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Abstract

Behaviora Extinction is a long established
experimental procedure in animal leaning studies
that discover what happens when Action Seledion
fails. This paper integrates the results of these
studies into the eisting Dynamic Expedancy
Model, and considers the impad this has on the
Action Seledion and leaning properties of that
model. A series of experimental investigations is
presented to illustrate how the behavioral
extinction mechanism can be combined with
existing properties of the model to proted the
Animat from harm in circumstances where Action
Seledion would atherwise fail.

1 Introduction

Action Selection has emerged recently as a key issue in the
modelling of biological systems. Put simply, it asks the
guestion “given the aurrent circumstances, and taking
everything into acount, which adion or behavior pattern
should an animal (or Animat) select to doright now.” The
answer, it seems, is far from straightforward, but four
fadors are wnsistently identified as srongly implicated:
« The airrent context, as identified by the aiima’s
sensory and proprio-receptive gparatus
* Past, and in particular, recent past, experiences of the
animal (learning)
*  Goals or motivating requirements, internal to the animal
* The innate, or pre-programmed, cgpabilities of the
animal
This paper will consider what happens when an Animat
model is taken outside its norma envelope of Action
Seledion operation, and investigates what an Animat might
do wnder increasingy adverse condtions. The paper notes
detailed findings from laboratory studiesin animal leaning,
in particular that of the Behavioral Extinction phenomena. It
integrates these findings into an established Animat model
and then considers the @nsequences these results might
have for Animat systems in the broader context of Action

Seledion. Most natural leaning phenomena ae considered
reversibleto agreaer or lessr extent, and extinction studies
investigate, and hopefully reved, the manner in which that
reversal takes place One particular approach, that based on
the operant conditioning phenomena (Bladkman, 1974)
appears to be particularly relevant to Action Seledion.
Other models of extinction (Balkenius and Morén, 1988
have investigated these phenomena in isolation. This paper
considers and models the role behavioral extinction
medhanism might play in the full context of multi-step
Action Seledion sequences.

Action Seledion and behavioral extinction will be
discuseed in the ntext of Witkowski’'s Dynamic
Expectancy Model (DEM) (Witkowski, 1997, 1998, 1999,
1999b). The Dynamic Expedancy Model adopts a
connedivist (Drescher, 1991; Witkowski, 199%) approach.
Esentially a method d building a network of rank ordered
connedions between current sense input and current goal,
based ona mntinuously changing learned structure.

The Dynamic Expedancy Model seleds adions on the
basis of afunction of the Animat’s current sensory state and
current goals. It reformulates that function (caled the
Dynamic Policy Map) dynamicdly as the motivations or
“goals’ of the Animat change with time, and as a
consequence of what it leans as a result of the adions it
seleds.

In turn, the structure that underlies the generation of
that dynamic function is built, and subsequently updated,
with structural and tacticd leaning methods. As with other
Action Seledion models, the DEM is esentialy an
engineging artefad, but whose design principles are driven
by our understanding of natural courterparts (Witkowski,
1997, for adetailed discusson). The gproach hereisnot so
much to provide detailed models of individual processes,
but to investigate how these processes interad and the role
they might play in animals and in artificial systems whose
design is based on ou understanding of animal behavior.

The biologicd inspiration that can drive our choicesin
designing artificial Animat systems (artificial Agents, based
on Hologicd principles) alows for the four Action
Seledion fadors to be ombined in a wide range of ways.
Neural Networks emulate aspeds of our understanding of
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the brain’s pathways to lean appropriate behaviors (Tani
and Nolfi, 1998, for example). Reinforcement leaning
systems (Humphrys, 1998, Sutton, 1990 or Watkins, 1989)
propagate the dfeds of occasiona reward backward to
crede apolicy map of sense-ad pairs, ordered by current
estimates of future reward. Classfier systems (Booker, et
al., 1990; Riolo, 1991; Stolzmann, 1998 adopt a “bucket-
brigade” approach to propagating the dfeds of occasional
reward, and combine behavior seledion with a genetic
algorithm to creae new clasdfier elements. Action
Seledion models may also be pre-defined, with little or no
leaning content (Mases, 1991; Tyrrell, 1993.

2 Behavioral Extinction

Behavioral Extinction (Bladkman, 1974 Hergenhahn and
Olson, 1993 Reynolds, 1968) describes the process by
which a previously established leaned conredion is
discarded when leaned responses derived from it no longer
elicit the desired oucome. Classcd condtioning studies
illustrate the reversibility of leaning. Repeaed association
between Unconditioned Simulus (US) and Conditioned
Simulus (CS) leals to the appearance and then gradual
strengthening of the Conditioned Response (CR). Once
established we nate that the CR will wegken and apparently
disappea following a period when US and CS are not
asciated, usually over a smal number of trias (~10).
Clasdcd condtioning has been extensively modelled
(Balkenius and Morén, 1988), who describe these extinction
results as “nat very surprising”. However, not dl leaningis
equal, and adopting a different experimental regime
produces very different extinction petterns.

The raw behavioral data for the extension to the DEM
described in this paper is derived from work using
experimental techniques developed by B.F. Skinner to
investigate operant conditioning leaning. In an apparatus,
now almost universaly referred to as the Skinner Box,
certain leaning phenomena in animals may be investigated
under highly controlled and repedable cnditions. In a
typicd Skinner box apparatus the subjed anima may
operate alever to obtain a “reward”, usualy a small food
pellet. The euipment may be soundpoofed to exclude
extraneous dgnas and dfferent arrangements can be
adopted to suit different spedes of subjed animal.

Typicaly, the animal will be taught to operate the lever
to oltain the reward before the start of an experiment. Once
the subjed is conditioned in this manner various regimes
can be established to record effeds such as dimulus
differentiation, the dfeds of adverse stimuli (“punishment
schedules’), the dfeds of different schedules of
reinforcement, and, of course, experimental Behaviora
Extinction. Progress of the leaned response may be
automaticdly recorded in a trace (fig. 1) that shows the
number (and/or strength) of the emitted resporse events
over aperiod of time.

For instance, we might train a rat to press a lever to
ohtain a food reward. We would exped the rat to try the

lever to adbtain food when it is hungry. If the lever is
subsequently disconneced from the food dspenser, how
long will the rat continue to try? Under appropriate
conditions it is apparent that the rat will continue to operate
the lever to (unsuccesdully) obtain food for a very
considerable period, abeit a a deaeasing rate. We ask,
what purpose does such persistencein behavior serve?We
also note that the reduction in the rat’s lever pressng
adivities is not uniform, but adopts a distinctive pattern.
Why should this be?
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Figure 1: Operant Conditioning Behavior Extinction Curve

Figure 1 shows gylized experimenta records (adapted
from Reynolds, 1968) derived from Skinner Box
experiments under an operant conditioning reinforcement
schedule. The slope of the arve indicaes the rate of the
leaned adion “responses’ (ead1 such action causes an
upwards increment in thetrace, horizontal sedionsindicae
periods with no responses. The downward tick marks
indicate when a reward has been delivered. The traces to
the left of the verticd separator line show the resporse
curves under continued “normal” (rewarded) condtions,
those to the right the dfed following complete cessation of
reward. Thisform of cumulative event graph is used later in
figure 7.

One might exped that a regularly “rewarded” behavior
should take longer to extinguish that one that has been
rewarded only sometimes. A stronger, more rewarded,
connedion shoud surely take longer to eradicae than a
partially rewarded ore. This is not the cae; partialy
rewarded behaviors consistently persist longer. This is
referred to as the partial reinforcement extinction dilemma.
It is aso the cae that although a behavior has been
apparently fully extinguished (under both classcd and
operant regimes), it will regopear following aperiod o rest -
the spontaneous recovery phenomena. Extinction behaviors
under the operant schedule dso exhibit the latent extinction
phenomena, in which behavior adions that are cntingent
on a subsequent, but extinguished, adivity in a cain of
adions are themselves suppressed. It will become dea that
latent extinction is a natural consequence of the DEM
approach, and will hardly need further consideration. We
will also suggest a straightforward interpretation of the
partial reinforcement extinction dilemma in the mntext of



the DEM, and postulate a simple mechanism for
spontaneous recvery.

There are two highly significant differences in the
extinction curves obtained under classcd and operant
conditioning regimes. First, the charaderistic stepped form
of the aurve in the exinction phase of the operant
experiments following the cesstion of rewarding events,
which is quite distinct from the typicdly smoacth extinction
curve obtained under a dasdcd condtioning regime.
Seoond, that the number of events required to complete the
extinction phase is much higher in the operant case than
under classcd condtioning.

3 The Dynamic Expectancy M odel

The following sedions provide a summary of the DEM
medhanism. This description will emphasize the
connedivity inherent in the model. Previous treaments of
the Dynamic Expedancy Model (Witkowski, 1999h for
example) have ncentrated on a formalism to more
predsely define the structures involved and the processes by
which they change.

The DEM forms (via aprocess of structural learning)
and maintains (tactical learning) a network of connedions
between two interface omponents, Signs and Actions. This
network of connedions is (semi-)permanent, its gructure
changing relatively slowly in response to structural learning.
The relative strength of conneding links in the network is
controlled by tadicd leaning. These learning processes are
described later.

Signs both define and deted situations that can be
recognised by the Animat. Signs form the interfaceto the
sensory apparatus available to a physica Animat. Signs may
conned diredly to sensors, but may equally be compound
items, conjunctions of elemental sensory inpus. At ead
cycle of the dgorithm every Sign is either deteced or is
absent and so evaluates to activeor inactive for that cycle.

Actions, define the adivities the Animat may perform.
Where Signs defined the interfaceto the sensory apparatus,
adions conned the DEM to the Animat’ s physicd aduators.
Actions being performed are deamed adive.

Every adion, av, has asciated with it an action cost.
The adion cost indicaes the relative dfort that will be
required by the Animat to complete that adion. Action costs
may be expressd in any units (such as elapsed time or
energy expended) that may be aconsistently applied across all
the adions used by the Animat. Action cost will be used in
the “cost estimation” process for goa direded Action
Seledion.

The DEM aso maintains a memory of recent adivations
and their associated timings for both Signs and adions.
Information held on these activation traces is used hy the
structural learning component to construct new links in the
network of connedions.

The main leaned structural conrection in the DEM
“network” isthe p-hypothesislink, figure 2.
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Figure 2: The p-HypothesisLink

Each of these p-hypothesis links dould be read as an
expedation of the form “performing the adion avin the
immediate cntext (0) of § predicts the ocourrence of the
condition &’ at timet in the future”. Thetimet is bracketed
by +1, forming a range atimes to generalise the prediction
in the tempora domain (1 << t) and to overcome the
potential effeds of sensor sampling aliasing. Any particul ar
combination o context Sign (&) and action (&) can
potentially predict many consequences, similarlly a
consequence ®ndtion () can be predicted by many
different pairings, at different values of t.

Any u-hypothesis link is deemed adive whenever bath
its context Sign (&) and adion (@) are ative
simultaneously. A new prediction (p) is creded and added
to the Prediction Tracefor every instance of an adivated p-
hypothesis link. Note in particular that this mechanism is
invoked for all p-hypotheses links meding these adivation
criteria & any given time. The presence of adive predictions
drives the wrrobaration process

The model’s current estimate of the overall predictive
ability for ead p-hypothesis link, the strength of the
predictive connedion “ - ", isrecorded in the corr oboration
measure, Cy, (0 £ C,, <1). C, is updated by the tacticd
leaning medhanism based on a wmparison d predicted
outcome saved on p against adual outcome & every
opportunity that arises to doso. The @rrobaration measure
is central to the mnstruction d the Dynamic Policy Map.

3.1 Corroboration: Tactical Learning

For ead adive prediction, the corroboration measure (Cy,)
of the p-hypothesis link resporsible for the prediction is
modified acaording to:

Cn=Cn+ a(l-Cy) (egn. 1)
where the prediction was successul, and

Cn=Cn- B(Cn) (eqn. 2)

where the prediction was unsuccessul. Predictions are
discaded from the prediction trace once this gep is
complete.

The positive reinforcement rate, o (0 < a < 1), defines
the rate & which succesgul predictions will strengthen Cy,.

Similarly, the extinctionrate, 3 (0 < B < 1), defines the rate
at which C,, will be weakened by failed predictions. Where
no prediction was made the value of C,, remains unchanged.
Sequences of successul (or unsuccessul) predictions give
rise to the familiar negatively accéerating leaning curve,




the values being normalized such that C, rises

asymptoticaly toward 10 (or fall s toward 0.0).

3.2 Corroboration as Reward

The DEM p-hypothesis link has many similarities to the
notion d the threeterm contingency, used by Catania
(1983) to express the fully discriminated (Skinnerian)
operant class of stimulus, adion and outcome contingent on
reward. It is perhaps little surprise, then, that findings from
operant conditioning experiments ean particularly relevant
to the understanding of these mecdhanisms. However, the
DEM builds on the @mnjedure that the proper interpretation
of thistriple is that of a prediction, and that the strength of
the conredion (“ - ") shoud depend only on the predictive
performance of the unit.

A conventional view would hold that the strength of the
connedion should be related to some goal or task spedfic
“desirability” of §’. By adopting the predictive view,
strength changes can be made internaly, just by sedng
whether the predicted event did o did na occur,
independently of reward o reliance on an external agent to
indicae wrredness This leares the p-hypothesis link
uncommitted to any particular goal; leaning is not task
dependent. Changes to C,, can be gplied immediately the
prediction is verified, and is therefore dways attributed to
the spedfic p-hypothesis link resporsible for the prediction.

The Dynamic Expedancy Model is one of a number of
contemporary leaning Action Seledion models that are
based on the explicit use of prediction (hence expectancy
model) to drive the leaning processes (Tani and Nolfi,
1998; Stolzmann, 1998).

4 DEM Action Selection M ethods

At eat exeadtion cycle the Animat must have some adion
to perform. Normally, the Dynamic Expedancy Model
operates in two distinct modes for Action Seledion:

(1) Goal direaed Action Seledion, and

(2) Exploratory Action Seledion.

Any Sign can be asdgned a priority. These prioriti zed
Sign nades then become goals for the Animat. Many Signs
can be given a goa priority in this way, but the Animat
treats only the one with the highest priority as top-goal, and
will seled actions to adieve this goal. The goal setting
medhanism may be programmed into the model, or, asin the
case for the experiments described later, Sign priorities may
be manipulated diredly.

Whenever the Animat is in goa direcded Action
Seledion mode, the DEM algorithm attempts to construct
and maintain a Dynamic Policy Map (DPM) from which it
may then select adions diredly. In this mode of operation
adions are seleded on the basis of the arrent sensory
conditions, by diread reference (“readively’) to the
Dynamic Policy Map. The @nstruction and use of the DPM
is described | ater.

When such a goa Sign bewmes adive (that is, the
Animat deteds it), it is deaned satisfied, and its priority is
automaticdly reduced to zero. When the top-goal is
satisfied, the next highest priority Sign automaticdly
beoomes top-goal, a new DPM is constructed and adions
are then seleded to achieve this Sign.

Whenever no top-goa is st the system defaults to
seleding adions in exploratory mode. A wide variety of
possble exploration strategies have been proposed (Thrun,
1992), and the choice of strategy will be implementation
spedfic for any particular Animat model.

Irrespedive of how an adion came to be seleded, the
leaning medhanism continually leans from the adivities of
the Animat. It updates the state of knowledge (and hence
how the Animat will rea¢ in future) after ead adion
acording to the tadical and strategic leaning strategies
previously described. This is a natural, and powerful,
consequence of the internal prediction based corroboration
method

5 TheDynamic Policy Map

Whenever a top-godl is set, the DEM attempts to crede a
Dynamic Policy Map (DPM) to form an ordering over
sequences of links from every other Sign in the net to the
Sign currently ading as top-goal. The DPM is conveniently
thoght of as an interconnreded “graph” temporarily
superimposed over the network of p-hypothesis links. Signs
asciated with individual p-hypotheses links represent the
nodes and adions embedded within individual p-hypotheses
the acs.

5.1 Constructing the DPM

The DPM is creaed by a process of spreading activation
(Maes, 1991) propagating throughou the network of p-
hypothesis links from the top-goal Sign, which ads as a
“sead” point.

Each p-hypothesis link has associated with it a cost
estimate, C,, value. This cost estimate is computed from the
given adion cost of the ation, a, embedded in the link, the
current C,, value for the link and a fatigue measure, fp,
asciated with the adion:

C. — (adion_cost(a) * f) / Cy, (egn. 3)

Consider a situation where the @rrobaration measure
(Cn, egns. 1 and 2 is smply p(number of successul
predictionsitotal predictions) made by a p-hypothesis link -
the probability that the p-hypothesis link predicts corredly.
With f,, = 1, the mst estimate value C. would then be
ressonably interpreted as the total estimated cost for the
average number of attempts that must be made with the
given u-hypothesis to achieve the transition ketween ¢’ and

&’ that it predicts. A simil ar interpretation may be placed on
the case for C,, shown in egn. 1, with the proviso that the



“averages’ are now biased towards recent experiences, with
lessrecent experiences discounted away.

The fatigue measure, f., is normally unity, but is
incremented by some smal amourt (the fatigue increment
rate, FIR) ead time the adion is made. However, during
periods when the adionis not used it slowly revertsto unity
(at the fatiguerecovery rate, FRR). Its effed isto artificially
raise the @st estimate of a DPM link where the adion is
used frequently, and therefore make ayy path in the DPM
that uses thislink more “expensive’ and so lessattradive.

Each Sign in the network will acquire avalence level, v,
indicating the number (n) of p-hypothesis links that must be
traversed to read the top-goal Sign “node” by the path of
least total cost. The current top-goal Sign has avaencelevel
of zero, the & Sign of any p-hypothesis link that leads
diredly to the goal (i.e. where its &’ = top-goal) a valence
level of 1, and so on. The policy value, P,, of any node sat
level ninthe DPM isthen diredly expressd as the sum of
individual estimated costs ((Co)") by:

RS - min(z €) (eqn 4)

The policy value for eat Sign simplicaed in the DPM
is computed by adding the st estimate for its transition to
the ast of the path to its §’ node. If a lower cost path is
encountered, the spreading adivation processis re-adivated
for that node to minimize path costs a higher valencelevels.
The method used to compute these least (estimated) cost
paths to creae the DPM is a simple variant of the standard
breadth-first graph traversa agorithm (for example,
Nilsson, 1980).

Construction of the Dynamic Policy Map is complete
when there ae no further p-hypothesis links that can be
implicated, and no further path cost minimizaion can occur.

5.2 Selecting an action from the DPM

Following construction d the DPM the Animat has an
estimate of thetotal “cost” of satisfying the top-goal starting
from any Sign sincluded in the palicy map. If any currently
adive Signs are included as a nocke in the DPM, then the
adion avincluded in the p-hypothesis link associated with
the adive Sign nock with the lowest P, is ®leded. Thisis
the adion at the start of a sequence requiring the lowest
overall estimated effort to achieve the top-goal.

Where there is no intersedion between the set of adive
Signs and rodes on the DPM, an exploratory adion is
seleded. These exploratory adionswill either:

(1) adievethegod diredly (by chance),

(2) lead to asituation where aAction Seledion from the

DPM may continue, or
(3) cause new p-hypothesis links to be creaed, which
in turn expands <ope of the DPM.
The DPM is recomputed frequently, whenever the top-goal
changes, new p-hypotheses are formed, or existing ones

have undergone sufficient additional corroboration to
indicate that a diff erent solution path may be preferable.

6 Strategic Learning

Prediction, or rather thefailureto predict the occurrenceof a
Sign, drives the structural learning component of the DEM,
which is responsible for forming new p-hypothesis links.
The oppatunity to cregde new p-hypothesis links is
indicated by appeaance for the first time of a (“novel”)
Sign o by the gpeaance of a known but unpredicted
(“unexpeded’) Sign. Previously unencountered Signs
trigger the creation by novelty method The gpeaance of
an unpredicted, but previously known, Sign invokes the
creation by unexpected event method. Unexpeded Signs are
deteded by comparing the adive predictions to the adive
Signs and applying the methodto any unpredicted residue.
In either method a new p-hypothesis link may be
constructed from the novel or unpredicted Sign as* ¢, and

a Sign (&) and adion (@) drawn respedively from the
recorded adivation traceof values of past Signs and adions.
In this way the mode! creaes anew “hypothesis’ “ that §”is
predicted by performing the adion avin the immediate
context of ¢, at timet in the future”. The timing relationship
(t and hence T in fig. 2) is derived from their relative
positions in the respedive memory traces. Onceformed any
new p-hypothesis link will be tested for validity by the
corrobaration method, and incorporated into any DPM that
is subsequently constructed.

To limit the rate & which new p-hypothesis links are
creaed the user may spedfy alearning probability rate, A,
which determines the probability with which a new p-
hypothesis link will be formed given one of these
opportunities to do so. The Dynamic Expedancy Model
also defines methods for differentiating partialy effedive p-
hypotheses by making their comporent Signs more or less
spedfic (and so creaing new Signs), and also for removing
ineffedive p-hypothesis links.

7 Modelling Extinction

The extinction medchanism in the DEM interprets the steg
and flat components of the operant conditioning extinction
schedule (figure 1) as alternating periods of explicitly goal
direaed behavior interspersed with periods of exploratory
adivity when goa direded-nessis temporarily suspended.
The DEM extinction mechanism is controlled by four
fadors, which determine the rates and relative dfort
expended onthese two adivities:

(1) The valence break point (VBP),

(2) the valence break point factor (VBPF),

(3) thegoal recovery rate (GRR) and

(4) thegoal cancellation level, Q.

VBP and VBPF control the duration of the periods of
goa direded adivity, the GRR the duration d the
intervening exploratory periods. The goal cancdlation level



spedfies the maximum value the path pdicy value may rise
to before the top-goal will be cancdled by extinction. The
effed of the interplay between these components can be
clealy seenin figures 6 and 8

Deter mining the VBP: When the Dynamic Policy Map
for a new top-goal goal is first constructed, the lowest
available policy value (P,) associated with an adive sign is
taken as a measure of the likely cost of reading the goal.
The VBP is determined by multiplying the initial P, by the
VBPF (VBPF > 1, typicdly 10). The multiplier value is
seleded to gve the Animat ample opportunity to achieve
the goal by dired use of the DPM, allowing a generous
margin for failed Actions.

Using the VBP: If the top-goa has not been satisfied,
and the current best P, reades the VBP value, goal direced
behavior is temporarily suppressed. The VBP is again
multiplied by the valence bre& point factor in preparation
for any subsequent periods of goa-direded adivity. Each
time ablocked p-hypothesis link fail s the estimated cost of
the step increases (at an exponential rate), and the number of
failed adions required to read the next VBP level will be
deaeased as adired consequence

Using the GGR: On reahing each break point,
behavior reverts to exploratory adions for a period
determined by the GRR. Actions taken during this period
are referred to as unvalenced adions, to distinguish them
from “ordinary” exploratory adions. On the first
suppresson the goal recovery rate is high, and behavior
reverts to goal direded quickly after only afew unvalenced
adions. On reaching ead subsequent valence brea point
the GRR is reduced (in the airrent implementation by a
fador of two) and so the number of exploratory adions
during the unvalenced period increases.

Goal Cancelation: Eventualy, the current P, will
excedal the predetermined goal cancellation level, Q, and the
priority of this unadciievable top-goa is automaticdly
reduced to zero, releasing the Animat from the continued
obligation to pursue that goal.

If a any point during this procedure the top-goal is
satisfied the extinction processis cancel ed.

8 Thelnvestigations

To illustrate the dfed of normal Action Seledion in the
DEM, and the drcumstances, and effeds of the Behavioral
Extinction process we now describe a sequence of three
investigations.

Investigation One will reprise on the normal leaning
and Action Seledion behavior of aDEM controlled Animat
faced with simple dternative Action Seledion sequences.

Investigation Two emulates the full extinction
procedure. In part 2 o this investigation we repeat the
experiment, but this time dlow the Animat the opportunity
to dscover a new effedive adion sequence path,
demonstrating a primary role for the extinction process

Investigation Three repli caes the Extinction procedure,
but with two posdble points in the Action Seledion
sequence, both of which are blocked.

Figure 3 shows the simulated Animat environment. The
test environment used is the due to Sutton (1990). In al
these experiments a = 05, B = 0.2, A = 1.0, FIR = 0,
Q =10°andall adions cost are 1.0. Although restricted, this
test environment allows considerable ntrol over the
experimental conditions and alows for straightforward
analysis of the results (and in particular, easy and clear
visualization of the DPM). Following Sutton, a random
exploratory strategy is adopted. While less efficient that
aternatives, its use eliminates a potential source of domain
spedfic biasin the investigations.
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Figure 3: The Simulated Animat Environment

8.1 Investigation One

In this investigation the Animat is placed at the start
locaion “S” and allowed to explore the ewironment by a
randam walk strategy for 1000 steps. This is sufficient to
ensure that the environment is fully explored, and that both
posdble pathsto “G” have been leaned. No goal is asserted
during thisinitial period. The Animat is allowed to lean ad
libitum, and so p-hypothesis links will be aeded at every
opportunity and the environment learnt (adequately for the
investigation, although not completely at this dage).
Learning is not contingent on an external source of reward,
as corroboration is an entirely internal process Thisislatent
learning (Witkowski, 1998). Learning has occurred, but wil |
not be made manifest until a motivating goa is st. The
ability to perform latent learning is often seen as a primary
differentiator between this classof learning mecdanism and
true (reward based) reinforcement leaning methods.
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Figure4: DPM at cycle 1002 (left), 1032 (right)

At the conclusion of the 1000cycles of unrewarded and
unmotivated exploration, the Animat is returned to the start



locaion “S” and the locaion “G” assgned a goal priority
value of 1.0, making it top-goal. As the top-goa has been
modified, the system constructs a Dynamic Policy Map
using “G” asthe sead point (fig. 4, left). Animat adions are
now seleded from the DPM in areadive manner until the
god location is reated, much as they would be from a
static policy map developed by a Q-leaning method
(Sutton, 1990 Watkins, 1989). Unsurprisingly the Animat
seleds the shorter of the available paths, and moves towards
the goal locaion. Oncethe goal locationisreaded (after 10
steps) the goal is automaticdly cancdled and behavior
would revert to exploration.

In the next stage of the investigation the Animat is
returned to “S” and“G” is again made top-goal. An olstade
is placal at locaion “B”, blocking the shorter path. The
Animat attempts to foll ow its best path, but is prevented by
the obstade (note that the Animat is unable to sense the
obstade until it is encountered). Each failed attempt to
apply the p-hypothesis link (identified as “H14" in fig. 5),
resporsible for the blocked transition, increases the
estimated cost of that transition acrding to the extinction
rate 3. Each time the DPM is recomputed this additional
cost increases the path cost by that of the failed p-
hypothesis link. At some point the st of the best
alternative path in the DPM is exceeded (12 attempts in this
example), and the Animat switches path to traverse the
environment vialocation “A” (fig. 4, right).

Figure 5 shows the total estimated remaining peth cost
(triangles) and the st contribution to that total by p-
hypothesis “H14" (squares). The first segment, from step
1000, shows the st faling stealily as the shorter path is
traversed. The seacond segment, from step 1012 shows the
estimated cost falling until the block at “B” is encountered,
then rising until it exceeals that of the longer path via “A”,
and falling again until the goal is readed (DPM of fig. 4,
right).
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Figure5: Estimated Cost Profiles

In the last part of investigation ore the Animat is
returned to “S’, “G” set again and the Animat released. It
will be gparent from fig. 5 (cycles 1051 — 1068) that the
Animat immediately traverses the path vialocation “A”

8.2 Investigation Two

This investigation determines the goa extinction behavior
of the Animat when a single, previously established, path is
obstructed. These mnditions replicate the Skinner box
experiments, but in the ocontext of a multi-step adion-
sequence. Locaion “A” is blocked, then the Animat is
allowed to explore the ewironment for 1000 steps, as
investigation one. The Animat is returned to “S’ and the
goad locdion “G” established as top-goa. We confirm that
the expeded dred path via “B” istaken. Now the Animat is
again returned to “S’ and “G” set again as goal. Before the
Animat isreleased an obstade isintroduced at location “B”,
such that thereis now no possble route to the goal location.

Figure 6 monitors two important internal parameters
during the extinction process The estimated cost of the goal
path (square markers) and the valence bre& point (VBP)
value (circle markers). The DPM is computed, and a path
cost estimate of about 10 urits derived (ten steps, ead of
adion cost one). With avalencebredk point fador of 10, the
valence bre& point is therefore set to 100. As there is no
alternative method to read the goal the Animat persists
with the only p-hypothesis link available, and the st
estimate rises as previously described due to successive
failed corrobaration steps.
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Figure 6: Single path to extinction cost estimates

If no aternative path is encountered before the estimated
path cost exceeds the aurrent VBP (as it would have in
investigation ore), the Animat revertsto exploratory adions
for a period determined by the goal recovery rate. Initially
thereoovery rateis high. Following 101 steps of unvalenced
adivity, goal-direaed behavior is restored and a new DPM
computed. The estimated path cost is again increased by the
valence bre& point fador (to 1000) to give anew VBP.
The Animat immediately returnsto the only known path and
attempts that until the cost again exceeds the new VBP
value. Exploratory adions are resumed, with areduced gcel
recovery rate, so exploration continues for longer.

This procedure is repeaed with increasing periods of
exploratory adivity punctuated by deaeasing periods of
goa-direded adivity. At some point a(fail ed) corroboration
of the blocked p-hypothesis will result in the total path cost



estimate excealing the goal cancdlationlevel, Q. Thisisthe
goal extinction point and the goal is cancdled. The goal
might be reasserted, but to little useful purpose.

Some Skinner Box extinction curves record the bar
being presed during the periods of apparent inadivity
(equivalent to unvalenced exploration). The Model shows a
similar effed, the cnditions to adivate the blocked p-
hypothesis link may occur at any time, and so the extinction
point can be reahed at any point in the experiment.
Although they record quite different adivities, the estimated
cost record of figure 6 can be viewed as an analogue for that
in figure 1. Each marker square represents one adion at the
criticd blocked point

8.3 Part 2: The Blocking Procedure

The procedure here replicaes Sutton's (1990) blocking
procedure, and dffers in some details to that used
previously in investigation two. Sutton wses the blocking
procedure to investigate his exploration bonus method for
mixing exploration and exploitation d the environment in
the DynaQ+ agorithm. Under this procedure initial
exploration asumes that “G” acts as a source of reward
(goal) continually. Path “A” is blocked initially (one path to
“G" via“B"). The Animat isplacad at “S’, and“G” is made
top-goal (it was not valenced in investigation two, but
without latent learning, if this were nat the cae now the Q-
leaning mechanism of Dyna-Q+ would lean nahing
during this phase). Each time the Animat reades “G”, one
unit of reward is noted, and the Animat returnedto “S’. “G”
isawaysimmediately reinstated as top-goal. This procedure
isrepeaed upto step 1000.
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Figure 7: Blocking Task, Individual curves

At this point an olstade is placeal at “B” (asin part 1),
but the obstade & “A” is removed. The procedure now
continues until cycle 3000. An Animat must discover the
new path (during a period o unvalenced adivity), before
continuing to receve reward a “G” (and hbeing
automaticdly returned to “S’ each time).

Figure 7 shows the performance of ten individua DEM
Animats under these ondtions. These “individuals’ arein
effed “clones’ differing only in the starting seed used to
generate the randam Action Seledion during the exploration
phases. The slope of ead line indicates the frequency with
which the Animat readies the goal and receves one unit of
reward. The stegoer the slope the more quickly the Animat
has readed the goal locaion. Flat portions from step O
represent times when the Animat is exploring the
environment as the initial random walk. The variability and
delay shown is typical for the random walk employed. From
step 1000 the Animats enter the extinction processdescribed
previously.

Figure 7 shows that six of the test DEM individuas
succes<ully locaed and traversed the new path at location
“A”, while four failed to do so and suppressed the goal.
These individuals were withdrawn from the experiment. If
they remained in the ewironment these Animats would
continue with exploratory adions. Clealy the speed at
which the Animat might conned with the (previously
explored) upper part of the environment, and the chance of
extinction is determined to a grea extent by the nature of
the exploration strategy adopted. Sutton (1990) reports that
after aperiod of re-exploration of about 500 steps Dyna-Q+
locaes the new, but previously unknown, path and
continues to garner reward. The results are broadly
comparable, but the DEM adopts a biologicdly inspired
strategy, where Sutton makes his choice on the basis of his
method s numericd properties.

8.4 Investigation Three

Thisfinal investigation repeas the extinction experiment of
investigation ane, but in a situation where the Animat has
two paths available (“A” and “B”) from start to goa during
the initial 1000 step (no goal set) exploration phase. Then
both peths are blocked before starting the extinction plese &
step 1000. The Animat behavior is modified to appeaing to
scuttle badk and forth between the two previously effedive
paths during periods of goal-direded adivity interspersed
with randam exploration during the unvalenced periods.
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Figure 8 shows the resulting estimated cost and VBP
values for this investigation. Figure 9 shows the detailed
effed of this suttling behavior during the first period of
god-direded adivity. Each increase in the st estimate
arises from the Animat attempting a blocked p-hypothesis
link, first at one end of the maze then at the other. The
Animat appeas deaeasing persistent in its attempts to
traverse eathh of the known blocked peths with ead
successve dtempt. Gaps between the st estimate rises
indicate those gycles during which the Animat is (under goal
direded control) travelling between the two places where
the known paths had been located.
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Figure9: Dual Path Extinction (Detail)

9 Summary

This paper has described a behavior extinction mecanism
based on experimental data for the Dynamic Expedancy
Mode. The dfed of this mechanism is to provide the last
stage in a series of behaviora shifts by which the Animat
may manage danges to and failures of Action Seledion.
The various investigations reporting experiments with the
Dynamic Expedancy Moded’'s implementation, SRYE,
confirm the sequence of events:
1) If the Action Seledion function defined by the
Dynamic Policy Map is effedive, then the Animat
adhievesitstop-goal, and all iswell.

2) If the Action Seledion function fails to achieve the top-
goa and there is an aternative, but initially less
desirable route, the Animat will attempt the first route
until the estimated pdicy value exceels that for the
alternative, which is then pursued. If the second was
blocked a third might be atempted, and so on. One
might assume that this is the normal state of affairs, a
combination d trying alternatives and persistence
eventualy leading to a succesul outcome.

3) If noviable dternative exists, the Animat will continue
to attempt the failed path, or paths, urtil the estimated
cost exceals the previously caculated valence bresk
point (VBP). This initiates a brief period of
(unvalenced) exploration, before the Animat returns to
goa-direded Action Seledion behavior on the only
known peth, but with a higher value for VBP.

4) If afresh path is discovered during one of these periods
of exploration, new p-hypothesis links will be aeaed
and a new Action Seledion path to the top-goa may

bemme aailable. This was nated in investigation 2
part 2.

5) This alternating explore/goal-direded  behavior
continues until the goa extinction point is readed,
when priority of the offending top-goa is forcibly
reduced. The Animat may then revert to cher,
hopefully more productive, behaviors, (investigations 2
and 3.

The extinction medchanism provides a behaviora escepe
medhanism “of last resort”, and prevents the Animat from
being forced (by its own Action Seledion medchanism) to
display incressing desperate and inappropriate behavior,
possbly to its svere detriment. It is not a panacea as
athough the “hungry” Animat is no longer forced to follow
the goal-direced path to known sources of food it is,
unfortunately, nolesshungry.

10 Discussion and Conclusions

Throughout this paper we have dtempted to show how
findings from experimental procedures elucidating the form
of the behavioral extinction can be integrated into a aurrent
model of Anima leaning and behavior. We have
investigated the role it plays in the overal strategy of an
Animat.

The form of the etinction mechanism is clealy related
to the eplore/exploit trade-off problem (Thrun, 1992
Wilson, 1996). Reinforcement leaning systems must
balance the time they spend moving towards known sources
of reward with adions that may encounter new, and better,
sources of reward. In general, the DEM does not ned to
interleave exploration adions when it is pursuing a goal-
direded behavior, it explicitly takesits “best” posshble route
to the top-goal. Normally, DEM Action Seledion behavior
reverts to exploration at times when there is no top-goa.
Inded, it would be expeced to encounter novel situations
(and lean from them) while pursuing a variety of different
goas as it goes about its everyday adivities. During
Extinction, these lengthening periods of unvalenced
exploration progressvely widen the seach spacefor new
solution paths. Periodicdly, but with lessvigor, the Animat
periodicdly returnsto its known “best” path, asthisremains
its best optionto achieve the aurrent top-goal.

Investigation 3 presents results from a situation where
two known paths are extinguished. The behavior of the
Animat in these drcumstances is quite distinctive. It would
be instructive to repeat the procedure under laboratory
conditions with animal subjeds, as this information is not
diredly recorded in the Skinner box experimental paradigm.

The findings of Investigation 3 provide an effective
interpretation of the partial reinforcement extinction
dilemma. The observation that quickly formed or fully
rewarded behaviors can be extinguished more rapidly than
those that develop undr condtions of partial reinforcement.
We note the difference between extinction time in
investigation 2 (single path, average of 10 runs =
870.9steps) compared to thosein investigation 3 (dua path,



average = 1443.2 steps). Two fadors are involved here.
First, the extinction medanism does not take dfed until the
contribution of the worst of the dternative p-hypothesis
links has readed the gpropriate bre&k point. Semnd, to
read that point, eadh o the dternative actions must be
tried, typicdly many times. In the cae of investigation 3,
this was exacebated by the extra adions required to travel
between the two alternatives.

With a single point of “reward”, if the Animat creaes
an effedive p-hypothesis link, and the prediction it makes
(that the reward will occur) aways succeeals, then the
structural leaning mechanism will not be invoked. Where
these predictions fail, new p-hypothesis links can be
creded, lealing to the formation o alternatives to the
reward. The more dternatives, the longer it takes to
extinguish them. This explanation has yet to be tested urder
equivalent experimental condtions, but it is substantially
more straightforward than those proposed that assume only
asinglereinforced connedion.

Consider the dfed of the fatigue measure (fr,) of egn.
3. The Extinction mechanism ensures that one or a small
number of adions are dtempted at an elevated rate. This
will cause the value of f, to rise proportionately. In turn this
increases the dfedive palicy value for the path, causing the
various valence break pointsto be readed prematurely. The
extinction point is therefore dso reached sooner than it
would be on the basis of corrobaration alone. Following
extinction, the seledion rate for the adion(s) fals, and the
fatigue recovery process sarts. After a suitable period of
reauperation the palicy value falls badk below the extinction
point and the behavior appeas to recover spontaneously.

The Spontaneous recovery phenomenon indicaes that
whatever strategy an Animat might have for removing
ineffedive p-hypothesis links under normal circumstances,
it appears remarkably tenadous in retaining at least the last
link option in a previously successul chain. Presumably
having a bad solution to a problem is better than having
none & all. In any case drcumstances may well revert to a
situation where the link works again.

11 References

Balkenius, C. and Morén, J. (1988 Computational Models
of Clasdcd Condtioning: A Comparative Study, 5" Int.
Conf. on Simulation o Adaptive Behavior, pp. 348-353

Bladman, D. (1974) Operant Conditioning, Methuen & Co.

Booker, L.B., Goldberg, D.E. and Holland, JH (1990
Clasdfier Systems and Genetic Algorithms, in:
Carbondll, J.G. (Ed.) Madine Leaning: Paradigms and
Methods, The MIT Press pp. 235-282

Catania, A.C. (1983) The Operant Behaviorism of B.F.
Skinner, in: Catania, A.C. and Harnad, S. (eds.) The
Seledion of Behavior, Cambridge University Press pp.
3-8

Drescher, G.L. (1991 Made-up Minds: A Constructivist
Approach to Artificial Intelligence The MIT Press
Cambridge, MA

Hergenhahn, B.R. and Olson, M.H. (1993 An Introduction
to Theories of Leaning, PrenticeHall, New Jersey

Humphrys, M. (1998) Action Seledion Methods using
Reinforcement Learning, 5" Int. Conf. on Simulation of
Adaptive Behavior, pp. 135144

Mass, P. (1991) A Bottom-up Mechanism for Behavior
Seledion in an Artificial Credure, 1* Int. Conf. on
Simulation d Adaptive Behavior, pp. 238-246.

Nilson, N.J. (1980) Principles of Artificial Intelligence,
New York: Springer-Verlag (Symbolic Computation
Series)

Reynalds, G.S. (1968 A Primer of Operant Condtioning,
Glenview, IL: Scott, Foresman & Co.

Riolo, R.L. (1991) Lookahead Planning and Latent Leaning
in a Clasdfier System, 1% Int. Corf. on Simulation of
Adaptive Behavior, pp. 316-326

Stolzmann, W. (1998) Anticipatory Classfier Systems, 3*
Annual Conf. on Genetic Programming, pp. 658664

Sutton, R.S. (1990) Integrated Architedures for Leaning,
Planning, and Reading Based on Approximating
Dynamic Programming, Proc. 7" Int. Conf. on Machine
Learning, pp. 216-224

Tani, J. and Nolfi, S. (1998 Leaningto Perceve the World
as Articulated: An Approach for Hierarchicd Leaningin
Sensory-Motor Systems, 5" Int. Conf. on Simulation o
Adaptive Behavior, pp. 270-279

Thrun, S.B. (1992 The Role of Exploration in Leaning
Control, in: White, D.A. and Sofge, D.A. (eds)
Handbook of Intelligent Control: Neural, Fuzzy and
Adaptive Approaches, Florence, KY: Van Nostrand
Reinhold 41022 27pp.

Tyrrell, T. (1998) Computational Mechanisms for Action
Seledion, University of Edinburgh, Ph.D. thesis

Watkins, C.J.C.H. (1989) Learning from Delayed Rewards,
King's Coll ege, Cambridge University, Ph.D. thesis

Wilson, SW. (1996) Explore/Exploit Strategies in
Autonamy, 4" Int. Conf. on Simulation of Adaptive
Behavior, pp. 325-332

Witkowski, M. (1997) Schemes for Learning and
Behaviour: a New Expedancy Model, Dept. Comp. Sci.,
Queen Mary Westfield College, Univ. of London, Ph.D.
thesis. (http://www.eeic.acuk/mark/s ab.htm)

Witkowski, M. (1998) Dynamic Expedancy: An Approach
to Behaviour Shaping Using a New Method of
Reinforcement Leaning, 6" Int. Symp. on Intelligent
Robatic Systems, pp. 73-81

Witkowski, M. (199a) Applying Unsupervised Leaning
and Action Seledion to Robot Teleoperation, Proc
TIMR-99, Towards Intelligent Mobil e Robots, 9pp.

Witkowski, M. (199b) Integrating Unsupervised Leaning,
Motivation and Action Seledion in an A-life Agent, 5"
Euro. Conf. on Artificia Life, pp. 355364






