions form a 
symmetric ec* relationship (SetECRegion()), and that any other 
connected region must therefore form an (asymmetric) internal 
ntpp*/ntppi* relationship (SetNTPPRegion()). Note that under 
this arrangement evidence of an ntpp* relation effectively takes 
precedence over that for an ec* one. This process is repeated until 
all regions have been processed. Finally the relations array is 
displayed and reformatted for further processing (Figure 4).       
 
process(raw_image) 
{ // Step 1: convert image to regions 
  proc_image = get_regions(raw_image);  
  forevery(x, y) 
    r(x,y) := ToRegionValue(proc_image[x,y]); 
  // Step 2: initialise relations[] to dc* 
  forevery(i < maxr,j < maxr)  
    relations[i,j] := DCSTAR; 
  initialise(mask); 
  // Step 3: process all regions 
  forevery(x, y)    
    { p = r[x,y] 
    if(p != r[neighbour(p)] && ¬mask[neighbour(p)] 
      { clear(omask); 
      cval := r[neighbour(p)]; 
      TraceOutline(cval,x,y); 
      FillRegion(cval,x,y); } } 
  Display_regions(r); } 
 

TraceOutline(cval,x,y) 

{ if(r[x,y] == cval) return; 
  if(omask[x,y]) return; 
  if(IsOuterEdge(cval,x,y)) return; 
  omask(x,y) := 1; 
  forevery({x’,y’} := all_neighbours(x,y)) 
    TraceOutline(cval,x’,y’); } 
 

FillRegion(cval,x,y) 
{ if(mask[x,y]) return; 
  if(r[x,y] != cval) return; 
  IsEdge(cval,x,y); 
  mask[x,y] := 1; 
  forevery({x’,y’} := all_neighbours(x,y)) 
    FillRegion(cval,x’,y’); } 
 

bool IsOuterEdge(cval,x,y) 
{ result := false; 
  if(r[x,y] == cval) return(result); 
  forevery({x’,y’} := all_neighbours(x,y)) 
    { if(r[x’,y’] == cval)  
      { omask[x’,y’] := 1; result := true; } } 
  return(result); } 
 

IsEdge(cval,x,y) 
{ forevery({x’,y’} := all_neighbours(x,y)) 
    { if(cval != r(x’,y’)) 
      if(omask[x’,y’]) 
        SetECRegion(x,y,x’,y’); 
      else 
        SetNTPPRegion(x,y,x’,y’); } } 
 

SetECRegion(x1,y1,x2,y2) 
{ if(relations(r[x1,y1],r[x2,y2]) == DCSTAR) 
    { relations[r[x1,y1],r[x2,y2]] = ECSTAR; 
    relations[r[x2,y2],r[x1,y1]] = ECSTAR; } } 
 

SetNTPPRegion(x1, y1, x2, y2) 
{ relations[r[x1,y1],r[x2,y2]] = NTPPISTAR; 
  relations[r[x2,y2],r[x1,y1]] = NTPPSTAR; } 
 
 Figure 3 shows one part-processed image in a sequence 
captured from the viewpoint of our upper torso humanoid robot 
Ludwig. The objects are each of a distinctive colour and the raw 
image was captured using a Canon A80 digital camera, then 
suitably cropped and re-sized, but otherwise unmodified, prior to 
presentation to the program. The hue bands were adjusted by hand 
to achieve a clear region segmentation. Figure 4 shows the result of 
applying the algorithm to the image; note the diagonal symmetry.  
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Figure 3: Camera image before and after region extraction 

 
r1 r2 r3 r4 r5 r6 r7

r1 -  ec*     dc*     dc*     dc*     dc*     dc*     
r2 ec*     -  dc*     dc*     dc*     dc*     dc*     
r3 dc*     dc*     -  ntppi*  ec*     dc*     dc*     
r4 dc*     dc*     ntpp*  -  dc*     dc*     dc*     
r5 dc*     dc*     ec*     dc*     -  dc*     ec*     
r6 dc*     dc*     dc*     dc*     dc*     -  dc*     
r7 dc*     dc*     dc*     dc*     ec*     dc*     -   

 
Figure 4: The resulting detector relations matrix 

  



6    RECOVERING OCCLUSION RELATIONS 
We use the Event Calculus [14,15], with its primitive ontology 

of actions (and events), fluents, and time points, for representing 
and reasoning about occlusion events over time. For the purposes 
of this paper we will restrict our discussion to the Happens(α,t) 
and the HoldsAt(β,t) predicates. Visual occlusion events are 
modelled as time indexed fluents arising from the result of actions, 
e.g. moving and changing the viewpoint. Thus, for example, where 
from viewpoint v, body A partially hides body B at time t: this 
becomes: HoldsAt(PH(A,B,v),t). 

As a simple example, consider the sequence where two bodies 
A and B pass through the LOS-14 transition path: C(A,B)→ 
JC(A,B)→ PH(A,B)→ JF(A,B)→ F(A,B) respectively from times 
t0 to t4 – see Figure 1. In the interest of clarity only, we will 
assume a set of totally ordered time points: t0 through to t4. We 
also will assume that throughout this period the bodies are visible. 
Initially, we infer C(A,B) at t0 (from dc*) and F(A,B) (from ntpp*) 
at t4, while all the intermediate states between the time points t1 to 
t3 currently remain indistinguishable. This is resolved as follows. 
 From Happens(dc*(image(A,v0),image(B,v0),t0) we can 
abductively infer HoldsAt(C(A,B,v0),t0), and from the change of 
the detector at t1 (with only one direct CND transition) that 
HoldsAt(JC(A,B,v1),t1) occurred. Given Happens(ntpp*(image(A, 
v4),image(B,v4),t4) we know HoldsAt(F(A,B,v4),t4). From the 
CND only EH(A,B) and JF(A,B) neighbour F(A,B).  However, 
given that during period from t0 to t4, the detection of both A and 
B took place, then EH(A,B) at t3 is ruled out – leaving 
Holds(JF(A,B,v3),t3). And given it is not possible to pass from JF 
directly to JC without passing through PH (from the CND), then 
another event is interpolated, namely: HoldsAt(PH(A,B,v2),t2) thus 
completing the sequence and satisfying the constraints imposed by 
the CND.  

As for the remaining paths, clearly, parity of reasoning 
accounts for the path: C(A,B)→ JC(A,B)→ PHi(A,B)→ JFi(A,B)→ 
Fi(A,B). By registering when a body is or is not visible, other 
sequences can be similarly determined: for example, PH→ EH→ F 
(and its inverse sequence). It turns out that within this dynamic 
setting, 10 of the 14 relations (interpreted as occlusion events) can 
now be accounted for, leaving each of the pairs: JH and H; and JHi 
and Hi as necessarily indeterminate. Hence, despite the paucity of 
the visual detectors as to occlusion events, and with minimal 
modelling assumptions, it becomes possible to infer the occlusion 
of bodies in three-dimensional space. A similar approach appears 
in [16] where Aspect Graphs replace the role of CNDs 

7   CONCLUSIONS 
This paper demonstrates how, within an abductive framework, a 
rich set of occlusion spatial relations can be reliably inferred using 
a sparse and simple set of region-relation detectors. The decision to 
use simple detectors is justified on several grounds. Firstly, the 
difficult task of providing a clear interpretation for the detection of 
fine-tuned spatial relationships is now transferred to the inference 
mechanism. Constraints within the domain theory and associated 
CND are used in the recovery and justification of the interpolated 
relation made. Secondly, the sparse set of detectors is robust in use 
and hence less likely to return hypotheses that will later need to be 
revised. Thirdly, that the theoretically motivated minimal 3-
adjacency neighbour property of pixels in segmented regions (and 
assumed by our algorithm) has additional practical consequence of 
providing a despeckle and general clean-up operation on raw 
images. This not only reduces the need to label more potential 

regions, it also reduces the need to explain away data not directly 
supported by the intended model. 
 We have concentrated on region-contact spatial relations. 
However, other spatial logics can be similarly grounded in image 
data to capture more detail in the model.  For example, variants on 
Allen's Interval logic [1] can be used to encode regions being to the 
left/right or above/below each other - see [10] for an example of 
this. While LOS-14 assumes a domain of discrete convex bodies, 
the segmentation algorithm used does not capture this geometric 
property. However, by implementing this geometrical property, 7 
of the 14 LOS-14 relations can be directly detected. In the case 
where convexity condition no longer applies, ROC-20 can used to 
replace LOS-14 and similarly mapped to the set of detectors – see 
[10] for the mapping between the relation sets: ROC-20, LOS-14 
and RCC-8. 
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