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Abstract 
 
Behavioral Extinction is a long established 
experimental procedure in animal learning studies 
that discover what happens when Action Selection 
fails. This paper integrates the results of these 
studies into the existing Dynamic Expectancy 
Model, and considers the impact this has on the 
Action Selection and learning properties of that 
model. A series of experimental investigations is 
presented to il lustrate how the behavioral 
extinction mechanism can be combined with 
existing properties of the model to protect the 
Animat from harm in circumstances where Action 
Selection would otherwise fail. 

1    Introduction 
Action Selection has emerged recently as a key issue in the 
modell ing of biological systems. Put simply, it asks the 
question “given the current circumstances, and taking 
everything into account, which action or behavior pattern 
should an animal (or Animat) select to do right now.” The 
answer, it seems, is far from straightforward, but four 
factors are consistently identified as strongly implicated: 
• The current context, as identified by the animal’s 

sensory and proprio-receptive apparatus 
• Past, and in particular, recent past, experiences of the 

animal (learning) 
• Goals or motivating requirements, internal to the animal 
• The innate, or pre-programmed, capabili ties of the 

animal 
This paper will consider what happens when an Animat 

model is taken outside its normal envelope of Action 
Selection operation, and investigates what an Animat might 
do under increasingly adverse conditions. The paper notes 
detailed findings from laboratory studies in animal learning, 
in particular that of the Behavioral Extinction phenomena. It 
integrates these findings into an established Animat model 
and then considers the consequences these results might 
have for Animat systems in the broader context of Action 

Selection. Most natural learning phenomena are considered 
reversible to a greater or lesser extent, and extinction studies 
investigate, and hopefully reveal, the manner in which that 
reversal takes place. One particular approach, that based on 
the operant conditioning phenomena (Blackman, 1974) 
appears to be particularly relevant to Action Selection. 
Other models of extinction (Balkenius and Morén, 1988) 
have investigated these phenomena in isolation. This paper 
considers and models the role behavioral extinction 
mechanism might play in the full context of multi-step 
Action Selection sequences. 

Action Selection and behavioral extinction will be 
discussed in the context of Witkowski’s Dynamic 
Expectancy Model (DEM) (Witkowski, 1997, 1998, 1999a, 
1999b). The Dynamic Expectancy Model adopts a 
connectivist (Drescher, 1991; Witkowski, 1999b) approach. 
Essentially a method of building a network of rank ordered 
connections between current sense input and current goal, 
based on a continuously changing learned structure.  

The Dynamic Expectancy Model selects actions on the 
basis of a function of the Animat’s current sensory state and 
current goals. It reformulates that function (called the 
Dynamic Policy Map) dynamically as the motivations or 
“goals” of the Animat change with time, and as a 
consequence of what it learns as a result of the actions it 
selects.  

In turn, the structure that underlies the generation of 
that dynamic function is built, and subsequently updated, 
with structural and tactical learning methods. As with other 
Action Selection models, the DEM is essentially an 
engineering artefact, but whose design principles are driven 
by our understanding of natural counterparts (Witkowski, 
1997, for a detailed discussion). The approach here is not so 
much to provide detailed models of individual processes, 
but to investigate how these processes interact and the role 
they might play in animals and in artificial systems whose 
design is based on our understanding of animal behavior. 

The biological inspiration that can drive our choices in 
designing artificial Animat systems (artificial Agents, based 
on biological principles) allows for the four Action 
Selection factors to be combined in a wide range of ways. 
Neural Networks emulate aspects of our understanding of 
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the brain’s pathways to learn appropriate behaviors (Tani 
and Nolfi, 1998, for example). Reinforcement learning 
systems (Humphrys, 1998; Sutton, 1990 or Watkins, 1989) 
propagate the effects of occasional reward backward to 
create a policy map of sense-act pairs, ordered by current 
estimates of future reward. Classifier systems (Booker, et 
al., 1990; Riolo, 1991; Stolzmann, 1998) adopt a “bucket-
brigade” approach to propagating the effects of occasional 
reward, and combine behavior selection with a genetic 
algorithm to create new classifier elements. Action 
Selection models may also be pre-defined, with little or no 
learning content (Maes, 1991; Tyrrell , 1993).  

2    Behavioral Extinction 
Behavioral Extinction (Blackman, 1974; Hergenhahn and 
Olson, 1993; Reynolds, 1968) describes the process by 
which a previously established learned connection is 
discarded when learned responses derived from it no longer 
elicit the desired outcome. Classical conditioning studies 
il lustrate the reversibili ty of learning. Repeated association 
between Unconditioned Stimulus (US) and Conditioned 
Stimulus (CS) leads to the appearance and then gradual 
strengthening of the Conditioned Response (CR). Once 
established we note that the CR will weaken and apparently 
disappear following a period when US and CS are not 
associated, usually over a small number of trials (~10). 
Classical conditioning has been extensively modelled 
(Balkenius and Morén, 1988), who describe these extinction 
results as “not very surprising” . However, not all learning is 
equal, and adopting a different experimental regime 
produces very different extinction patterns.  

The raw behavioral data for the extension to the DEM 
described in this paper is derived from work using 
experimental techniques developed by B.F. Skinner to 
investigate operant conditioning learning. In an apparatus, 
now almost universally referred to as the Skinner Box, 
certain learning phenomena in animals may be investigated 
under highly controlled and repeatable conditions. In a 
typical Skinner box apparatus the subject animal may 
operate a lever to obtain a “reward” , usually a small food 
pellet. The equipment may be soundproofed to exclude 
extraneous signals and different arrangements can be 
adopted to suit different species of subject animal.  

Typically, the animal will be taught to operate the lever 
to obtain the reward before the start of an experiment. Once 
the subject is conditioned in this manner various regimes 
can be established to record effects such as stimulus 
differentiation, the effects of adverse stimuli (“punishment 
schedules” ), the effects of different schedules of 
reinforcement, and, of course, experimental Behavioral 
Extinction. Progress of the learned response may be 
automatically recorded in a trace (fig. 1) that shows the 
number (and/or strength) of the emitted response events 
over a period of time. 

For instance, we might train a rat to press a lever to 
obtain a food reward. We would expect the rat to try the 

lever to obtain food when it is hungry. If the lever is 
subsequently disconnected from the food dispenser, how 
long will the rat continue to try? Under appropriate 
conditions it is apparent that the rat will continue to operate 
the lever to (unsuccessfully) obtain food for a very 
considerable period, albeit at a decreasing rate. We ask, 
what purpose does such persistence in behavior serve? We 
also note that the reduction in the rat’s lever pressing 
activities is not uniform, but adopts a distinctive pattern. 
Why should this be?  
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Figure 1: Operant Conditioning Behavior Extinction Curve 

 
Figure 1 shows styli zed experimental records (adapted 

from Reynolds, 1968) derived from Skinner Box 
experiments under an operant conditioning reinforcement 
schedule. The slope of the curve indicates the rate of the 
learned action “ responses” (each such action causes an 
upwards increment in the trace), horizontal sections indicate 
periods with no responses. The downward tick marks 
indicate when a reward has been delivered.  The traces to 
the left of the vertical separator line show the response 
curves under continued “normal” (rewarded) conditions, 
those to the right the effect following complete cessation of 
reward. This form of cumulative event graph is used later in 
figure 7. 

One might expect that a regularly “ rewarded” behavior 
should take longer to extinguish that one that has been 
rewarded only sometimes. A stronger, more rewarded, 
connection should surely take longer to eradicate than a 
partiall y rewarded one. This is not the case; partially 
rewarded behaviors consistently persist longer. This is 
referred to as the partial reinforcement extinction dilemma. 
It is also the case that although a behavior has been 
apparently full y extinguished (under both classical and 
operant regimes), it will reappear following a period of rest - 
the spontaneous recovery phenomena. Extinction behaviors 
under the operant schedule also exhibit the latent extinction 
phenomena, in which behavior actions that are contingent 
on a subsequent, but extinguished, activity in a chain of 
actions are themselves suppressed. It will become clear that 
latent extinction is a natural consequence of the DEM 
approach, and will hardly need further consideration. We 
will also suggest a straightforward interpretation of the 
partial reinforcement extinction dilemma in the context of 



the DEM, and postulate a simple mechanism for 
spontaneous recovery. 

There are two highly significant differences in the 
extinction curves obtained under classical and operant 
conditioning regimes. First, the characteristic stepped form 
of the curve in the extinction phase of the operant 
experiments following the cessation of rewarding events, 
which is quite distinct from the typically smooth extinction 
curve obtained under a classical conditioning regime. 
Second, that the number of events required to complete the 
extinction phase is much higher in the operant case than 
under classical conditioning.  

3    The Dynamic Expectancy Model 
The following sections provide a summary of the DEM 
mechanism. This description will emphasize the 
connectivity inherent in the model. Previous treatments of 
the Dynamic Expectancy Model (Witkowski, 1999b, for 
example) have concentrated on a formalism to more 
precisely define the structures involved and the processes by 
which they change.  

The DEM forms (via a process of structural learning) 
and maintains (tactical learning) a network of connections 
between two interface components, Signs and Actions. This 
network of connections is (semi-)permanent, its structure 
changing relatively slowly in response to structural learning. 
The relative strength of connecting links in the network is 
controlled by tactical learning. These learning processes are 
described later. 

Signs both define and detect situations that can be 
recognised by the Animat. Signs form the interface to the 
sensory apparatus available to a physical Animat. Signs may 
connect directly to sensors, but may equally be compound 
items, conjunctions of elemental sensory inputs. At each 
cycle of the algorithm every Sign is either detected or is 
absent and so evaluates to active or inactive for that cycle.  

Actions, define the activities the Animat may perform. 
Where Signs defined the interface to the sensory apparatus, 
actions connect the DEM to the Animat’s physical actuators. 
Actions being performed are deemed active.  

Every action, � �  , has associated with it an action cost. 
The action cost indicates the relative effort that will be 
required by the Animat to complete that action. Action costs 
may be expressed in any units (such as elapsed time or 
energy expended) that may be consistently applied across all 
the actions used by the Animat. Action cost wil l be used in 
the “cost estimation” process for goal directed Action 
Selection.  

The DEM also maintains a memory of recent activations 
and their associated timings for both Signs and actions. 
Information held on these activation traces is used by the 
structural learning component to construct new links in the 
network of connections. 

The main learned structural connection in the DEM 
“network” is the µ-hypothesis link, figure 2.   
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Figure 2: The µ-Hypothesis L ink 
 
Each of these µ-hypothesis links should be read as an 

expectation of the form “performing the action � �  in the 
immediate context (∧) of �

�
�

�
 predicts the occurrence of the 

condition �
�

�
� � �
 at time t in the future”. The time t is bracketed 

by ±τ, forming a range a times to generalise the prediction 
in the temporal domain (τ << t) and to overcome the 
potential effects of sensor sampling aliasing. Any particular 
combination of context Sign ( �

�
�

�
) and action ( � � ) can 

potentially predict many consequences, similarly a 
consequence condition ( �

�
�

� � �
) can be predicted by many 

different pairings, at different values of t. 
Any µ-hypothesis link is deemed active whenever both 

its context Sign ( �
�

�
�
) and action ( � � ) are active 

simultaneously. A new prediction ( � �  ) is created and added 
to the Prediction Trace for every instance of an activated µ-
hypothesis link. Note in particular that this mechanism is 
invoked for all µ-hypotheses links meeting these activation 
criteria at any given time. The presence of active predictions 
drives the corroboration process.  

The model’ s current estimate of the overall predictive 
abil ity for each µ-hypothesis link, the strength of the 
predictive connection “→” , is recorded in the corroboration 

measure, Cm, (0 ≤  Cm  ≤ 1). Cm is updated by the tactical 
learning mechanism based on a comparison of predicted 
outcome saved on � �  against actual outcome at every 
opportunity that arises to do so. The corroboration measure 
is central to the construction of the Dynamic Policy Map. 

3.1    Corroboration: Tactical Learning 
For each active prediction, the corroboration measure (Cm) 
of the µ-hypothesis link responsible for the prediction is 
modified according to:  

 

Cm = Cm +  α(1 – Cm)             (eqn. 1) 
 

where the prediction was successful, and 
 

Cm = Cm -  β(Cm)             (eqn. 2) 
 

where the prediction was unsuccessful. Predictions are 
discarded from the prediction trace once this step is 
complete. 

The positive reinforcement rate, α (0 ≤ α ≤ 1), defines 
the rate at which successful predictions will strengthen Cm. 

Similarly, the extinction rate, β (0 ≤ β ≤ 1), defines the rate 
at which Cm wil l be weakened by failed predictions. Where 
no prediction was made the value of Cm remains unchanged. 
Sequences of successful (or unsuccessful) predictions give 
rise to the familiar negatively accelerating learning curve, 



the values being normalized such that Cm rises 
asymptotically toward 1.0 (or fall s toward 0.0).  

3.2    Corroboration as Reward  
The DEM µ-hypothesis link has many similarities to the 
notion of the three-term contingency, used by Catania 
(1988) to express the fully discriminated (Skinnerian) 
operant class of stimulus, action and outcome contingent on 
reward. It is perhaps lit tle surprise, then, that findings from 
operant conditioning experiments seem particularly relevant 
to the understanding of these mechanisms. However, the 
DEM builds on the conjecture that the proper interpretation 
of this triple is that of a prediction, and that the strength of 
the connection (“→” ) should depend only on the predictive 
performance of the unit.   

A conventional view would hold that the strength of the 
connection should be related to some goal or task specific 
“desirability” of ������ � � . By adopting the predictive view, 
strength changes can be made internally, just by seeing 
whether the predicted event did or did not occur, 
independently of reward or reliance on an external agent to 
indicate correctness. This leaves the µ-hypothesis link 
uncommitted to any particular goal; learning is not task 
dependent. Changes to Cm can be applied immediately the 
prediction is verified, and is therefore always attributed to 
the specific µ-hypothesis link responsible for the prediction.  

The Dynamic Expectancy Model is one of a number of 
contemporary learning Action Selection models that are 
based on the explicit use of prediction (hence expectancy 
model) to drive the learning processes (Tani and Nolfi, 
1998; Stolzmann, 1998). 

4    DEM Action Selection Methods 
At each execution cycle the Animat must have some action 
to perform. Normally, the Dynamic Expectancy Model 
operates in two distinct modes for Action Selection: 
(1) Goal directed Action Selection, and 
(2) Exploratory Action Selection.  

Any Sign can be assigned a priority. These prioriti zed 
Sign nodes then become goals for the Animat. Many Signs 
can be given a goal priority in this way, but the Animat 
treats only the one with the highest priority as top-goal, and 
will select actions to achieve this goal. The goal setting 
mechanism may be programmed into the model, or, as in the 
case for the experiments described later, Sign priorities may 
be manipulated directly. 

Whenever the Animat is in goal directed Action 
Selection mode, the DEM algorithm attempts to construct 
and maintain a Dynamic Policy Map (DPM) from which it 
may then select actions directly. In this mode of operation 
actions are selected on the basis of the current sensory 
conditions, by direct reference (“ reactively” ) to the 
Dynamic Policy Map. The construction and use of the DPM 
is described later. 

When such a goal Sign becomes active (that is, the 
Animat detects it), it is deemed satisfied, and its priority is 
automatically reduced to zero. When the top-goal is 
satisfied, the next highest priority Sign automatically 
becomes top-goal, a new DPM is constructed and actions 
are then selected to achieve this Sign.   

Whenever no top-goal is set the system defaults to 
selecting actions in exploratory mode. A wide variety of 
possible exploration strategies have been proposed (Thrun, 
1992), and the choice of strategy will be implementation 
specific for any particular Animat model. 

 Irrespective of how an action came to be selected, the 
learning mechanism continually learns from the activities of 
the Animat. It updates the state of knowledge (and hence 
how the Animat will react in future) after each action 
according to the tactical and strategic learning strategies 
previously described. This is a natural, and powerful, 
consequence of the internal prediction based corroboration 
method.  

5    The Dynamic Policy Map 
Whenever a top-goal is set, the DEM attempts to create a 
Dynamic Policy Map (DPM) to form an ordering over 
sequences of links from every other Sign in the net to the 
Sign currently acting as top-goal. The DPM is conveniently 
thought of as an interconnected “graph” temporarily 
superimposed over the network of µ-hypothesis links. Signs 
associated with individual µ-hypotheses links represent the 
nodes and actions embedded within individual µ-hypotheses 
the arcs.  

5.1    Constructing the DPM 
The DPM is created by a process of spreading activation 
(Maes, 1991) propagating throughout the network of µ-
hypothesis links from the top-goal Sign, which acts as a 
“seed” point.  

Each µ-hypothesis link has associated with it a cost 
estimate, Ce, value. This cost estimate is computed from the 
given action cost of the action, � �  , embedded in the link, the 
current Cm value for the link and a fatigue measure, fm, 
associated with the action: 

 

Ce ← (action_cost( � � ) * fm) / Cm            (eqn. 3) 
 
Consider a situation where the corroboration measure 

(Cm, eqns. 1 and 2) is simply p(number of successful 
predictions|total predictions) made by a µ-hypothesis link - 
the probabil ity that the µ-hypothesis link predicts correctly. 
With fm = 1, the cost estimate value Ce would then be 
reasonably interpreted as the total estimated cost for the 
average number of attempts that must be made with the 
given µ-hypothesis to achieve the transition between 

������  and 
������ � �  that it predicts. A similar interpretation may be placed on 
the case for Cm shown in eqn. 1, with the proviso that the 



“averages” are now biased towards recent experiences, with 
less recent experiences discounted away. 

The fatigue measure, fm, is normally unity, but is 
incremented by some small amount (the fatigue increment 
rate, FIR) each time the action is made. However, during 
periods when the action is not used it slowly reverts to unity 
(at the fatigue recovery rate, FRR). Its effect is to artificiall y 
raise the cost estimate of a DPM link where the action is 
used frequently, and therefore make any path in the DPM 
that uses this link more “expensive” and so less attractive. 

Each Sign in the network will acquire a valence level, v, 
indicating the number (n) of µ-hypothesis links that must be 
traversed to reach the top-goal Sign “node” by the path of 
least total cost. The current top-goal Sign has a valence level 
of zero, the 

������  Sign of any µ-hypothesis link that leads 
directly to the goal (i.e. where its ������ � �  = top-goal) a valence 
level of 1, and so on. The policy value, Pv, of any node 

� �  at 
level n in the DPM is then directly expressed as the sum of 
individual estimated costs ((Ce)

v) by:  
 

Pv(
� � ) ← min ( ∑

=

=

nv

v 1

(Ce)
v)          (eqn. 4) 

 

The policy value for each Sign � �  implicated in the DPM 
is computed by adding the cost estimate for its transition to 
the cost of the path to its ������ � �  node. If a lower cost path is 
encountered, the spreading activation process is re-activated 
for that node to minimize path costs at higher valence levels. 
The method used to compute these least (estimated) cost 
paths to create the DPM is a simple variant of the standard 
breadth-first graph traversal algorithm (for example, 
Nilsson, 1980). 

Construction of the Dynamic Policy Map is complete 
when there are no further µ-hypothesis links that can be 
implicated, and no further path cost minimization can occur. 

5.2    Selecting an action from the DPM 
Following construction of the DPM the Animat has an 
estimate of the total “cost” of satisfying the top-goal starting 
from any Sign 

� �  included in the policy map. If any currently 
active Signs are included as a node in the DPM, then the 
action � �  included in the µ-hypothesis link associated with 
the active Sign node with the lowest Pv is selected. This is 
the action at the start of a sequence requiring the lowest 
overall estimated effort to achieve the top-goal.  

Where there is no intersection between the set of active 
Signs and nodes on the DPM, an exploratory action is 
selected. These exploratory actions will either:  

(1) achieve the goal directly (by chance),  
(2) lead to a situation where a Action Selection from the 

DPM may continue, or   
(3) cause new µ-hypothesis links to be created, which 

in turn expands scope of the DPM.  
The DPM is recomputed frequently, whenever the top-goal 
changes, new µ-hypotheses are formed, or existing ones 

have undergone suff icient additional corroboration to 
indicate that a different solution path may be preferable. 

6    Strategic Learning 
Prediction, or rather the failure to predict the occurrence of a 
Sign, drives the structural learning component of the DEM, 
which is responsible for forming new µ-hypothesis links. 
The opportunity to create new µ-hypothesis links is 
indicated by appearance for the first time of a (“novel” ) 
Sign or by the appearance of a known but unpredicted 
(“unexpected”) Sign. Previously unencountered Signs 
trigger the creation by novelty method. The appearance of 
an unpredicted, but previously known, Sign invokes the 
creation by unexpected event method. Unexpected Signs are 
detected by comparing the active predictions to the active 
Signs and applying the method to any unpredicted residue. 

In either method a new µ-hypothesis link may be 
constructed from the novel or unpredicted Sign as ‘

������ � � ’ , and 
a Sign (

������ ) and action ( � � ) drawn respectively from the 
recorded activation trace of values of past Signs and actions. 
In this way the model creates a new “hypothesis” “ that 

������ � �  is 
predicted by performing the action � �  in the immediate 
context of 

������ , at time t in the future”. The timing relationship 
(t and hence τ in fig. 2) is derived from their relative 
positions in the respective memory traces. Once formed any 
new µ-hypothesis link will be tested for validity by the 
corroboration method, and incorporated into any DPM that 
is subsequently constructed. 

To limit the rate at which new µ-hypothesis links are 
created the user may specify a learning probability rate, λ, 
which determines the probabili ty with which a new µ-
hypothesis link wil l be formed given one of these 
opportunities to do so. The Dynamic Expectancy Model 
also defines methods for differentiating partiall y effective µ-
hypotheses by making their component Signs more or less 
specific (and so creating new Signs), and also for removing 
ineffective µ-hypothesis links.  

7    Modelling Extinction 
The extinction mechanism in the DEM interprets the steep 
and flat components of the operant conditioning extinction 
schedule (figure 1) as alternating periods of explicitly goal 
directed behavior interspersed with periods of exploratory 
activity when goal directed-ness is temporarily suspended. 
The DEM extinction mechanism is controlled by four 
factors, which determine the rates and relative effort 
expended on these two activities:  

(1) The valence break point (VBP),  
(2) the valence break point factor (VBPF),  
(3) the goal recovery rate (GRR) and  
(4) the goal cancellation level, Ω.  
VBP and VBPF control the duration of the periods of 

goal directed activity, the GRR the duration of the 
intervening exploratory periods. The goal cancellation level 



specifies the maximum value the path policy value may rise 
to before the top-goal will be cancelled by extinction. The 
effect of the interplay between these components can be 
clearly seen in figures 6 and 8. 

Determining the VBP: When the Dynamic Policy Map 
for a new top-goal goal is first constructed, the lowest 
available policy value (Pv) associated with an active sign is 
taken as a measure of the li kely cost of reaching the goal. 
The VBP is determined by multiplying the initial Pv by the 
VBPF (VBPF > 1, typically 10). The multiplier value is 
selected to give the Animat ample opportunity to achieve 
the goal by direct use of the DPM, allowing a generous 
margin for failed Actions.  

Using the VBP: If  the top-goal has not been satisfied, 
and the current best Pv reaches the VBP value, goal directed 
behavior is temporarily suppressed. The VBP is again 
multiplied by the valence break point factor in preparation 
for any subsequent periods of goal-directed activity. Each 
time a blocked µ-hypothesis link fail s the estimated cost of 
the step increases (at an exponential rate), and the number of 
failed actions required to reach the next VBP level will be 
decreased as a direct consequence. 

Using the GGR: On reaching each break point, 
behavior reverts to exploratory actions for a period 
determined by the GRR. Actions taken during this period 
are referred to as unvalenced actions, to distinguish them 
from “ordinary” exploratory actions. On the first 
suppression the goal recovery rate is high, and behavior 
reverts to goal directed quickly after only a few unvalenced 
actions. On reaching each subsequent valence break point 
the GRR is reduced (in the current implementation by a 
factor of two) and so the number of exploratory actions 
during the unvalenced period increases.  

Goal Cancellation: Eventually, the current Pv will 
exceed the predetermined goal cancellation level, Ω, and the 
priority of this unachievable top-goal is automatically 
reduced to zero, releasing the Animat from the continued 
obligation to pursue that goal.  

If at any point during this procedure the top-goal is 
satisfied the extinction process is cancelled. 

8    The Investigations 
To illustrate the effect of normal Action Selection in the 
DEM, and the circumstances, and effects of the Behavioral 
Extinction process, we now describe a sequence of three 
investigations.  

Investigation One will reprise on the normal learning 
and Action Selection behavior of a DEM controlled Animat 
faced with simple alternative Action Selection sequences.  

Investigation Two emulates the full extinction 
procedure. In part 2 of this investigation we repeat the 
experiment, but this time allow the Animat the opportunity 
to discover a new effective action sequence path, 
demonstrating a primary role for the extinction process. 

Investigation Three replicates the Extinction procedure, 
but with two possible points in the Action Selection 
sequence, both of which are blocked.  

Figure 3 shows the simulated Animat environment. The 
test environment used is the due to Sutton (1990). In all 
these experiments α = 0.5, β = 0.2, λ = 1.0, FIR = 0, 
Ω = 106 and all actions cost are 1.0. Although restricted, this 
test environment allows considerable control over the 
experimental conditions and allows for straightforward 
analysis of the results (and in particular, easy and clear 
visualization of the DPM). Following Sutton, a random 
exploratory strategy is adopted. While less efficient that 
alternatives, its use eliminates a potential source of domain 
specific bias in the investigations.  

 

 
Figure 3: The Simulated Animat Environment 

8.1    Investigation One 
In this investigation the Animat is placed at the start 
location “S” and allowed to explore the environment by a 
random walk strategy for 1000 steps. This is sufficient to 
ensure that the environment is fully explored, and that both 
possible paths to “G” have been learned. No goal is asserted 
during this initial period. The Animat is allowed to learn ad 
libitum, and so µ-hypothesis links wil l be created at every 
opportunity and the environment learnt (adequately for the 
investigation, although not completely at this stage). 
Learning is not contingent on an external source of reward, 
as corroboration is an entirely internal process. This is latent 
learning (Witkowski, 1998). Learning has occurred, but wil l 
not be made manifest until a motivating goal is set. The 
abil ity to perform latent learning is often seen as a primary 
differentiator between this class of learning mechanism and 
true (reward based) reinforcement learning methods. 

 

   
Figure 4: DPM at cycle 1002 (left), 1032 (right) 

 
At the conclusion of the 1000 cycles of unrewarded and 

unmotivated exploration, the Animat is returned to the start 



location “S” and the location “G” assigned a goal priority 
value of 1.0, making it top-goal. As the top-goal has been 
modified, the system constructs a Dynamic Policy Map 
using “G” as the seed point (fig. 4, left). Animat actions are 
now selected from the DPM in a reactive manner until the 
goal location is reached, much as they would be from a 
static policy map developed by a Q-learning method 
(Sutton, 1990, Watkins, 1989). Unsurprisingly the Animat 
selects the shorter of the available paths, and moves towards 
the goal location. Once the goal location is reached (after 10 
steps) the goal is automatically cancelled and behavior 
would revert to exploration.  

In the next stage of the investigation the Animat is 
returned to “S” and “G” is again made top-goal. An obstacle 
is placed at location “B” , blocking the shorter path. The 
Animat attempts to follow its best path, but is prevented by 
the obstacle (note that the Animat is unable to sense the 
obstacle until i t is encountered). Each failed attempt to 
apply the µ-hypothesis link (identified as “H14” in fig. 5), 
responsible for the blocked transition, increases the 
estimated cost of that transition according to the extinction 
rate β. Each time the DPM is recomputed this additional 
cost increases the path cost by that of the failed µ-
hypothesis link. At some point the cost of the best 
alternative path in the DPM is exceeded (12 attempts in this 
example), and the Animat switches path to traverse the 
environment via location “A” (fig. 4, right).  

Figure 5 shows the total estimated remaining path cost 
(triangles) and the cost contribution to that total by µ-
hypothesis “H14” (squares). The first segment, from step 
1000, shows the cost fall ing steadily as the shorter path is 
traversed. The second segment, from step 1012 shows the 
estimated cost fall ing until the block at “B”  is encountered, 
then rising until it  exceeds that of the longer path via “A” , 
and falling again until the goal is reached (DPM of fig. 4, 
right). 
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Figure 5: Estimated Cost Profiles 

 

In the last part of investigation one the Animat is 
returned to “S” , “G” set again and the Animat released. It 
will be apparent from fig. 5 (cycles 1051 – 1068) that the 
Animat immediately traverses the path via location “A”  

8.2    Investigation Two 
This investigation determines the goal extinction behavior 
of the Animat when a single, previously established, path is 
obstructed. These conditions replicate the Skinner box 
experiments, but in the context of a multi-step action-
sequence. Location “A” is blocked, then the Animat is 
allowed to explore the environment for 1000 steps, as 
investigation one. The Animat is returned to “S” and the 
goal location “G” established as top-goal. We confirm that 
the expected direct path via “B” is taken. Now the Animat is 
again returned to “S” and “G” set again as goal. Before the 
Animat is released an obstacle is introduced at location “B” , 
such that there is now no possible route to the goal location. 

Figure 6 monitors two important internal parameters 
during the extinction process. The estimated cost of the goal 
path (square markers) and the valence break point (VBP) 
value (circle markers). The DPM is computed, and a path 
cost estimate of about 10 units derived (ten steps, each of 
action cost one). With a valence break point factor of 10, the 
valence break point is therefore set to 100. As there is no 
alternative method to reach the goal the Animat persists 
with the only µ-hypothesis link available, and the cost 
estimate rises as previously described due to successive 
failed corroboration steps.  
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Figure 6: Single path to extinction cost estimates 

 

If no alternative path is encountered before the estimated 
path cost exceeds the current VBP (as it would have in 
investigation one), the Animat reverts to exploratory actions 
for a period determined by the goal recovery rate. Initially 
the recovery rate is high. Following 101 steps of unvalenced 
activity, goal-directed behavior is restored and a new DPM 
computed. The estimated path cost is again increased by the 
valence break point factor  (to 1000) to give a new VBP. 
The Animat immediately returns to the only known path and 
attempts that until the cost again exceeds the new VBP 
value. Exploratory actions are resumed, with a reduced goal 
recovery rate, so exploration continues for longer. 

This procedure is repeated with increasing periods of 
exploratory activity punctuated by decreasing periods of 
goal-directed activity. At some point a (failed) corroboration 
of the blocked µ-hypothesis will result in the total path cost 



estimate exceeding the goal cancellation level, Ω. This is the 
goal extinction point and the goal is cancelled. The goal 
might be reasserted, but to li ttle useful purpose. 

Some Skinner Box extinction curves record the bar 
being pressed during the periods of apparent inactivity 
(equivalent to unvalenced exploration). The Model shows a 
similar effect, the conditions to activate the blocked µ-
hypothesis link may occur at any time, and so the extinction 
point can be reached at any point in the experiment. 
Although they record quite different activities, the estimated 
cost record of figure 6 can be viewed as an analogue for that 
in figure 1. Each marker square represents one action at the 
critical blocked point  

8.3    Part 2: The Blocking Procedure 
The procedure here replicates Sutton’s (1990) blocking 
procedure, and differs in some details to that used 
previously in investigation two. Sutton uses the blocking 
procedure to investigate his exploration bonus method for 
mixing exploration and exploitation of the environment in 
the Dyna-Q+ algorithm. Under this procedure initial 
exploration assumes that “G” acts as a source of reward 
(goal) continually. Path “A” is blocked initially (one path to 
“G” via “B”). The Animat is placed at “S” , and “G” is made 
top-goal (it was not valenced in investigation two, but 
without latent learning, if this were not the case now the Q-
learning mechanism of Dyna-Q+ would learn nothing 
during this phase). Each time the Animat reaches “G” , one 
unit of reward is noted, and the Animat returned to “S” . “G” 
is always immediately reinstated as top-goal. This procedure 
is repeated up to step  1000.  
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Figure 7: Blocking Task, Individual curves 

 

At this point an obstacle is placed at “B” (as in part 1), 
but the obstacle at “A” is removed. The procedure now 
continues until cycle 3000. An Animat must discover the 
new path (during a period of unvalenced activity), before 
continuing to receive reward at “G” (and being 
automatically returned to “S” each time).  

Figure 7 shows the performance of ten individual DEM 
Animats under these conditions. These “individuals” are in 
effect “clones” differing only in the starting seed used to 
generate the random Action Selection during the exploration 
phases. The slope of each line indicates the frequency with 
which the Animat reaches the goal and receives one unit of 
reward. The steeper the slope the more quickly the Animat 
has reached the goal location. Flat portions from step 0 
represent times when the Animat is exploring the 
environment as the initial random walk. The variabil ity and 
delay shown is typical for the random walk employed. From 
step 1000 the Animats enter the extinction process described 
previously.  

Figure 7 shows that six of the test DEM individuals 
successfully located and traversed the new path at location 
“A” , while four failed to do so and suppressed the goal. 
These individuals were withdrawn from the experiment. If 
they remained in the environment these Animats would 
continue with exploratory actions. Clearly the speed at 
which the Animat might connect with the (previously 
explored) upper part of the environment, and the chance of 
extinction is determined to a great extent by the nature of 
the exploration strategy adopted. Sutton (1990) reports that 
after a period of re-exploration of about 500 steps Dyna-Q+ 
locates the new, but previously unknown, path and 
continues to garner reward. The results are broadly 
comparable, but the DEM adopts a biologically inspired 
strategy, where Sutton makes his choice on the basis of his 
method’s numerical properties.  

8.4    Investigation Three 
This final investigation repeats the extinction experiment of 
investigation one, but in a situation where the Animat has 
two paths available (“A” and “B”) from start to goal during 
the initial 1000 step (no goal set) exploration phase. Then 
both paths are blocked before starting the extinction phase at 
step 1000. The Animat behavior is modified to appearing to 
scuttle back and forth between the two previously effective 
paths during periods of goal-directed activity interspersed 
with random exploration during the unvalenced periods.  
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Figure 8: Dual Path Extinction 



Figure 8 shows the resulting estimated cost and VBP 
values for this investigation. Figure 9 shows the detailed 
effect of this scuttling behavior during the first period of 
goal-directed activity. Each increase in the cost estimate 
arises from the Animat attempting a blocked µ-hypothesis 
link, first at one end of the maze, then at the other.  The 
Animat appears decreasing persistent in its attempts to 
traverse each of the known blocked paths with each 
successive attempt. Gaps between the cost estimate rises 
indicate those cycles during which the Animat is (under goal 
directed control) travell ing between the two places where 
the known paths had been located. 
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Figure 9: Dual Path Extinction (Detail) 

9    Summary 
This paper has described a behavior extinction mechanism 
based on experimental data for the Dynamic Expectancy 
Model. The effect of this mechanism is to provide the last 
stage in a series of behavioral shifts by which the Animat 
may manage changes to and failures of Action Selection. 
The various investigations reporting experiments with the 
Dynamic Expectancy Model’s implementation, SRS/E, 
confirm the sequence of events: 
1) If the Action Selection function defined by the 

Dynamic Policy Map is effective, then the Animat 
achieves its top-goal, and all  is well.  

2) If the Action Selection function fails to achieve the top-
goal and there is an alternative, but initially less 
desirable route, the Animat will attempt the first route 
until the estimated policy value exceeds that for the 
alternative, which is then pursued. If the second was 
blocked a third might be attempted, and so on. One 
might assume that this is the normal state of affairs, a 
combination of trying alternatives and persistence 
eventually leading to a successful outcome. 

3) If no viable alternative exists, the Animat will continue 
to attempt the failed path, or paths, until the estimated 
cost exceeds the previously calculated valence break 
point (VBP). This initiates a brief period of 
(unvalenced) exploration, before the Animat returns to 
goal-directed Action Selection behavior on the only 
known path, but with a higher value for VBP.  

4) If a fresh path is discovered during one of these periods 
of exploration, new µ-hypothesis links wil l be created 
and a new Action Selection path to the top-goal may 

become available. This was noted in investigation 2, 
part 2. 

5) This alternating explore/goal-directed behavior 
continues until the goal extinction point is reached, 
when priority of the offending top-goal is forcibly 
reduced. The Animat may then revert to other, 
hopefully more productive, behaviors, (investigations 2 
and 3). 
The extinction mechanism provides a behavioral escape 

mechanism “of last resort” , and prevents the Animat from 
being forced (by its own Action Selection mechanism) to 
display increasing desperate and inappropriate behavior, 
possibly to its severe detriment. It is not a panacea, as 
although the “hungry” Animat is no longer forced to follow 
the goal-directed path to known sources of food it is, 
unfortunately, no less hungry. 

10    Discussion and Conclusions 
Throughout this paper we have attempted to show how 
findings from experimental procedures elucidating the form 
of the behavioral extinction can be integrated into a current 
model of Animat learning and behavior. We have 
investigated the role it plays in the overall strategy of an 
Animat. 

The form of the extinction mechanism is clearly related 
to the explore/exploit trade-off problem (Thrun, 1992; 
Wilson, 1996). Reinforcement learning systems must 
balance the time they spend moving towards known sources 
of reward with actions that may encounter new, and better, 
sources of reward. In general, the DEM does not need to 
interleave exploration actions when it is pursuing a goal-
directed behavior, it explicitly takes its “best” possible route 
to the top-goal. Normally, DEM Action Selection behavior 
reverts to exploration at times when there is no top-goal. 
Indeed, it would be expected to encounter novel situations 
(and learn from them) while pursuing a variety of different 
goals as it goes about its everyday activities. During 
Extinction, these lengthening periods of unvalenced 
exploration progressively widen the search space for new 
solution paths. Periodically, but with less vigor, the Animat 
periodically returns to its known “best” path, as this remains 
its best option to achieve the current top-goal.  

Investigation 3 presents results from a situation where 
two known paths are extinguished. The behavior of the 
Animat in these circumstances is quite distinctive. It would 
be instructive to repeat the procedure under laboratory 
conditions with animal subjects, as this information is not 
directly recorded in the Skinner box experimental paradigm.  

The findings of Investigation 3 provide an effective 
interpretation of the partial reinforcement extinction 
dilemma. The observation that quickly formed or fully 
rewarded behaviors can be extinguished more rapidly than 
those that develop under conditions of partial reinforcement. 
We note the difference between extinction time in 
investigation 2 (single path, average of 10 runs =  
870.9steps) compared to those in investigation 3 (dual path, 



average = 1443.2 steps). Two factors are involved here. 
First, the extinction mechanism does not take effect until the 
contribution of the worst of the alternative µ-hypothesis 
links has reached the appropriate break point. Second, to 
reach that point, each of the alternative actions must be 
tried, typically many times. In the case of investigation 3, 
this was exacerbated by the extra actions required to travel 
between the two alternatives.  

With a single point of  “ reward”, if the Animat creates 
an effective µ-hypothesis link, and the prediction it makes 
(that the reward will occur) always succeeds, then the 
structural learning mechanism will not be invoked. Where 
these predictions fail, new µ-hypothesis links can be 
created, leading to the formation of alternatives to the 
reward. The more alternatives, the longer it takes to 
extinguish them. This explanation has yet to be tested under 
equivalent experimental conditions, but it is substantially 
more straightforward than those proposed that assume only 
a single reinforced connection. 

Consider the effect of the fatigue measure (fm) of eqn. 
3. The Extinction mechanism ensures that one or a small 
number of actions are attempted at an elevated rate. This 
will cause the value of fm to rise proportionately. In turn this 
increases the effective policy value for the path, causing the 
various valence break points to be reached prematurely. The 
extinction point is therefore also reached sooner than it 
would be on the basis of corroboration alone. Following 
extinction, the selection rate for the action(s) falls, and the 
fatigue recovery process starts. After a suitable period of 
recuperation the policy value falls back below the extinction 
point and the behavior appears to recover spontaneously.  

The Spontaneous recovery phenomenon indicates that 
whatever strategy an Animat might have for removing 
ineffective µ-hypothesis links under normal circumstances, 
it appears remarkably tenacious in retaining at least the last 
link option in a previously successful chain. Presumably 
having a bad solution to a problem is better than having 
none at all. In any case circumstances may well revert to a 
situation where the link works again.  
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