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Abstract

This paper describes same aspeds of recent and orgoing work in the aeaof Cognitive Robdics in the Department
of Eledricd and Eledronic Engineeaing at Imperial College. Our approach to Cognitive Robaics has been to apply
abductive reasoning procedures using the Event Calculus, an extension to First Order Predicae Cal culus (FOPC), to
provide aunified view of severa related mobil e robotics tasks: sensor data asdmil ation, map-buil ding and planning.
Cognitive robotics depends on an explicit dedarative representation. While this grealy fadlitates reasoning about
domain knowledge, it comes with an extra momputational overheal. This is the basis of the semantic knife-edge,
maintaining a delicate balance between expressvity and efficient i mplementation.

1 Introduction

“Cognitive Robatics’ refers to an areaof study that applies formal logicd representations to physical robas, with
the long-term goal to endow them with higher-level cognitive skill's. Cognitive Robatics[4, 10, 11, 17, 21] proceeds
from the nviction that advances in developing a dea semantics for robas and their environments, within the
principled framework of logicd description, will lead to further advances in our overal understanding of
intelligencein robots and artificial agents [8]. Despite apromising ealy start with projeds such as SRI’s SHAKEY
[13, 20], the rigours of applying formal logic to red robots remain problematic. In part, these problems arise from
the “semantic knife-edge” [14], the observation that logic representations are gparently inevitably balanced
between a ladk of expressvity, which renders them uselessfor the tasks they are to be employed for, and too much
detail, which renders them intradable to automated proof generation methods.

The use of explicit logicd formalisms in the mntext of the Event Calculus, allows dynamic, nontrivial red world
domainsto be rigorously described and reasoned about. The dedarative nature of the representational formalism and
approach used fadlitates the description of structure within the formalism, which can be exploited by spedalist
reasoning techniques. It aso lays bare the primitive fedures of the language used and highlights how this maps
diredly to observable events and properties of objeds in the modelled damain. Consequently, we show how it is
posdble to start with a high-level description o the world and eventually map this diredly to sense data; or rather
abduce from sensory information, hypotheses about the world that can be tested and validated. In this way complex
and meaningful behaviour observed in autonamous robots not only beames possble, the use of logic a the main
representational language dlows both a uniform framework to identify and exploit meta-level structure, but also
provides the means to rigorously spedfy and establish program corredness and lays the foundations for robas and
autonamous artificial agents that can reason about their own behaviour in a physicd world.

Thefirst part of this paper introduces aspeds of the Event Calculus [19, 21], then describes how sensor events and
the dfects of adions are represented in the Event Calculus for a mobile robot. It then describes how abductive
ressoning is applied to important mobile robot tasks, sensor data asdmilation, map-building, planning and
locdisation. We next provide adescription d how an Event Calculus based robot controller is interfaced to a
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Khepera [9], ared, if miniature, mobile robot. In the second part we widen the discusson by introducing a new
visual Region Occlusion Calculus (ROC), and indicate how it may be used to formally describe agreater range of
more @mplex sensory events and in turn generate aspatial segmentation of a robot’s environment, in which the
roba may navigate and reason abou its surroundings.

2 TheEvent Calculus

When applying a logic formalism to robatics, it becomes clea that the scheme used must be ale to represent the
effeds of actionsand the ansequential changes that occur to the robat and the environment. Equally, it must be able
to represent the dfeds of exogenous events on the roba, as deteded viaits snsors. To achieve this, the underlying
ontology (the primitive or given feaures of a language) of the Event Calculus is based onfluents, a description of
entities that can change state with time; events (or actions), that can cause the state of a fluent to change; and time
points, the instants of time & which changes occur. Fluents can represent the state of a sensor, the position d a
roba, or the state afeaure in the environment (for instance, whether a door is open or naot). Action events may be
initiated by the roba (possibly as the result of planning), or represent other exogenous events within the
environment, causing fluents to change independently of the robot. Time points are ordered. In a more formal
treatment of the Event Calculus this ordering would be made explicit, hereit will be asumed.

The Event Calculus also defines sven basic predicaes, which fully represent the ways in which fluents and actions
interad, and the time ordering between them:

« Initialy(f), indicating that the fluent f holds avalue of true (Initialy,) or false (Initialyg) at timeO.

* HoldsAt(f,t), indicaes that the fluent f halds true & an instant, t.

» Happens(a,t1,t2), indicates that the adion or event | occurs during the time range bounded by t1 andt2. In
pradice this will be qualified by precondtions, pladng restriction onwhen a robot might perform an
adion, or when an exogenous event is possble.

» Initiates(a,f,t), indicaesthat fluent f will hold after an occurrenceof adionaat timet.

e Terminates(a,f,t), indicaes that f will nolonger hald true &ter an occurrenceof a at timet.

»  Clipped(t1,f,t2), indicates that the state of fluent f has altered during the range of timestl to t2.

» Before(tl,t2), makes explicit the ordering relationship between a pair of time points.

The Event Calculus has previously been proposed as a solution to the frame-problem, [19]; asit overcomes the need
to explicitly maintain knowledge éout what does not change as a cnsequence of performing adions or due to the
occurrence of exogenous events. This is clealy a magjor concern when applied to robatics, but is by no means
restricted to robatics tasks, and the Event Calculus axioms may be used as a “wrapper” to augment other logic
representations where time, change andthe dfeds of adions must be mnsidered. In principle, it isposdbleto record
a aomplete history of events and changes to fluents (encoded as “Initially” and “Happens’ formulaé), though in a
roba environment this may be neither possble, nor desirable, if the reasoning process is not to bewmme
overwhelmed with extraneous “memories’.

3 Robot Control - Building on the Event Calculus

A cognitive roba controller using the Event Calculus properly consists of the set of Event Calculus axioms (styled
as “EC”), which define the underlying rules for reasoning about time and change and a domain theory, robot
programs in the event cdculus (styled “X") that describe various interadions between the adual roba and its
environment. An event calculus roba program will, in turn, consist of:

1) The dfeds of the robot’slow-level adions onthe environment.
2) A description d impad of the environment onthe robad’s nsors.
3) The dfedsof high-level adions (for hierarchicd planning).

4) High-level adionsin terms of componrent lower-level adions.

5) Thehistorical “narrative” of past events (styled as“A”).

6) A map o the environment encoded as Event Calculus axioms.

7) Which predicaes are eduwcible.

Roba cortrol is embedded in a “sense-plan-ad” cycle, which continues ad-infinitum. Short bursts of planning
adivity are inter-leaved with adions and sensor gathering. Planning is a cmputationally demanding task, often



more so when conducted in a formal reasoning environment than when conducted by ad-hoc planning algorithms.
To aleviate this problem, plans are aeaed hierarchicdly, initialy from high-level adion descriptions. Once ahigh-
level plan is avail able (for instance at the room level), only thefirst step is expanded (and the first step of that, etc.)
until a starting sequence mmpaosed of only low-level adionsisformed. Thisis progression order planning [21].

4 Abduction

Abductionis aform of reasoning which attempts to provide explanations, by established proof procedures, for given
events. Abduction is therefore particularly relevant to the gplication of reasoning in logic to robdics, where we
exped a strean of events to be generated by the normal process of the robot sensing condtions arising (either
through its own adions, or through the occurrence of extrinsic events) within the robot’ s environment. For example,
aroba may encounter an okstade in its path. Several possble explanations might be ansidered. If that obstadeis
already recorded within the robot’s description o the world, the obstade’s presence is trivially explained, and the
roba may perform some adion to avoid the obstruction. However, if the roba were aurrently in an unexplored part
of its environment, the explanationwould clealy involve alding knowledge about the obstad e to the robot’s model.
If nat, several alternate explanations could be formulated from the robot’s description of the world and it’'s
properties. It might be that an external agent had depaosited the obstade while it was not being observed. If the
obstade is modelled as “immovable”, this explanation may have to be discarded. Finally, in this example, the robot
may be forced to the conclusionthat it has become disoriented in its environment.

Reasoning by abduction is related to, but differs from deductive reasoning. The process of abduction is directed
toward an explanadum (a fad or observation to be explained), given a badgroundtheory (in this case the Event
Calculus axioms, the robot program and aher comporents introduced in the previous section). Aswith other forms
of reasoning, only explanations supported by the model may be generated. As arealy noted, abductive reasoning
may give rise to severa adternative explanations, which are (by definition) equally suppated, although not
necessrily equally desirable. Boutilier and Becher [1] introduce apreference ordering in the context of belief
revision to resolve this problem. We note that the generation o more than ore explanation will have different effeds
acording to the task being addressed, sometimes indicaive, sometimes benign and sometimes detrimental.
Abductive reasoning has been used to good effed in model-based diagnosis, where possble explanations of mal-
function must be formed [3, 5].

5 Using Abduction for Sensor Data Asgmilation, Map-building, Planning and L ocalisation

This sdion considers how the eductive reasoning scheme might be gplied to arange of different tasks. In eath
case the roba controller is presented with some event (styled “I'”), either adtual, as in the cae of an incoming
sensor event (I's), or desired, such as the goal in aplan (I'g), which must be explained or otherwise interpreted by
creding a residue of “Happens’ formulae (styled “W”) by automated reasoning. In map-building a novel sensor
event (representing an environmental feaure) must be assmilated into the roba’s map and model of its world. In
planning the roba must also generate sequences of adions, recorded as “Happens’ formulag to adieve its goals.
Because these abductive processs are dl similar we note that the bulk of the event cdculus description remains
identical acdossall the adivities. According to the task, the detailed processes invoked will differ, and in particular,
the set of items dedared abdwcible changes (for example, to generate plan items during planning but map
descriptions during map building, etc.)

5.1 Sensor Data Assmilation
In sensor assmilation, the explanation of a sensor event (Ws) is encapsulated by the ébductive entail ment:
EC&Z&A&Ws kI

That is, generate some new explanation, Ws, that, when taken with the Event Calculus axioms (EC), the existing
roba control program and map, (%), and the narrative of past events, which entails (F) the new sensor inpu s
Normally, of course, a sensor event will be mnsistent with the aurrent map, and so betrivially explained. Changesto
the environment, such as adoa being closed, may equally be explained in this manner according to the definition .
Sensing is very restricted in the roba used, relying only on short-range (2cm) proximity detedors and whed
odometry. The robot operatesin its (miniature) model of an office environment, figure 1, by following the wall s and
edging around corners, so as to maintain a antinuots sensory strean. When adoar isin place(“closed”), it appeas



to form part of along “wall”, and the next fluent encountered will be that of the next corner around the room. The
abduced residue must be consistent with the arrent plan, if it is not, the current plan must be bandoned and a new
initiated. Where the residue is neither consistent with the existing map na be explained in terms of a new map
feaure, the robot can conclude it has become disoriented in the environment and initiate alocdisation process

5.2 Map Building
EC&Z&A& Wy FTs

Map-building is a variant of this abductive scheme. If some sensor event I's occurs that cannot be explained by the
map, but could be if the map were extended by the residue Wy, then new knowledge has been aauired and the map
can be augmented. New feaures in the map are automaticaly named (using a successor function) and added to the
map description formulae. Clealy the éductive processmust give rise to a single interpretation before the map can
be extended. The acerracy of the Khepera's odometry sense is inadequate to locdise aroom feature to a unique
place We ae therefore ohliged to add integrity constraints [21], making explicit, for instance, that a corner cannot
be locaed in two rooms to guide the éductive reasoning. We normally consider map-building in thisway to be a
spedfic process rather than an oppartunistic adivity, with a cmplete room explored by progressng aroundit in a
clockwise (or anti-clockwise) direcion. Mapping a complete environment consists of exploring a room, and then
planning a path to a doorway that leads to an unexplored room.
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Figure 1: Actual office eavironment model, room 4 axioms (left) and visualisation of map axioms (right)
5.3 Planning
EC& & N& W FTg

In planning, some desired event ' is postulated (such as “HoldsAt(At(C19),t)"), given a aurrent placein the
narrative of events (Ao) and a residue @nstructed (Wp) then describes a sequence of adion events that lead to the
desired goa condtion (for instance “Happens(GoLeft,T100), Happens(Forward,T101), Happens(GoRight,T102),
Happens(Forward, T103), Happens(GoLeft,T104), Happens(GoRight,T105"). In this case there may be severa,
equally valid, residues, equating to multiple posshle paths through the environment. Several strategies can be
devised to seled between them, apart, of course, from taking the first plan formulated. Minimising the number of
stepsis areasonable measure, and minimising dstancetravelled. In thisinstance though, timing informationis more
significant, as the elapsed time to traverse arnersis generally greder than that to follow walls. Such informationis
available & the lower, robat control level, but may not be made avail able to the logic level.

5.4 Localisation
EC&Z& AR& W, E T

Inlocalisation we attempt to build aresidue (W, ) comprising exadly one aductive explanation of the aurrent sensor
fluent (I's) and the recent history (Ag, that since the loss of locdisation was deteded), which is uniquely consistent



with the existing map, and so defines a aurrent, spedfic location within the map. While there ae multiple aductive
explanations, the robot could still be & one of anumber of locations and further adions are required to disambiguate
these. Should the residue ever beame empty, the map is nolonger valid, and must be recnstructed.

6 Environment to Events: Robot Actions and Fluents

This ®dion describes the dfeds of the action events and generation of sensor event fluents that charaderise model
office environments of the form shown in figure 1 when used with miniature (6cm high) Khepera mobil e robots
from K-Team [9]. The environment is defined in terms of “walls’, “corners’, “doors’ and “rooms’. As only two of
the Khepera's sensor modalities are used, six of the @ght infra-red proximity sensors (with an effective range of
about 2cm, and located as indicaed in the robot outline in figure 2), and whed odometry, a number of restrictions
are placed on the design df this environment. It must be redilinea. All rooms must be mnneded only by doors and
doorways must follow strict dimensional criteria if the roba isto be &leto detedt both doorposts with its ensors.
Sensor events ®en by the Event Calculus program deted discontinuities (the crners, door-paosts and damrways)
between these feaures. At the robaot level, these sensor condtions are mmpletely anonymous (that is, they provide
no identifying information about the feaures they deted) and must be combined and built-up to provide a coherent
description and map of the ewvironment. In the model office ewironment, we use seven distinct and mutually
exclusive mndtions to sense dl the significant transition events (fluents) used by the Event Calculus programs
(Left, Right, LeftAndFront, RightAndFront, LeftGap, RightGap and InDoorway). These are mmplemented by five
adion commands (Forward, GoL eft, GoRight, Turn and Ba).

Fluents arise from adions, and terminate them. The sensor fluents Left and Right indicate that the robot is beside a
wall and may follow it Forward urtil the next feaure. The fluents LeftAndFront and RightAndFront indicate that the
roba has moved forward and encountered another wall at a concave @rner. The robot may then perform a GoRight
or GoLeft adion to align itself with that conreding wall (a Bad adion allows it to return along the wall it i s on).
The fluents LeftGap and RightGap indicate that the robat has overshot the wall it is following. This occurs in two
distinct cases, that of a cnvex corner (e.g. C21 or C32 o figure 1) or when adoorpost is encountered (e.g. C1, C26
or C38). Theroba cannat diredly distinguish these two cases, and so must perform a GoL eft (or GoRight) to foll ow
rourd the rner. Sensing a Left or Right indicates a mncave @rner, InDoorway that it was a doorpost. When in a
door, the robot may proceed with adions GoL eft or GoRight to enter the next room, or perform a Turn followed by
a GolLeft or GoRight to continue in the same room. Figure 2 charts the values of the sensors, and the amulative
rotations of the wheedls (diamond and square markers) for a sequence of three ations, Forward, GoLeft then
GoRight giving rise to threefluents, LeftGap, InDoorway and Right, as it negotiates a doarway in the environment.
Fluent events are detected by a combination of changing sensor value and dstance moved.
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Figure 2: Actions and Fluentsat the Robot L evel

These ation commands and sensor fluents have been embedded into an “extended BIOS’ for the Khepera, which
may be downloaded into the roba’s RAM (or blown into a replacement ROM), and become available to any high-
level control program viathe Khepera' s RS232 communicaions link.



7 Generating Fluentsfrom Visual Ocdusion

As with the Khepera robots using its primitive sensors to provide the raw data from which feauresin the model are
constructed, so also with arobot using madine vision. In the Khepera ase, discontinuities and invariants in the
Khepera's physicd environment are used to infer the existence of feaures such as walls, corners and doaposts.
These give rise to fluents, which may then used within the Event Calculus to map huild and revigate through its
environment. In the second this part of the paper we now consider the extradion of fluents from madine vision
data. In particular information garnered from ocdusion events and motion parallax. Ocdusion events map dredly to
fluents, and adions of the robot may bring abou a change in the relative positions and alignments between dbjeds
with resped to the robot’s current viewpaint. In this way, sensory data tied to movement of the robot again leals to
explanations of what it senses, andin turn provides away to dsambiguate what it sees, or if not, the basis to re-plan
aset of adionsin order to achieve this.

To fully characterise the various rel ationships between arbitrary-shaped objeds in avisua field we have developed
the Region Occlusion Calculus (ROC). The Region Ocdusion Calculus is afirst-order logicd theory that describes
the spatial relationships between bodies as sen from a robad’s viewpoint. The theory encgpsulates two things: (a)
spatial ocdusion (or interposition) between oljeds, and (b) the means to reason abou how these ocdusion events
will change with resped to changes in the robot’s viewpoint, for instance in the motion parallax effect, whereby a
change in viewpoint causes relative displacenents of objeds at different distances in the visual field. Both cues are
exploited to buld up an awarenessof threedimensional form and d stance from atwo-dimensional image.
Ocdusion events help to determine where an dbjed’s bourdary lies, or to infer why an oljed canna be seen, and
what neals to be done in order to render it visible. For example, consider two oljeds A and B in arobot’s visual
field (Figure 3). Suppose aroba movesto itsleft, while keguing these objectsin sight. If objed A passsaaossB,
or when moving toward A, B becomes compl etely obscured the robot can infer that A isin front of B. Similarly, if,
when moving to the right, no relative change aises, the robot may infer that A and B are far away, or close by and
possbly moving in the same diredion asitself. Conversely, if A, when visible, always appeas to be subtended by
B, the robot may infer that A and B are physicdly conneded. In each case, ocdusion events and motion parall ax are
being used to derive an oljedive model of the world from a naturally restricted viewpoint.

(oo

Figure 3: Spatial ocdusion at work. Ocdusion eventsarise with a changein viewpaint.

The Region Ocdusion Calculus extends the ealier Lines of Sght calculus of Galton [7], and kuilds on the Region
Connection Calculus of Randell, Cohn and Cui [16]. Distinguishing feaures of the new cdculus are that it can
represent concave objeds, and so is therefore ale to represent objeds that can mutually ocdude eab ather, and it
encgpsul ates a notion of depth and comparative distance between oljeds. Both are esential in alogicd theory if it
isto find practical applicationin robotics. Region Ocdusion Cal culus reduces the description of pasgble alignments
between oljedsto 20relations. These 20 relations are jointly exhaustive and pairwise disjoint (JEPD), which isto
say they completely acourt for all possble caes, and no two relation subsumes or is a more genera case of
another. All are reducible to a primitive relation of connedion (x connects with y) and total ocdusion (x totally
ocdudes y from viewport v), and a function that maps threedimensional bodies and a viewpoint to their
correspording images in the visual field (the image of x from viewpoint v). The theory is further augmented with
relations that express comparative distances between bodies (x is neaer to y than z), and their left/right orientations
with resped to arestricted viewport (x isto the left/right of y from viewpoint v).

As ead spatia relation describes a passble dignment in the world between two bodies in the visual space plusthe
fad we have aJEPD set of these, it is posshble to model all continuous transitions via sequences of discrete spatial
relations. In the implemented logic these changes map to changes in the gparent conrectivity of images in the
visual space 3 either positions of the bodes or the viewpoint changes. These can be formulated into a transition



graph (c.f. Freksa's [6] conceptual neighbourhoods), which captures these dired transitions, with paths through the
graph interpreted as possble sequences of instantaneous changes between ocdusion events over time. Transitions
can also be expressd as a set of envisioning axioms [15] to form the basis of a qualitative simulation program [2],
or can be re-worked diredly within the Event Calculus that explicitly models change over time.
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Figure 4: Some of the Ocdusion Relationships

Figure 4 shows five of the 20 acdusion relationships: NonOcdudesDC(x,y,v), NonOcdudesEC(x,y,v),
PartiallyOcdudesPO(x,y,v), PartiallyOccludesTPP(x,y,v), PartiallyOccludesNTPRXx,y,v). In eat case, from the
roba’s viewpoint v, NonOcdudesDC(x,y,v) describes the cae where from viewpoint v, two bodes x and y appea
separated. NonOcdudesEC(x,y,v) the cae where external boundary of x exadly aligns the external bourdary of y.
PartiallyOcdudesPO(x,y,Vv) the case where x partially overlaps y; PartiallyOcdudesTPRX,y,v) the case where X is
appearsinsidey, and their boundaries align; and PartiallyOcdudesNTPP(x,y,v) where x appeas completely inside y.
Note that NonOcdudesEC(x,y,v) and Partial yOcdudesTPP(x,y,v) cepture dignments between dbjects x and y, so
PartiallyOcdudesTPRX,y,v) is the case whenever x is both inside and edge digned, there will be many such
instances, and so for the others. Simil arly Partiall yOcd udesPO(x,y,V) describes all the instances where the occluding
objea x partially overlaps the occluded objed y's boundary.

Within the Event Calculus, these predicaes now re-appear as functions indexed to time points, or to intervals where
the fluent halds, e.g. HoldsAt(NonOcd udesDC(x,y,v),t). To these fluents we add adions taken by the robot and map
adions to changes in the gparent connedivity between pairs of objeds as the robot’ s viewpoint, or the positions of
the bod es with resped to its viewpoint changes. We now describe how we might map these high level descriptions
to data extraded from the visual field.

8 From Visual Occlusion to Mapping Space

The goal of this element of our on-going reseach is the devel opment of amap buil ding and robot navigation system
based on a rigorous first order formalism for representing and reasoning abou objeds and abou the free space
between them. In general terms, the framework is constituted at threelevels: first, at the sensor data level, the data
from a stereo vision system is transformed in a depth profile of the image which are then described by logic
formulae. A sequence of such profiles constitutes a transition d scenes involving changes in the states of objeds;
our logic reasoning system encodes these profile transitions and entails the relations between the objeds. These
relations constitute the second level of reasoning: that of image interpretation. On using a subset of the relations
defined in the previous level (more spedficdly, the relations concerned with oljed ocdusion) a tessllation d the
environment is constructed, this is the third level: the map level. A rigorous description of the reasoning systemis
outside scope of the present paper. The dm of this dion isto discuss ®me of the main principles involved in
developing this framework.

8.1 Leve 1: Sensor data

Consider a robot that receves information from the environment through a stereo vision system; thus, from the
viewpoint of the robot, the objeds of the external world are 2D regionsin a caneraimage representing the depths of
the objeds. In order to transform the sensor data from the vision system into a high-level description of the relations
between the objeds, we ansider asimplificaion d theinitial data. Instead of analysing the whole stereogram of a
scene we analyse initialy a horizontal cut of it, creaing then a one dimensional depth profile of the scene (figure
5b). The whole image can be analysed considering a grid of depth profiles with a granularity depending on the
complexity of the required scene description.

A depth profile (figure 5b) is a 2D chart representing, in the verticd axis (1), the relative depths of the objedsin a
roba's viewpoint and, in the horizontal axis (©), the relative size of the objeds measured in terms of angular
coordinates w.r.t. the field of view of theroba (6,). Thel axisis constrained by the furthest point that can be noted
by the robat's ®nsors, this limiting distance is represented by the letter L in the profile in figure 5b. Therefore the



verticd pe&ks in a profil e represent objeds and relation between oljeds in the environment, thus we dso use the
term object profile referring to a pe&k in adepth profile. It is worth noting that the values of | and © are qualitative
rather than quantitative, and they can be encoded in terms of fuzzy notions guch as less near, near and very near for
the depth variable |, and similar notions for the variable ©.

»

v 1 O, 3 4 o
Figure 5: a) Two dbjeds A, B inside of arobot's (v) field of view; b) depth profile rdativeto thefield of view

Ancther important feaure of the depth profiles is the shape of the pedks. For the moment we ae only interested in
two categories of shapes of objed profiles: single and composed. Single pe&ks are those depicted in figure 5b, while
a omposed pek has the shape of a step (figure 6.P3 below). The importance of this classfication is briefly
explained as foll ows.

8.2 Level 22 Imageinterpretation - ocdusion

A A A A
LA B _||[L_A B ||, AB ||, B
Bl laj- Bl
Ib) Ib) Ib) Ib)
1 2 3 O, 1 2 3 O, 1 D, 3 O,

Figure 6: A depth profile sequenceP1, P2, P3 and P4.

Many conclusions about an oljed’s relationships can be asserted from the analysis of sequences of depth profiles.
One of them has an immediate interest to the present work, the interpretation d ocdusion transitions. Figure 6 is an
example of a depth profile sequence involving this kind o transition. The first step towards the logic reasoning
system is the description d the main fegures of the profile transitions in such away that higher level interpretations
arelogicdly entailed by this description. Intuitively, the transitionfrom P1to P2 (P1->P2), in figure 6, suggests that
either the objed A approached the objed B or the observer made asemi-circle cantred in B in the diredion o
deaeasing the distance between the pesks A and B. The logic reasoning system shoud be cgable of entailing these
posdbilities.

From the logic description d transition P2 -> P3 (which should contain the information that the single pesks A and
B, in profile P2, becane a composed peak AB in profile P3), the reasoning system should be ale to entail that
objed B partially occludes A. Similarly, from the transition sequence P2->P3->P4 mutually ocdusion between A
and B shoud be entail ed from the information that the pesks A and B changed from two single pe&ks (in P2) to ore
composed (in P3) and eventually to one single pe&k (in P4). Note that, as a simplification, we use the same notation
for the peaks A and B and for the posshble objeds they might denote. Rigorously, this association shoud be an
abductive inference since asingle pe& (from a particular viewpoint) can split in two (possibly compaosed) pegks
from another viewpoint.



8.3 Level 3: TheMap

A simple solution to the problem of map buil ding begins by making the roba turn 360° around each of the objeds
in the environment. While turning around an oljed, the initial task of the map building system is to dbserve the
ocdusion relations between this objed and any other objed in the robat’s field of view. The am of observing this
relationisto nae the point where it terminates holding; in ather words, the initial task of the map building systemis
to nae (analysing the profil e sequences) the transition when (given two objeds A and B and adjacent viewpoints v
and V'), for instance Partiall yOcdudesPO(A,B,v) beaomes NonOcdudesEC(A,B,v’). The next task of the map
building system is, then, to store the pair of points [v, p], where p is any point in ojed A that is the neaest to B
(figure7a). Such pairs of points define astraight line, which, for the purpose of this work, we name aline of sight.
The purpose of nating these lines is to use them to construct a tessellation (figure 7c) of spacedefined by the
intersedions of the lines of sight between the objeds in the environment. This tessllation is a map o the
environment within which the robot can locate itself and plan paths through the world. This processis smilar to the
construction of orientation regions (Levitt and Lawton, [12]). A suitable data structure must be aeated in order to
store the lines of sight and the tessllation of the environment, maintaining the order among the lines and the
regions, so that path planning can be reduced to efficient search. This data structure might be similar to a quad-tree,
modified in order to consider the ordering d regions and lines; Schlieder [18] presents a posshble way to define such
an ordering.

(@) (b)

Figure 7: Construction of orientation regions from lines of sight (aerial view).

(©)

Another point of concern in this framework is the time dficiency of the map huilding process briefly described
above. In order analyse the main fadors influencing time dficiency of this map building process consider that the
environment is composed of N objeds. The worst case occurs, thus, when ead one of the N objeds defines li nes of
sight to ead ather from some viewpaint. In this case, for every two oljeds there ae two dfferent lines of sight to
be defined. Thus, the time dficiency of thistask is o(n?).

However, the most influencing issue in efficiency is the task of constructing orientation regions. Clealy, this
processdepends on the number of intersedion points of lines of sight, which depends on the geometrical distribution
of the objeds in the ewironment. If al of the intersedions between lines of sight are cdculated, the dgorithm
would produce alarge number of polygons, most of them would be far too small for the purpose of roba navigation
(asiisthe cae of region 6in figure 7c). A solution to this problem would be to discard some of the lines of sight
using a preference citerion (or a cnjunction d criteria) while storing these lines; an example of such criteriais
choosing lines that conned only objeds that measure twicethe size of the robot (limiting in this way storing lines of
sight between ojeds that can have their positions atered by the roba’s motion).

9 Conclusions

We have noted that the use of logic to control robots appeas to be balanced ona “semantic knife-edge”, between a
representation that is too sparse to alow adequate reasoning about the domain in hand, and one too rich to be
tractable to current automated proof techniques. We have presented an approad to four closely interrelated mobile
robat tasks, namely sensor assimilation, planning (and ravigation), map-building and locdisation, within a single
logicd framework based onthe Event Calculus. By careful choice of the primitive events g/nthesised at the robot
level and made available to the reasoning part, we then argued that it is posshle to construct and reason with
complex descriptions and maps built from many, but very low-level, sensor readings. Event Calculus programs are



typicdly concise for ead o these tasks when compared to equivalent code written procedurally, but automated
ressoning is computationaly intensive and performance suffers grealy as a cmnsequence mmpared to conventional
approaches to map huilding and revigation, [22] for example. Our on-going reseach na only investigates better
ways of representing robot knowledge, but also better ways of exploiting it through reasoning. We susped, however,
that the semantic knife-edge problem will never be fully resolved, for ead time we make an advancein the speed or
effediveness of automated reasoning it will i nevitably be countered by an increase in the ambition to generate more
detailed descriptions of the world and extend the bridge between grounded, sensor and motor based, reasoning with
ever greaer degrees of cognitive skill.
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