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Abstract 
 

This paper considers and compares several 
aspects of attention and awareness in the context of 
uniform field image (robotic) vision sensors and 
foveal (human) natural perception. It builds on a 
theory of abductive perception using feature 
clouds, a formal definition for a robot perceptual 
system, and proposes a unified model for bottom-
up and top-down attention. It highlights some 
shortcomings in existing bottom-up models and 
presents a uniform solution to them. Modes of 
attentional lapse, commonly referred to as 
inattentional blindness and change blindness, are 
also discussed in the context of the model 
presented. 

1    Introduction 
It is one of the many persistent paradoxes of the human 
visual system that it both provides a precise mechanism, 
sensitive to minute changes and detail in a visual scene, 
while at the same time is capable of surprising lapses of 
perceptual awareness. 

The first is manifest in our ability to inspect objects for 
flaws or small deviations from a norm, and to recognise 
individuated objects by very small differences from a 
class of otherwise similar instances. One such example 
would be our apparently innate ability to distinguish 
between and identify thousands (and more) of human 
faces.  

The second is manifest in apparent lapses of 
“attention”, when objects or events in full view appear to 
be completely overlooked, even when they seem to be of 
high significance to the observer, or be highly unusual and 
would normally be drawn into explicit awareness. Such 
lapses have been known for many years, and have often 
been ascribed to avoidable fault on the part of the 
observer. Such issues are, of course, of particular 
significance where potentially dangerous, possibly 
everyday, activities are being performed, such as driving a 
car, riding a motorcycle or flying an aircraft. 

More recent research has highlighted the fact that these 
lapses of perceptual attention are highly repeatable 
phenomena, and depend on the circumstances the observer 
is in. They can be placed into (at least) two distinct 

categories: Inattentional Blindness (Mack and Rock, 1998; 
Simons and Chabris, 1999; Most et al., 2000) and Change 
Blindness (Levin and Simons, 1997; Simons and Levin, 
1998; Simons et al., 2000).  

Such lapses must be taken in the context of “normal” 
visual attention (e.g. Itti and Koch, 2001; Posner and 
Petersen, 1990, for reviews). From the evidence available, 
visual attention is not one process, but a portmanteau of 
activities, notably that attention may be both exogenously, 
sense, driven and endogenously, task, driven.  

Models of exogenous (“low-level”) attention have 
been proposed by e.g. Itti et al. (1998), and endogenous 
attention by Stark and Choi (1996). Robot based models 
of attention in perception have been proposed by, for 
example, Brazeal et al. (2000), Khadhouri and Demiris 
(2005), Shibata et al. (2001), and Vieira Neto and 
Nehmzow (2005).  

The work described here is a part of the on-going 
Cognitive Robotics research programme at Imperial 
College London. In particular it develops our approach to 
the use of abductive reasoning for robot perception 
(Shanahan, 2002; Shanahan and Randell, 2004; Randell 
and Witkowski, 2006) in which we use first order logic to 
model core aspects of the processes of perception.  

The goal of our research is to create theories of 
perception within this logical framework, and then to use 
these theories to reason about the consequences of design 
choices and to specify implementations based on these 
principles. Our stance might be broadly characterised as a 
model based hypothetico-deductive approach combined 
with abductive inference (reasoning from observations to 
possible causes). This combination of sensor and model 
driven processes accords with empirical data from visual 
psychophysics (e.g. Rock, 1981) and is related to notions 
of active vision (e.g. Aloimonos et al., 1987). 

We make a strong Assumption of Embodiment, that the 
robot exists in a volumetric, material, world in which 
material things in that world give rise to changes in 
detectors (sensors) possessed by that agent. The task of 
the agent or robot is then to establish a single coherent 
explanation or interpretation for those detector effects in 
the context of the internal, conceptualised, background 
model that identify consistent interpretations of the data.  

The first part of this discussion paper presents a 
summary overview of the approach; we present some 
more detailed aspects of the formalism we adopt in 



sections 2 and 3. A detailed treatment may be found in 
Randell and Witkowski (2006).  

The second part of the paper is given over to a 
discussion of issues of attention and inattention, in the 
context both of the model presented and previous models 
of attention. It then considers the role of a transient 
memory trace in understanding various modes of 
inattention, as reported in human perception experiments.  

In the first part, section 2 introduces abductive 
perception, feature clouds, the underlying object 
description form used, and feature detectors, the interface 
between the physical and logical domains. Section 3 
details the qualitative measures used to guide and inform 
the perceptual process. Section 4 describes this perception 
process in the context of the abductive framework. Section 
5 describes the properties of a robot-centric memory trace. 
In the second part, section 6 considers how the dual roles 
of exogenous and endogenous attention may be modelled 
with this approach, and highlights some difficulties with 
existing models. Section 7 briefly considers inattentional 
blindness in the context of the model. 

2   Part 1: Abductive Perception 
The treatment of perception we develop here exploits a 
mode of inference known as abduction. This works from a 
set of observations and generates a set of alternative 
conjectures, that if true would explain the observations. 
As expected, and implied here, the set of alternative 
explanations generated are rarely unique, we need an 
additional framework to interrogate and test these 
conjectures and select those that best explain the available 
evidence.  

To this end we adopt a hypothetico-deductive model, 
where, when given a set of possible explanatory 
hypotheses via abduction, the set of predictions that 
follow are then used to prune the hypothesis space, 
according to how well the predictions are confirmed (or 
refuted) when compared to the original sensor data. 

The formal model assumed here is an extension of that 
proposed by Shanahan (2002). Here we use a logical 
language expressed in first-order predicate logic to 
describe the world and the result of the robot’s actions on 
it. The language is used to construct sets of sentences that 
describe the given background theory (Σ), the interpreted 
sensor data (Γ), and the set of abduced hypotheses that if 
true explain that sensor data (Δ). Formally, this is woven 
together and represented by the logical schema: Σ ∪ Δ |= 
Γ, which means Γ is a logical consequence of Σ and Δ. 
Hence, given Γ and Σ, we construct Δ (by abduction), and 
then use deduction to test the consequences of those 
hypotheses (using the hypothetico-deductive model). 
Greek letters are used to indicate sets of sentences and 
meta-logical predicate variables. 

In order to measure how well our generated 
hypotheses explain the data, a set of numerical measures 
are introduced. These include a distinctiveness value (dv) 
that measures the rarity value of individual features 
encoded in Σ, an explanatory value (ev) that measures 
how well an abduced object of a given predicted position 

and pose matches the sensor data, and a rank ordering (ro) 
that ranks the likelihood that a particular object type 
explains the sensor data. These are discussed in more 
detail below. 

Our representational model encapsulates both 
symbolic and numerical information. The former allows 
us to exploit established symbolic automated reasoning 
methods (both for abduction and deduction) while the 
latter mirrors these operations in the application of linear 
transformations on sets of vectors encoded in our 3D 
model descriptions. 

We define and factor out particular subsets of 
sentences in Σ, and Δ as follows. Within the logic, these 
sentences take the form of well-formed formulae (wffs), 
which are sequences of symbols adhering to the formation 
rules (syntax) of the language. First Σ (being the 
background theory) is separated out into (i) the generic 
descriptions of objects (encoded as feature clouds) which 
we call Σo, and (ii) sets of constraints, such as those 
embodying various commonsense properties of the world 
(Σc). Amongst these are the “commonsense” beliefs that 
two volumetric bodies may abut but not overlap (i.e. they 
may not share a volume in common) and that an opaque 
body occludes from view anything directly behind it from 
a viewpoint. Similarly, Δ is divided into (i) the set of 
alternative interpretations of the world (Δh), (ii) the 
currently preferred explanation (Δi), and (iii) Δp, which is 
the current robot-centric description of the world. 

2.2   Feature Detectors 
Central to the abductive process is the deployment of 
“detectors”, devices that make these assertions into Γ 
when the specific conditions they are tuned to occur. In 
the scenario we describe here, these detectors are derived 
from low-level vision processing operations.  
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Figure 1: The main perceptual cycle 

 

We assume a wide range of detector types to be 
assimilated within the logical framework described. Such 
operation might include line finding or edge detection 
routines, or, more usefully, the detector will respond to 
some distinctive, though not necessarily a unique, 
property of the physical object being observed (see the 
work of Lowe, 2004; and Schmid and Mohr, 1997 for 
recent advances in this area). Lowe, in particular, has 
developed powerful feature encoding techniques that 
allows for the fast storage and retrieval of arbitrary 
complex patterns drawn from real images. Detected 



features must be reliably localizable onto the image plane 
(as indicated in figure 1), but need not be invariant on 
rotation or scale. We recognise that objects in the world 
may give rise to different effects on the detectors under 
differing circumstances, such as when viewed from 
different distances, from varying angles, under different 
conditions or different areas of a foveal imager. This 
effect is illustrated in figure 2 for a notional “corner” 
feature from different viewpoints (above, level and below, 
representing instances from a set of all possible 
viewpoints) and at different resolutions, assuming 
Gaussian blurring towards the periphery. We refer to these 
variations as the appearances of a feature. Appearances 
are mapped directly (but non-uniquely) to the feature(s) 
they describe by abductive inference. 
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Figure 2: Appearances 

 

All detected features take the form: Appearance(name, 
vector, Type, [ ]). Each different, named, appearance 
associated with a detector is assigned a class Type and a 
vector location on the image plane, which will serve to 
identify the source of each Γ assertion within the system.  

Note that some easily extracted feature types, such as 
line segments, are common to very many objects, and, as 
such, provide little discriminatory power. However, by 
virtue of the hierarchical definition of the feature cloud, 
low-level features may be composited into compound 
features, which increases their discriminatory capacity.  

2.1   Feature Clouds 
A feature cloud is a data structure that encodes a 
heterogeneous and spatially distributed set of sensor-
detected features, where each feature is individually 
mapped to a position vector within a local coordinate 
frame. It may be contrasted to other model-based 
representations in visual perception-based applications 
such as generalised cylinders (Marr, 1982) or 
superquadrics (Chella et al., 2000).  

The cloud is partitioned into subsets of features that 
are pre-assigned to a set of inferred, volumetric regions. 
Such regions correspond to our informal notion of a 
physical object or its parts. The whole takes on the form 
of a hierarchically organised tree-structure where the 
subdivision of a host body into sub-parts proceeds until all 
their named features and their viewpoint-dependent 
appearances eventually appear as terminal leaf-nodes. 
Although described by sparse points all objects are 
considered volumetric, and so bounded by opaque 
surfaces, represented as surface patches between the 
feature points. 

Each feature cloud is represented by sets of vector 
pencils; where each pencil comprises a set of straight-line 
segments intersecting at a single point – the centroid. 
Figure 1 shows feature cloud visualisations (Σo) from our 
Webots (www.cyberbotics.com) simulation, and a pair of 
objects, one with its surface representation (as viewed), 
one without.  

Pencils mapping features to their appearances are 
interpreted as lines of sight fanning out into space. As 
each viewpoint also acts as the origin of another vector 
pencil whose end-points potentially locate a set of 
features, the overall geometrical form of an object with its 
set of features and their viewpoint indexed manifold 
appearances can be likened to a stellated polyhedron with 
the vertices mapping to the view points.  

Axiom A1 encodes the hierarchical decomposition 
between objects and their features, and between features 
and their appearances. Given an object, this is 
decomposed into object parts, or features; features are 
further decomposed into feature parts (compound 
features) or appearances or the empty list as a terminal 
node. Type is a class identifier for each object, feature or 
appearance. 

 

 (A1) Φ(x0,v0,Type0,[x1,...,xn]) →  
 Ψ1(x1,v1,Type1,[...]) &...& Ψn(xn,vn,Typen,[...]), 
where: 
  if Φ=Object, then 
  ∀i i=1 to n: Ψi=Object or, 
   ∀i i=1 to n: Ψi=Feature, and  
 if Φ=Feature, then 
  ∀i i=1 to n: Ψi=Feature, or 
   ∀i i=1 to n:Ψi=Appearance,  
 else, ∀i i=1 to n: Φ=Ψi=Appearance 

Axiom A1: Encoding the Feature Cloud 
 

Vectors (always shown italic underlined, v) locate the 
centroid (notional position) of any object, feature or 
appearance (v1 … vn) with respect to the centroid of its 
supervenient feature or object (v0), or of a viewpoint 
(actual or notional) in space. Using this scheme the 
position of any sub-part of an object may be determined 
relative to any other subpart by straightforward vector 
summation. Every logical operation between objects and 
their parts implies a corresponding vector operation. The 
hierarchical nature of this definitional form allows objects 
to be represented and reasoned with at multiple levels of 
detail, and at any arbitrary level of precision, using the 
embedded numerical vectors.  

3    Measures 
In this section we define the three functions: dv(Type), 
ro(Type) and ev(x,v) used to compute the degree to which 
any hypothesised object, x, as seen from viewpoint v, 
explains and predicts currently available sensor data. In 
each case, we measure symbolic information encoded in 
wffs (and in particular encoded in wffs of the form: 
Object(xi,vi,Typei,...), Feature(fi,vi,Typei,…), and 
Appearance(a,v,Type,...) in the logical formalism used. 
Here, in the interest of brevity, we simply give a brief 



description of these functions and how they are used. For 
a full description see (Randell and Witkowski, 2006). 

3.1   Distinctiveness Value 
The distinctiveness value of a feature Type: dv(Type) 
measures the proportion of feature instances of type, Type, 
encoded in ΣO against all the features of any type, also 
encoded in ΣO.  This is an a priori measure. Here we are 
measuring the proportion of individual feature variables 
f1,...,fn, of a given Type, encoded in ΣO (i.e. in wffs of the 
form: Feature(fi,vi,Type,…)) against feature variables of 
any feature type. Let S(F)={fi|Feature(fi,v,F,[...])∈Σo}, 
and S={fi|Feature(fi,…)∈Σo}, and let |S| denote the 
cardinality of set S.  Then dv(F) = 1 –  (|S(F)| / |S|). 

3.2   Explanatory Value 
The explanatory value (ev), the degree to which a 

specific hypothesized object o in Δi is supported by the 
sensor data, is defined as: 
 

 ev(o) = (P+Q)–(S+T) / (P+Q+S+T);  -1≤  ev(o) ≤ 1 
 

where P represents the sum of instances where a 
feature is expected in the object hypothesis projection and 
is matched (by both type and location) by a detected 
observation in the data stream. Q denotes the expectation 
of no feature coupled to no data. S denotes an expectation 
unmatched by a corresponding feature and T sensor data 
detected without any matching expectation. P and Q 
support the hypothesis (tending to +1); S and T tend to 
refutation (tending to -1). P, Q, S and T are weighted 
according to the distinctiveness (dv) of the expected 
feature, providing a partial ordering of significance. 

3.3   Rank Order 
The remaining measure rank order ro(Type) measures the 
a posteriori likelihood that object x of type Type defined 
in ΣO  causally explains the available sensor data in Γ. 
Rank order measures the number of possible substitutions 
(of terms for variables in wffs) that match interpreted 
sensor data items to individual features in ΣO, Type for 
Type. It is the ratio of all features of the object that have a 
corresponding appearance in Γ (Ω) to all the features of 
the matched object (Ξ).  
 

      ro(Object) =  
              Σ  |{fi}|× dv(Fi): [Feature(fi,…,Fi,…)& Ω ] 
 Σ  |{fj}|× dv(Fj): [Feature(fj,… ,Fj,…)& Ξ ] 
 

This process is restricted so that at most one 
interpreted feature fi belonging to an object definition x, is 
matched to exactly one appearance of that feature detected 
in the sensor data stream Γ. Note the features are weighted 
by their distinctiveness, and that the evaluation is 
independent of viewpoint. 

4   The Perceptual Cycle 
Figure 1 illustrates the main perceptual cycle, which is 
summarised here.  

(1) Pre-process the image to identify all detected 
(section 3.2) appearances. Record them in the Γ Structure.  

(2) Evaluate rank order ro of each object, identifying 
those object models in Σo that are supported by the 
current evidence in Γ. This is a preliminary “recognition 
by parts” step, establishing candidate objects for treatment 
as hypotheses.  

(3) Match sets of unexplained but distinctive elements 
(according to dv(F)) from Γ to candidate (according to ro 
order) object descriptions in Σo to generate hypotheses. 
This is the abductive step – selecting hypotheses from 
partial evidence. 

(4) Identify four or more non-coplanar matches 
between features in Γ and features of corresponding Type 
in a single object model. Our implementation uses the 
DeMenthon and Davis (1995) POSIT (Pose from 
Orthography and Scaling with ITerations) method to 
determine the “pose” of the object model, as though it 
were projected back into the image space of the robot. 
Write this set of wffs (representing all the features for that 
object) to the hypothesis space Δh for each hypothesised 
object. Update embedded vector fields to reflect this new 
projection from the robot’s viewpoint. Each feature type 
(that is not self-occluded, or any other hypothesised 
object) is then expected (section 3.2) in the image plane at 
a place determined by this projection vector. This is the 
deductive (or prediction) step.   

(5) Evaluate ev for each hypothesised object to 
determine the extent to which it explains the sensor data 
for the projection area it occupies on the image plane. An 
object hypothesis is strengthened by corroboration where 
a feature appearance is both expected and detected; and 
weakened where there is mis-match between prediction 
and sensor data. ev is updated according to the dv value of 
the feature being compared. This is the corroboration step. 

(6) Retract untenable hypotheses of low explanatory 
value from Δh. All wffs relating to the hypothesis are 
retracted and any sensor data features it might have 
accounted for are released, requiring further explanation.  

(7) Repeat from (3) until all the sensor data elements 
of Γ have a coherent explanation, and where all the 
ground hypotheses in Δh satisfy the domain constraints 
(Σc).  

 (8) Transfer explanation of the sensor data (Δh) to the 
interpretation space (Δi). The net effect of this processing 
is to place an explanation in Δi for the incoming data, as 
wffs, and their (reconstructed) poses.  

This combination of “positioned” object models and 
the raw sensor data appearances allows higher-level task 
modules to interrogate the perceptual system, either in 
terms of the original sensor data, or in interpreted terms, 
as sense data. For a foveal system, any apparent detail in 
the periphery of the scene must be a “reconstruction” – an 
“illusion” – derived from the model-based data.  

 The interpretations in Δi are, however, unordered, or 
at best sorted according to ev, the degree of evidence for 
each. This is very much the “engineering” solution. Part 
two of this paper considers how contextual issues may be 
used to change this process to reflect the functional needs 
of the robot. 



5   The Panorama 
The current interpretation, Δi exists solely in the present, 
when the detector stream (Γ) changes or is interrupted the 
current interpretation collapses and must be rebuilt. Yet it 
seems clear we both have and need a memory of visual 
events and percepts. This is the role of the panorama 
(denoted Δp) in the Abductive Perception model. At the 
conclusion of each perceptual cycle, elements of the 
current interpretation Δi are transferred to Δp for retention. 

The panorama is intended to model the “sense of 
space” about the self, generating and maintaining a 
“situational and spatial awareness” in terms of objects in 
the robot’s immediate surroundings. This structure allows 
the robot, for instance, to reason about its surroundings 
without direct perception of them. It allows a robot with a 
rapidly moving visual field to establish a baseline set of 
hypotheses in Δh (on efficiency grounds) by repopulating 
the area of the image-plane with items from Δp.  

The notion of a panorama appears to be particularly 
relevant to humans, who have both a foveal eye and 
whose eyes saccade constantly, in establishing a stable, 
viewer centric, percept of their immediate environment.   

Elements of Δp are transformed to maintain a constant 
notion of “forward/left/right” centred about the observer’s 
egocentric viewpoint following any motion. An 
anticipatory transform predicts the position the 
interpretations in Δp would appear in the next time step. 
As the information in Δp is already encoded spatially, a 
simple 3D matrix transform may be applied to the vector 
components place them in an appropriate place following 
any movement by the robot or its gaze system.  

As an exemplar of the notional form used, Let f1,...,fn 
be a set of linear transformations (deployed as matrix 
operations) s.t. f: V → W where V and W are vectors 
spaces. And let t1,...,tn be a totally ordered set of time 
points (i.e. image frames).  Each wff of the form: 
Φ(x,v,Type,[...]) is  now re-worked as follows: 
Φ(x,v,Type,[...],t). Let Tf(Δp) be the transformation 
function f applied to the set of wffs in Δp, s.t. Tf: A → B, 
where A and B are sets of wffs. Then the updating of the 
vectors in Δp is defined as follows: 

 

Tf(Δp)= {Φ(x,vj,Type,...,t+1)| (Φ(x,v,Type,...,t) &  
         fi(v,vj))→ Φ(x,vi,Type,...,t+1,),  

               where: Φ(x,v,Type,...,t)∈Δp } 
 

The anticipatory transform, Tf, has the effect of re-
writing each vector embedded in every statement in Δp 
between image time points t and t+1. Tf may be 
determined by at least three different, but computationally 
well established, routes: (i) the anticipated consequences 
of an initiated motor action – trivially computed in the 
case of a mobile robot from the x,y,θ  displacement begun, 
less obviously so for a multi-degree of freedom humanoid. 
(ii) Displacement detected directly from motion sensors or 
odometry. (iii) The transform derived from imager 
displacement, as typified by the SLAM class of algorithm.  

The advantage of option (i) being that the computation 
can be conducted during the motion. Pre-determined 
ballistic eye saccades are also well modelled in this way 

(e.g. Shibata et al. 2001). Type (iii) is most appropriate 
where the compound effects of many degrees of freedom 
must be considered, but it does require an active imager 
and current SLAM based techniques are not generally 
well suited to systems exhibiting both broad and rapid 
saccadic movements (Davison, 2003). It might be 
presumed that each of these methods finds application in 
human perception, depending on the prevailing 
circumstances.  

The question arises as to what (and at what level of 
detail) should items from Δi be transferred to Δp for 
retention after the interpretation cycle. Individual objects 
are naturally ordered in Δi by their explanatory value, 
directly reflecting their level of evidential support. A sub-
set of these items are selected for attention at the highest 
level of description (i.e. wffs of the form Object(…)), and 
reported to the higher cognitive layers. There is some 
evidence to suggest that humans select one as the locus of 
attention and record several more sub-attentively.  

Level of evidential support seems a poor measure on 
which to select for attention. The next section describes 
how this ordering and selection process may be modified 
the meet the robot’s functional needs. We would further 
argue that it is not appropriate to transfer descriptive 
sentences at the feature or appearance level into Δp, as 
these are potentially indistinguishable from direct sensor 
data, but rather as an abstraction, taken from the higher 
levels of the object description. 

6   Part 2: Modes of Attention 
It has long been demonstrated that attention has a dual 
nature. In part exogenous, driven by external events that 
direct the flow of awareness to specific areas or things 
within the perceptual field. In part endogenous, the object 
of awareness being selected internally by some other 
cognitive process within the agent, which focuses or 
modulates the perceptual system to those ends. In this 
section we argue that the Abductive Perception Model, 
with its hierarchical definition of object, part and feature 
provides a clean model for this dual nature of attention.  

Itti et al. (1998) present a saliency based model of 
low-level attention, in which multi-scale, low-level feature 
extraction (intensity, edge orientation, colour, etc.) is 
uniformly applied to an image. This is used to build a 
combined feature map, and from this mapping various 
feature combinations are assigned “salience”, according to 
the application under consideration. A process of 
competition is applied to isolate places of maximal 
saliency, and these points are then scanned in saliency 
order by the process of attention. Once attended to, a 
temporary process of inhibition of return suppresses the 
salience of the last place, so the next most salient location 
is visited, and so on.     

True models of the high-level processes of attention 
are less well represented and are generally incomplete. 
Stark and Choi (1996) present a model that emulates, 
using a Markov based approach, the eye-gaze path of a 
simulated human observer. Navalpakkam and Itti (2002) 
extend the Itti and Koch model with task based relevance. 



Brazeal et al. (2000) suppress or intensify attributes of the 
attentive feature map to reflect changing “social” drives. 

In the Abductive model, both low-level, feature driven 
and high-level, model-driven, attention may be emulated 
by manipulation of the interpretation ordering parameters 
(ro and ev) through the distinctiveness value (dv). This 
arises as a natural consequence of the hierarchical nature 
of object definitions in Σo. Recall that the rank order (ro) 
value of an object is used in the standard model to order 
the hypothesis testing process and that the explanatory 
value (ev) determines the attention order. This process is 
ordinarily based on the information content of the features 
(for dv) and the degree to which a model is supported (ro) 
by the prevailing sensor evidence, Γ.  

6.1   Exogenous attention 
Exogenous attention is detector, and hence feature driven. 
Where the standard, engineering, approach in the 
abductive model emphasises the informational 
distinctiveness to determine interpretation order, an 
attention based system would bias this order of 
interpretation according to the functional significance to 
the robot of the feature or of the object it implies.   

Consider first a function attendfeature(F,n), which 
raises the effect of the dv value of a particular feature 
type, F. This scheme is achieved by defining a 
significance multiplier (sm) associated with each feature 
type, such that all dv(F) terms in sections 3.2 and 3.3 are 
substituted by (dv(F)*sm(F,n)). Values of n > 1 enhance 
the attentive properties of the feature type F; n < 1 
suppress it.  

Raising any dv value in this way consequently raises 
the rank order (ro) value of each object in which the 
feature appears, whenever that feature type is detected. 
This raises the priority of the object model and it will be 
preferentially projected into Δh for corroboration. If 
corroborated, the ev value of the object is also increased. 
Its place in the attention prioritisation is thereby raised. 
This is exogenous, data driven attention, analogous to the 
Itti and Koch model.  

Conventionally, inhibition of return is applied retino-
centrically to each instance of the feature detector, and 
this presupposes a fixed viewpoint. This cannot be the 
case for a mobile or humanoid robot, or any system with 
saccadic (or directed) eye movements, in which the image 
appears to translate across the image or retinal plane with 
each motion.  

Under these assumptions, while the significance 
multiplier remains a property of the feature and its 
detector(s), inhibition is more naturally expressed as a 
property of object interpretations recorded in Δp. 
Inhibition of return consequently tracks with the 
interpreted objects. Expanding the definition of each 
object (axiom A1), coupled to its vector estimation, 
generates a cone of inhibition: the inhibited area when 
projected back onto the imaging plane. Application of the 
anticipatory transform (section 5) ensures that this cone 
remains directed at the area inhibited, regardless of 
rotation and translation motions of the robot and its 
imager. No special inhibition of return factor need be 

posited. Inhibition is inversely proportional to the recency 
of the object being attended to, as indicated by the image 
time, t (section 5).  

6.2   Endogenous attention 
Now consider the effect of the function attendobject(O, 
n), enhancing the distinctiveness values (dv) of all features 
of an inferred object by the significance multiplier. A high 
level cognitive system may now select from any of the 
object descriptions those that are to be considered relevant 
to its immediate task.  

Detection of any of the features implied by the object 
definition and passed upwards via the abductive step now 
contributes to the enhanced ranking. The greater the 
multiplying factor, the higher the ranking given equivalent 
evidence. This pre-disposes the system to select this 
model on the basis of weaker evidence than it would 
normally do. This is endogenous, model driven attention.  

Endogenous attention is classically investigated as a 
visual search task, in which the participant is asked to 
search an image for an embedded specific but known 
target (Wolfe, 1994); or to identify “the odd one out” from 
a set of otherwise identical targets as quickly as possible. 
Exemplar tasks are shown in figure 3 (after Wolfe, 1994).  

 

 
Figure 3: Search tasks – find the “odd one out” 

 

Typically, on the left hand test, the desired item is 
reported almost immediately, gaze saccades to the correct 
place with little hesitation and search time is broadly 
independent of the number of targets. However, on the 
right hand test, eye gaze saccades show a marked (self-
terminating) searching strategy, and search time rises 
linearly with the number of targets presented.  

Uniform field and foveal/saccadic imagers give rise to 
different predictions. In the uniform field model, each 
detected feature is considered and explained by the 
appropriate model, and, as all elements of Γ are at the 
same resolution, every instance of the target model(s), as 
enhanced, are considered in one time frame, and, in both 
cases, the target identified.  

In a foveal system, off-centre targets are represented 
by low spatial resolution feature detectors (figure 2, right). 
Where these characterising features for the different target 
types are distinct, as would be the case for figure 3 (left), 
attention, and hence gaze, may be directed immediately. 
Where the characterising features are not distinguishable 
at the peripheral resolution (as might be the case for figure 
2, right), attention must be directed sequentially, such that 
the detailed foveal model is brought over the candidate 
targets in order.  

Several things are clear from this. First, attention 
remains directed to the task, as other items in peripheral 
vision are ignored. Second, it clearly demonstrates that 



low-level inhibition of return is not applied directly to the 
feature detector, or to any particular area of the image 
plane. These tasks are contrived, but Wolfe (1994) 
suggests they are also indicative of the process when 
applied to more naturalistic tasks.    

7   Modes of Inattention 
This section discusses some interesting apparent lapses in 
attention. Two classes of inattentional lapse have been 
subject to much experimental investigation recently, 
change blindness (e.g. Simons and Rensink, 2005 for 
review) and inattentional blindness (Mack and Rock, 
1998). Each is described briefly, and discussed in the 
context of the abductive perception model for its 
applicability to robots. There may be other modes of 
inattention, but we are apparently, as yet, blind to them. 

7.1   Change Blindness 
The phenomenon of “change blindness” (CB) refers to 
instances where changes in a visual scene, which would 
normally be “expected” to initiate a shift of attention are 
ignored, the observer apparently completely unaware that 
the visual change occurred. There are several related 
effects, each demonstrated with ingenious experiments.  

A classic CB experiment is described by Simons and 
Levin (1998), in which a passer-by was approached by the 
experimenter and asked for directions. During the reply, 
two “workmen” carrying a door passed between the two, 
and then the conversation continued. On questioning 
approximately half the participants reported that they not 
noticed that the experimenter had been exchanged for 
another (not particularly similar) person during the 
interruption. Low rates of noticing have also been reported 
for film clips in which actors are substituted or objects 
change between scene cuts (Levin and Simons, 1997).  

Change blindness has also been observed on a shorter 
time scale. Several experimenters (e.g. Blackmore et al., 
1995) have noted that changes to images that would 
normally be noticed easily are missed if they are made 
during a saccade, or while a “blocking” patch was 
displayed over the area of change.  

At the other end of the scale, experiments in which 
apparently large changes were made to an image, but 
gradually over an extended time period (10+ seconds), say 
to the colour of a prominent object or by the gradual 
introduction/removal of an object, are also largely ignored 
(e.g. Simons et al., 2000).   

Changes in the structure of scenes are apparently not 
routinely detected as a consequence of a detailed 
comparison between the current interpretation of the 
viewed scene (as Δi) and elements stored in a visual 
working memory (as Δp). The notion of a visual memory 
in humans is contentious (e.g. Simons and Rensink, 2005). 
Wolfe (1999) has dubbed the CB phenomena inattentional 
amnesia, on the presumption that these changes are not 
noted because no memory has been retained of the visual 
stimuli, so no comparison might be made: “visual 
representation has no memory. It exists solely in the 
present tense.” This appears largely so, the immediate 

veridical sensation of sight disappears immediately the 
eye or imager is obscured – as Δi is lost.  

However, we have argued for a temporary, robot-
centric, memory structure (Δp) on the grounds that it 
brings computational (seeding hypotheses into Δh) and 
functional (it provides a sense of situational awareness) 
advantages; in addition to its role in the inhibition of 
return. The contents of the structure, while temporary, are 
not transient, and so may not equate directly to the 
prevailing notion of “visual memory”.  

Such a memory at least explains those instances where 
changes are noticed, change blindness is not an absolute 
phenomena. Simons and Levin (1998) reported levels of 
noticing varied greatly. It might be argued, therefore, that 
the level of abstraction of items written into Δp is high, 
but not uniform. Matching is Type to Type, recording only 
that it was of Type “face” in Δp guarantees an inability to 
detect the substitution, while a record of hair colour or 
other facial characteristics recorded from the object model 
enables change detection.  

It appears from the image change experiments that 
human perception relies heavily on highly specialised rate 
of change detectors to draw attention to change. These can 
only reasonably function during fixations (the 200-400mS 
periods of eye stability between saccades). Where their 
operation is disrupted by masking (Blackmore et al, 
1995), or the rate of change falls below the detector 
threshold (Simons et al., 2000), no attention is triggered, 
and shift of attention not precipitated – save by the less 
effective memory comparison route.  

The question remains as to why human perception 
apparently relies so little on memory, and whether a robot 
should do likewise. Change is endemic in visual scenes, 
and to compare details in the current scene with preceding 
ones invites a flood of items for attention and explanation, 
and so reliance on the immediate interpretation remains 
the appropriate option unless there are specific, task 
related, reasons for doing otherwise.   

7.2   Inattentional Blindness 
Inattentional Blindness is wittily demonstrated in a classic 
experiment due to Simons and Chabris (1999), in which 
participants are required to attend to a demanding task of 
counting the number of ball passes between members of a 
basketball team. In attending closely to the task, a 
significant proportion of viewers fail to note the 
appearance of an actor dressed in a gorilla costume, walk 
slowly across the scene, stopping centre stage to beat his 
chest. The effect may also be achieved under laboratory 
conditions with synthetic images (Most et al., 2000).    

We consider this as an extreme form of endogenous 
attention, in which the value of the attendobject multiplier 
(section 6.2) is raised to such an extent that system is 
made to expend all its perceptual resources processing a 
single object model, to the exclusion of all others. Where 
only a single object is attended to in this way the 
inhibition of return mechanism is suspended, there is 
nothing else to “return” to. If this represents a true 
interpretation of the phenomenon it might better be 



described as hyper-attentional neglect, as no other objects 
are even considered.   

8   Summary 
We have presented a summary description of our formally 
described, if largely theoretical, approach to robot 
perception based on abductive reasoning and a feature 
cloud representation of object models. This has then been 
used to motivate a discussion of how apparently small 
modifications to the scheme can be used to parallel a 
range of attention and inattention phenomena 
experimentally observed in the human perceptual system. 
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