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Abstract 
 
This paper describes a unifying framework for five 
highly influential but disparate theories (the five 
factors) of natural learning and behavioral action 
selection. These theories are normally considered 
independently, with their own experimental procedures 
and results. The framework builds on a structure of 
connection types, propagation rules and learning rules, 
which are used in combination to integrate results from 
each theory into a whole. Exemplar experimental 
procedures will be used to discuss the areas of genuine 
difference, and to identify areas where there is overlap 
and where apparently disparate findings have a 
common source. The paper focuses on predictive or 
anticipatory properties inherent in these action 
selection and learning theories, and uses the Dynamic 
Expectancy Model and its computer implementation 
SRS/E as a mechanism to conduct this discussion.    

1    Introduction 
The overall aim of this paper is to provide a unifying 
description to encompass and combine five classical and 
highly influential “theories” of natural action selection and 
learning. These are the five factor theories. Each held a 
dominant place in theorizing during the 20th century and 
was supported by a wealth of meticulously gathered 
experimental data, but there has been little or no attempt to 
provide a single framework with which to rationally 
consider how they might interact.  

The problem, in part, arises from the fact that these 
theories have been treated as largely competitive, at times 
with considerable animosity being generated between 
proponents of the differing approaches, or, more often, a 
tacit isolationism between the different schools of thought.  

Such isolationism is surprising, as it clear that individual 
animals will demonstrate a whole range of behavioral 
phenomena, each of which might be most satisfactorily 
described by one or another of the approaches, largely 
depending on the circumstances the animal finds itself in. It 
is also very apparent that no single approach explains all 
animal action selection behavior.  

Each factor theory is characterized by the underlying 
assumption that immediately observable and measurable 
behavior results from sensations arising from the interaction 
between the general environment of the organism (including 
its body) and its sense organs.  

The issue under debate was the principles by which that 
interaction was to be characterized. In itself, expressed 
behavior gives little indication of which, indeed, if any, of 
these theories best describes the internal action selection 
mechanism that gives rise to the observable behavior. 

The task, then, is to provide a minimal description of the 
principles underlying the mechanisms involved that 
recognizes natural diversity, yet covers the range of 
phenomena observed. This paper identifies where these 
mechanisms clearly differ, and where they are apparently 
different, but can be explained as manifestations of a single 
type of mechanism, and how these differences may be 
resolved into a single, structured framework. Given the 
range and diversity between individual animals and species, 
there is a fine balance to be struck between highly specific, 
quantitative, descriptions, trivially refuted due to this 
natural variation - and untestable generality. This paper 
attempts such a balance.  

The five factor approach described here substantially 
extends, details and revises the approach to anticipatory 
learning and behavioral action selection introduced in 
[Witkowski, 2003]. The approach will be developed in the 
light of the Dynamic Expectancy Model (DEM) 
[Witkowski, 1998, 2000, 2003] and its actual (C++) 
computer implementation SRS/E. The analysis in this paper 
will be performed mainly at the level of the five factor 
theories, each of which is itself a digest of many exemplar 
experimental procedures. The paper will call on specific 
procedures where necessary, and illustrate issues with 
reference to the DEM and its implementation. 

Section 2 provides a thumbnail sketch of each of the five 
factor theories. Comprehensive descriptions of the five 
theories can be found in any textbook of natural learning 
theory (e.g. [Bower and Hilgard, 1981]). Section 3 
considers the interface between animal and its environment, 
and how issues of behavioral motivation might be 
addressed. Sections 4, 5 and 6 respectively build the 
arguments for the structural, behavioral and learning 



components of the combined approach. Section 7 
reconstructs the factor theories in the light of these 
component parts, and emphasizes the role of the action 
selection policy map, which may be either static or 
dynamic. Section 8 describes an arbitration mechanism 
between these policy maps, leading to final action 
expression.  

2    The Five Factor Theories 
The first of the five factor theories takes the form of 
Stimulus-Response (S-R) Behaviorism; which holds that 
action (the “response”) selection is determined by the 
current sensory condition (the “stimulus”). Although first 
proposed in the final years of the 19th century [Thorndike, 
1898], the approach continues to find contemporary support 
in the work of [Brooks, 1991; Bryson, 2000; and Maes, 
1991]. This behavior is not defined by degree. The 
stimulus-response unit could be as apparently simple as a 
low-level reflex, such as the blink of an eye in response to a 
puff of air. Alternatively, behavioral repertories of 
considerable complexity can be postulated from essentially 
reactive models [Tyrrell, 1993; Tinbergen, 1951]. Such 
behaviors are generally considered to be innate (genetically 
determined) to the individual. Learning in the behaviorist 
regime is reward based, strengthening or weakening the 
connection between stimulus and response. It may be 
conjectured that not all such behaviors will be amenable to 
learning at the same rate, if at all. 

The second factor theory, classical conditioning, was 
proposed by Ivan Pavlov (1849-1936) following 
observations that some innate reflexes can be associated 
with an otherwise neutral stimulus by repeated pairing, 
which will in turn elicit the reflex action. The procedure is 
highly repeatable and is easily demonstrated across a wide 
range of reflexes and species, and has been extensively 
modeled both mathematically and by implementation (e.g. 
[Vogel et al., 2004], for recent review).  

The third theory, operant or instrumental conditioning, 
proposed by B.F. Skinner (1904-1990), who argued that 
actions were not “elicited” by impinging sensory conditions, 
but “emitted” by the animal in anticipation of a desired 
reward outcome. The effect is also highly repeatable under 
appropriate conditions, and it is clear that, given a suitable 
source of reward, an animal’s (or indeed, a person’s) 
behavior can be modified (“shaped”) at will by judicious 
application of this principle. Whilst enormously influential 
in its time, only a relatively small number of computer 
models follow this approach (e.g. [Saksida et al., 1997], or 
Schmajuk [1994] implementing Mowrer’s [1956] “two-
factor” theory, incorporating both classical and operant 
conditioning effects.) 

The fourth theory, the “cognitive” model, proposed by 
E.C. Tolman [1932] describes a three-part basic cognitive 
unit, which establishes the expectation or anticipation of a 
specific stimulus following, and contingent on, an action 
taken in the immediate context of another stimulus. The 
context stimulus and action provide the means to achieve a 
desired and anticipated stimulus, the end. Tolman’s means-

ends approach both inspired and continues to be a 
fundamental technique of problem solving and planning for 
artificial intelligence ([Russell and Norvig, 1995], for 
instance). The Dynamic Expectancy Model (DEM) 
[Witkowski, 1998; 2000; 2003] and the Anticipatory 
Classifier System (ACS) model [Stoltzmann et al., 2000] 
represent recent three-part cognitive models. 

A fifth theoretical position, broadly characterized by the 
term associationism (e.g. [Hebb, 1949]), concerns the direct 
associability and anticipation of stimuli following repeated 
pairing of activations. While of greater significance in other 
aspects of animal modeling, this approach does not directly 
incorporate an action component, and discussion of it will 
be restricted here to a minor supporting role in the action 
selection problem.  

3    Sense, Action and Valence 
For largely historical reasons sensations are widely referred 
to as stimuli in this body of literature and the actions or 
behaviors generated as responses. This is not entirely 
satisfactory, as it largely fails to capture the range of 
interpretations required by the five theories taken together. 
Consequently, this paper will refer to the sense-derived 
component as a sensory signature or Sign, and denote such 
events by the symbol S, sub-scripts will be used to 
differentiate Signs were necessary. The philosophically 
neutral term sense data might also be employed for this 
purpose (e.g. [Austin, 1962]). In the SRS/E model, S := 
{0,1}. 

Equally, the term “response” seems pejorative, and the 
more neutral term Action will be preferred, similarly 
abbreviated to A. Each Action will have associated with it 
an action cost, ac, (in SRS/E, by definition, ac ≥ 1) 
indicating the time, effort or resource required to perform it.  

Any Action may also be assigned an activation level, 
determined according to the rules presented later. Once 
activated, an Action becomes a candidate for expression, in 
which the Action is performed by the animal and may be 
observed or measured directly. 

A Sign will be defined as a conjunction of detectable 
conditions (or their negations, acting as inhibitory 
conditions), typically drawn directly from the senses. Any 
Sign where all the conditions currently hold is said to be 
active. A Sign may be activated by some very specific set of 
detected sensory conditions, or be active under a wide range 
of conditions, corresponding to highly differentiated or 
generalized sensing.  

Any Sign that is anticipated, but not active, is termed 
sub-active. Sub-activation is a distinct condition from full 
activation. It is important to distinguish the two, as the 
prediction of a Sign event is not equivalent to the actual 
event, and they have different propagation properties.  

Additionally, any Sign may assume a level of valence 
(after [Tolman, 1932]), the extent to which that Sign has 
goal like properties, indicating that it may give the 
appearance of driving or motivating the animal to directed 
action selection behavior. Valence may be positive (goal 
seeking or rewarding) or negative (initiating avoidance 



behaviors or being aversive). A greater valence value will 
be taken as more motivating, or rewarding, than a lesser 
one. Some Signs will hold valence directly, some via 
propagation to other Signs holding valence. 

As with activation and sub-activation, the valence and 
sub-valence properties may also be propagated between 
Signs under the conditions described in section 5. A Sign 
that is the direct source of valence is deemed satisfied once 
it has become active, and it and the propagated chain of sub-
valenced Signs will revert to their normal, unvalenced, state 
(unless there are multiple sources of direct valence).  

4    The Forms of Connection 
The anticipatory stance proposes that the principal effects of 
the five target theories can be adequately explained by 
adopting a combination of three connection types, and that 
their underlying function is to provide a temporally 
predictive link between different Sign and Action 
components. While noting that the model described here is 
highly abstracted, its biologically inspired background 
grounds it in the notion that, in nature, these abstract links 
represent physical neural connections between parts of the 
animal’s nervous system and brain. These links, and such 
properties as sub-activation and valence, represent 
conjectures (from experimental observation) about the 
function of the brain that may be corroborated or refuted by 
further investigation.  

With the exception of a connection of type C1, the 
abstract link types proposed below are bi-directional. 
Propagation effects across these links are asymmetric, and 
these properties are discussed in section 5.  

This is not intended to imply that there are “bi-
directional neurons”, only that the structures that construct 
these linking elements have a complexity suited to the task. 
Where the animal does not possess a link or type of link (on 
the basis of its genetic makeup) it will be congenitally 
incapable of displaying a corresponding class of action 
selection behavior or learning. Of course, there are many 
other possible connection formats between arbitrary 
combinations of Signs and Actions; but it will be argued 
that these are sufficient to explain the principal properties of 
the five factor theorems. 

Connection type C1 (SA):     S1  
w
�t±τ (A ∧ S2) 

Connection type C2 (SS):      S1  
v, c
�t±τ S2 

Connection type C3 (SAS):   (S1 ∧ A)  v, c
�t±τ  S2   

While connections of type C1 have only an implicit 
anticipatory role, connection types C2 and C3 are both to be 
interpreted as making explicit anticipatory predictions. 

The type C1 connection (“SA”) is a rendition of the 
standard S-R behaviorist mechanism, with a forward only 
link from an antecedent sensory condition initiating (or at 
least predisposing the animal to initiate) the action A, as 
represented by the link “�”. This symbol should definitely 
not be associated with logical implication, its interpretation 
is causal not truth preserving. The symbol t will indicate 
temporal delay (with range “±τ”), which may be introduced 

between the sense and action parts. The (optional) Sign S2 is 
postulated as a mechanism for reinforcement learning, and 
is not required where learning across the connection 
(updating w) is not observed. The conjunctive connective 
symbol “∧” should be read as “co-incident with”. 

In keeping with standard behaviorist modeling, w will 
stand to indicate the strength, or weight, of the connection. 
This weight value will find application in selecting between 
candidate connections, and in considering reinforcement 
learning. Traditionally, the strength of the stimulus and a 
habituation mechanism for the action would also be 
postulated ([Hull, 1943], for a comprehensive discussion of 
these and related issues). Specifically the strength or 
likelihood of the response action will be modulated by the 
strength of the stimulus Sign.  

4.1 Explicitly Anticipatory Connection Types 
Connection type C2 notates a link between two Signs, and 
indicates that Sign S1 anticipates or predicts the occurrence 
of Sign S2 within the specific time range t±τ in the future. 
This is indicated by the right facing arrow in the link 
symbol “�”. The link has a corroboration value, c, 
associated with it, indicating the reliability of that 
prediction, based on continuing prior observation. A generic 
corroboration value update rule will be considered in 
section 6.1.  

The valence value, v, of S1 is a function of the current 
value of the valence value of S2, and is hence associated 
with the left facing part of the link. Where the value t±τ is 
near zero, the link is essentially symmetric, S1 predicts S2 as 
much as S2 predicts S1. This is the classical Hebbian 
formulation. Where t is greater than zero (negative times 
have no interpretation in this context), the link is considered 
asymmetric. The assertion that S1 predicts S2 is no indicator 
that S2 also predicts S1. As the relationship between the two 
Signs is not necessarily causal, the animal may hold both 
hypotheses simultaneously and independently, as separate 
C2 connections. 

The C3 connection differs from C2 by the addition of an 
instrumental Action on the left hand side. The prediction of 
S2 is now contingent on the simultaneous activation of both 
S1 and the action A. The interpretation of the corroboration 
value c and the temporal offset t and range τ remain the 
same. The transfer of valence v to S1 needs to now be a 
function of both S2 and the action cost of A. This 
connection can be read as “the Sign S2 is anticipated at time 
t in the future as a consequence of performing the action A 
in the context of S1”. Equally, it may serve as an 
instrumental operator: “to achieve S2 at time x in the future, 
achieve S1 at time x-t, and perform action A”. Such links 
also take the form of independent hypotheses, giving rise to 
specific predictions that may be corroborated. 

5    The Forms of Propagation 
The five “rules of propagation” presented in this section 
encapsulate the operations on the three connection types 
with regard to the five factor theories. The rules define (i) 
when an Action becomes a candidate for expression, (ii) 



when a Sign will become sub-activated, (iii) when a 
prediction will be made, and (iv) when a Sign will become 
valenced by propagation.  

In the semi-formal notation adopted below active(), 
sub_active(), expressed(), valenced() and sub_valenced() 
may be treated as predicate tests on the appropriate property 
of the Sign or Action. Thus active(S1) will be asserted if the 
Sign denoted by S1 is active. The disjunction “∨” should be 
read conventionally as either or both, the conjunction “∧” 
should be interpreted as in section 4. On the right hand side 
of the rule, activate(), predict() and sub_valence() should be 
taken as “internal actions”, operations taken to change the 
state or status of the item(s) indicated. 

Rule P1 Direct Activation:   
For any C1 (SA) link,  

if (active(S1) ∨ sub_active(S1))  
then activate(A, w)  

Rule P2 Sign Anticipation:  
For any C2 (SS) link,  

if (active(S1) ∨ sub_active(S1))  
then sub_active(S2) 

Rule P3 Prediction:  
For any C2 (SS) link,  

if(active(S1))  
then predict(S2, t±τ) 

For any C3 (SAS) link,  
if(active(S1) ∧ expressed(A))  
then predict(S2, t±τ) 

Rule P4 Valence transfer:  
For any C2 (SS) link,  

if(valenced(S2) ∨ sub_valenced(S2))  
then sub_valence(S1, f(v(S2), d)) 

For any C3 (SAS) link,  
if(valenced(S2) ∨ sub_valenced(S2))  
then sub_valence(S1, f(v(S2), c, ac(A))) 

Rule P5 Valenced activation:  
For any C3 (SAS) link,  

if(active(S1) ∧ sub_valenced(S1))  
then activate(A, v’) 

Rule P1 expresses the standard S-R behaviorist rule. 
Only in the simplest of animals would the activation of the 
action A lead to the direct overt expression of the action or 
activity. As there is no assumption that Signs are mutually 
exclusive, many actions may become candidates for 
expression. The simplest strategy involves selecting a 
“winner” based on the weightings and putting that action 
forward to the effector system for external expression. 

Rule P2 allows for the propagation of sub-activation. 
The effect is instantaneous, notifying and allowing the 
animal to modify its action selection strategy immediately 
in anticipation of a possible future event. Evidence from 
second order classical conditioning studies would suggest 
that sub-activation propagates poorly (i.e. is heavily 
discounted).  

Rule P3 allows for a specific prediction of a future event 
to be recorded. This calls for a limited form of memory of 

possible future events, analogous to the more conventional 
notion of a memory of past events. Under this formulation, 
predictions are created as a result of full activation of the 
Sign and actual expression of the Action, and are therefore 
non-propagating. Predictions are made in response to direct 
sense and action and are employed in the corroboration 
process (section 6.1). This process is distinct from sub-
activation, which is propagating, but non-corroborating.  

Rule P4 indicates the spread of valence backwards along 
chains of anticipatory links. The sub_valence() process is 
shown in different forms for the C2 (SS) and C3 (SAS) 
links, reflecting the discounting (d) process mentioned 
earlier. As an exemplar, in the SRS/E model valence is 
transferred from S2 to S1 across the C3 link according to the 
generic formulation: v(S1) := v(S2) * (c / ac(A)). By learning 
rule L2 and L3 (section 6.1) 0 < c < 1, and as ac(A) ≥ 1.0 
(by definition), therefore v(S1) < v(S2). Valence propagates 
preferentially across high confidence links with “easy”  (i.e. 
lower cost value) Actions. Transfer is straightforward and 
has proved robust in operation in the DEM and SRS/E.  

Rule P5 indicates the activation of any Action A where 
the antecedent Sign S1 is both active and valenced. As with 
rule P1, many Actions may be affected. The one associated 
with the highest overall S1 valence value is selected.  

The choice process by which the various activated 
Actions give rise to the action to be selected for overt 
expression is the subject of section 8. For a simple S-R only 
(rule P1) system, this might be summarized as selecting the 
action associated with the highest weight value, but there 
must be a balance between the actions activated by rule P1 
and those by P5. Note here that the valence value v’ refers 
to the valence value of the Sign holding direct valence (the 
top-goal), whose value has been propagated to the SAS 
link, not that of either S1 or S2 of the C3 (SAS) link in 
question. 

6    The Forms of Learning 
This section describes the conditions under which learning 
will take place. In the anticipatory action selection model 
presented, the net effect of learning is to modify the Actions 
or activities to be expressed (and so the observable behavior 
of the animal) in response to a particular Sign. Each of the 
five factor theories takes a particular stance on the nature of 
learning.  

In the first, reward based learning, learning is taken to 
be a consequence of the animal encountering a valenced 
situation following an action – one that is characterised as 
advantageous/disadvantageous and thus interpreted as  
“rewarding” (or not) to the animal. This is frequently 
referred to as reinforcement learning. There are a wide 
range of reinforcement learning methods, so a generic 
approach will be adopted here. 

In the second, anticipatory learning, “reward” is derived 
from the success or otherwise of the individual predictions 
made by the propagation rules given in section 5. In one 
sense, the use of link type C3, as described here, can be 
seen as subsuming link type C1, but the converse does not 



hold. In the C1 link, the role of anticipation in the learning 
process is implicit but is made explicit in the C3 type link.  

Learning rule L1 (the reinforcement rule): 
For any C1 (SA) link  

if (active(A) ∧ (valence(S2) ∨ sub_valence(S2)))  
then update(w, α) 

This is a generic form of the standard reinforcement 
rule. If the action is associated with any sensation that 
provides valence, then the connection weight w will be 
updated asymptotically by some factor α. Several well 
established weight update strategies are available, such as 
Watkins’ Q-learning and Sutton’s temporal differences 
(TD) method, see [Sutton and Barto, 1998] for review. In 
each the net effect is to increase or decrease the likelihood 
that the link in question will be selected for expression in 
the future.  

6.1 Methods of Anticipatory Learning 
A central tenet of the anticipatory stance described in this 
paper is that certain connective links in the model make 
explicit predictions when activated. Recall that propagation 
rule P3 creates explicit predictions about specific, 
detectable, events that are anticipated to occur in the future, 
within a specific range of times (denoted by t±τ). The 
ability to form predictions has a profound impact on the 
animal’s choice for learning strategies. This section 
considers the role played by the ability to make those 
predictions.  

Learning rule L2 (anticipatory corroboration) : 
For any (C2 ∨ C3) link  

if(predicted(S2, -t±τ) ∧ active(S2))  
then update(c, α) 

Learning rule L3  (anticipatory dis-corroboration) : 
For any (C2 ∨ C3) link,  

if(predicted(S2, -t±τ) ∧ ¬active(S2))  
then update(c, β) 

Learning rule L4  (anticipatory link formation) : 
if(¬predicted(Sx)),  
then create_SAS_link(Sy, Ay, Sx, t, τ)  
or create_SS_link(Sy, Sx, t, τ) 

These three rules encapsulate the principles of 
anticipatory learning, and are applicable to both C2 and C3 
link types. Three conditions are significant, where a 
prediction has been made, and the predicted event did occur 
at the expected time (learning rule L2). The link is 
considered corroborated and is strengthened. Where a 
prediction is made, but the event does not occur (learning 
rule L3), the link is considered dis-corroborated and 
weakened. Lastly, where an event occurs, but it was not 
predicted at all (learning rule L4).  

The SRS/E computer implementation employs the 
simple but robust, effective and ubiquitous update rule c := 
c+α (1-c), where (0 ≤ α ≤ 1) for L2, and the generic update 
rule c := c-β(c), where (0 ≤ β ≤ 1), is again simple, effective 
and robust for L3. Both update functions are asymptotic 
towards 1.0 and zero respectively. The net effect of these 

update rules is to maintain a form of “running average” 
more strongly reflecting recent outcomes, with older 
outcomes becoming successively discounted (tending to 
zero contribution). The greater the values of α and β, the 
more aggressively recent events are tracked. The particular 
settings of these values are specific to the individual animal. 
Where no prediction was made by a rule, c remains 
unchanged regardless of the occurrence of S2. This is 
consistent with the notion that a rule is only responsible for 
predicting an event under the exact conditions it defines.  

The key issue here is that anticipatory learning is 
everytime. Every prediction made, regardless of its cause, 
initiates learning. Learning is independent of valenced 
reward (this is the phenomenon of latent learning 
[Witkowski, 1998], [Thistlethwaite, 1951]). Anticipatory 
links are measured relative to their predictive ability, not 
their usefulness. Correct anticipation is its own reward. 
Such anticipatory reward is generated locally to the C2 or 
C3 link, and is independent of all others. Further, if 
circumstances change, each link adjusts automatically to the 
prevailing circumstances based on recent predictive 
experience. Anticipation may also be combined with 
valence, to preferentially focus the learning process on 
Signs that have, or have had, valence (e.g. the Valence Level 
Pre-Bias technique [Witkowski, 1998]). 

Where an event is unpredicted by any link, this is taken 
as a cue to establish a new link between the unpredicted 
event (as S2) and some recent recently active event (as S1) at 
time t, rule L4. Where a C3 link is created some expressed 
Action A contemporary with the new S1 is also implicated. 
Again the choice of how many new links are formed, and 
the range of values for t and τ are specific to the individual 
animal. Without any a-priori indication as to which new 
links might be effective, higher learning rates can be 
achieved by forming many links, and then allowing learning 
rules L2 and L3 separate the effective from the ineffective.  

The key issue here is that link learning may be invoked 
everytime a novel or unpredicted Sign is detected. Learning 
may proceed from tabula rasa, and is rapid while much is 
novel. In a restricted environment, link learning will slow as 
more is predicted, but resume if circumstances change.   

No rule for link removal is considered here, but has been 
discussed elsewhere in the context of the DEM. Witkowski 
[2000] considers the rationale for retaining links even when 
their corroboration values fall to very low values, based on 
evidence from behavioral extinction experiments 
[Blackman, 1974].  

7    Explaining the Five Factors 
This section returns to the action selection factor theories 
outlined in section 2, and will discuss them in turn in terms 
of the link types, propagation rules and learning rules 
presented and discussed in sections 4, 5 and 6. As 
previously indicated, each theory supports and is supported 
by an (often substantial) body of experimental evidence, but 
that each theory in turn fails to capture and explain the 
overall range of action selection behaviors displayed by any 
particular animal or species. The conceptually simpler 



approaches are covered by single links and rules, others 
require a combination of forms, and yet others perhaps 
require re-interpretation in the light of this formulation.  

7.1   Stimulus-Response Behaviorism 
S-R Behaviorism holds that all, or the majority of, observed 
and intelligent behavior can be ascribed to an innate, pre-
programmed, pairing of sense data driven stimuli and pre-
defined actions.  

7.1.1  Static Policy Maps 
With no embellishments, S-R behaviorism is reduced to 
connection type C1 and propagation type P1. The 
underlying assumption that all these strategies adopt is to 
tailor the behavior of the organism, such that the actions at 
one point sufficiently change the organism or its 
environment such that the next stage in any complex 
sequence of actions becomes indicated. We may refer to this 
as a static policy map. The DEM records these connections 
in a list, effectively ordered by the weight parameter, w. 
Recall that the weighting value w may be modified by 
reinforcement learning [Sutton and Barto, 1998]. 

Given a sufficient set of these reactive behaviors, the 
overall effect can be to generate exceptionally robust 
behavioral strategies, apparently goal seeking, in that the 
actually independent elements of sense, action and actual 
outcome combinations, inexorably leads to food, or water, 
or shelter, or a mate [Bryson, 2000; Maes, 1991; Tinbergen, 
1951; Tyrrell, 1993].  

Such strategies can appear remarkably persistent, and 
when unsuccessful, persistently inept. Any apparent 
anticipatory ability in a fixed S-R strategy is not on the part 
of the individual, but rather a property of the species as a 
whole. With sufficient natural diversity in this group 
strategy, it can be robust against moderate changes in the 
environment, at the expense of any individuals not suited to 
the changed conditions.  

7.2   Classical Conditioning 
Reactive behaviorism relies only on the direct activity of the 
Sign S1 to activate A, this is the unconditioned response 
(UR) to the unconditioned stimulus (US): the innate reflex. 
As reflexes are typically unconditionally expressed (i.e. 
have high values of w) the US invariably evokes the UR. 
Rule P1 allows for sub-activation of the S1 Sign. Therefore, 
if an anticipatory C2 connection is established between a 
Sign, say SX and the US Sign S1, then activation of SX will 
sub-activate S1, and in turn evoke A, the conditioned 
response (CR).  

Note the anticipatory nature of the CS/US pairing [Barto 
and Sutton, 1982], where the CS must precede the US by a 
short delay (typically <1s). The degree to which the CS will 
evoke CR depends on the history of anticipatory pairings of 
SX and S1, and is dynamic according to that history, by 
learning rules L2 and L3, the rates depending on the 
function of α and β. If the link between CS and US is to be 
created dynamically, then learning rule L4 is invoked. The 
higher order conditioning procedure allows a second 
neutral Sign (SY) to be conditioned to the existing CS (SX), 

using the standard procedure: SY now evokes the CR. This 
is as indicated by the propagation of sub-activation in P2. 

Overall, the classical condition reflex has little impact 
on the functioning of the policy map of which its reflex is a 
part. Indeed the conditioned reflex, while widespread and 
undeniable, could be thought of as something of a curiosity 
in learning terms (B.F. Skinner reportedly held this view). 
However, it provides direct, if not unequivocal, evidence for 
several of the rule types presented in this paper.  

7.3 Operant Conditioning 
Operant conditioning shapes the overt behavior of an animal 
by pairing the actions it takes to the delivery of reward. The 
experimenter need only wait for the desired action and then 
present the reward directly. This is typified by the Skinner 
box apparatus, in which the subject animal (typically a 
hungry rat) is trained to press a lever to obtain delivery of a 
food pellet reward. We interpret this link as an anticipatory 
one. The action anticipates the sensory condition (food), 
which, as the rat is hungry, holds valence. Further, the 
experimenter might present the food only when the action is 
taken in some circumstances, not others. The animal’s 
behavior becomes shaped to those particular circumstances. 
These are the conditions for the C3 connection type. This is 
equivalent to Catania’s [1988] notion of an operant three-
part contingency of “stimulus - response - consequence”.  

The association between lever (S1), pressing (A) and 
food (S2) is established as a C3 (SAS) link by L4. When the 
action is preformed in anticipation of S2, the link is 
maintained, or not, by L2 and L3 according to the outcome 
of the prediction made (P3). While food (S2) retains 
valence, and the rat is at the lever, the rat will press the 
lever (P5), and in the absence of any alternative, continue to 
do so. Action selection is now firmly contingent on both 
encountered Sign and prevailing valence. 

Due to valence transfer (P4) such contingencies 
propagate. Were the rat to be in the box, but not at the lever, 
and some movement AM would take to rat from its current 
location SC to the lever SL, then the C3 contingency 
(SC∧AM) � SL would provide propagated valence to SC and 
result in AM being activated for expression. Once the rat is 
satiated, the propagation of valence collapses and the 
expression of these behaviors will cease. This transfer of 
valence may be used to create long chains of behaviors 
(such as in preparing animals for film performances) by 
building the sequence back one step at a time. 

Propagation rule P4 also allows for secondary or 
derived reinforcement effects ([Bower and Hilgard, 1981], 
p.184), in which normally non-reinforcing C2 links may be 
paired with (or even chained from) an innately valenced 
one.   

7.4  Tolman’s Expectancy Model 
Catania’s [1988] description of the operant three-part 
contingency, described in the light of this formulation looks 
suspiciously like Tolman’s [1932] Sign-Gestalt Expectancy, 
an explicitly anticipatory three-part Sign-Action-Sign (i.e. 
C3) link. Skinner, as a staunch “old-school” behaviorist, 
would definitely not have approved! Where the Skinner box 



investigates the properties of the individual C3 link, which 
may be explored in detail under a variety of different 
schedules, Tolman’s work primarily used mazes. Rats, in 
particular, learn mazes easily, recognize locations readily 
and are soon motivated to run mazes to food or water when 
hungry or thirsty. Mazes are also convenient 
experimentally, as they may be created with any desired 
pattern or complexity. 

Choice points and other locations in the maze may be 
represented as Signs (a rat may only be in one location at 
once, though it may be mistaken as to which one), and 
traversal between them as identifiable Actions. Every 
location-move-location transition may be represented as an 
anticipatory C3 connection. Recall that these links are only 
hypotheses - errors, or imposed changes to the maze are 
accommodated by the learning rules L2, L3 and L4.   

 It is now easy to see that, placed in a maze, the animal 
will learn the structure as a number of C3 connections with 
or without (i.e. latently) the presence of valence or reward. 
Novel locations encountered by random (or guided) 
exploration invoke L4, and the confidence value c is 
updated each time a location is revisited, by L2 or L3.  
Once encountered, food may impart valence to a location 
(by P4). 

7.4.1   Dynamic Policy Maps 
If at any time a location becomes directly or indirectly 
linked to a source of valence (i.e. food to a hungry rat), this 
valence will propagate across all the C3 (and indeed C2) 
links to establish a dynamic policy map (DPM). This takes 
the form of a graph of all reachable Signs. In SRS/E this is 
considered as form of a modified breadth first search, in 
which each Sign node is assigned the highest propagated 
valence value. Again this generic process, as implemented 
in SRS/E, is computationally fast and robust in operation.  

Once created, each Sign implicated in the DPM is 
associated with a single Action from the appropriate C3 
link, the one on the highest value valence path, and a single 
valence value v, indicating its rank in the policy map. Given 
this one to one, ordered mapping, an action may be selected 
from the DPM in a manner exactly analogous to a static 
policy map. In this respect, the behavior chaining technique 
described in section 7.3 looks to be no more than an attempt 
to manipulate the naturally constructed dynamic policy to 
prefer one chain of actions to all the others. 

The dynamic policy map must be recomputed each time 
there is a change in valence or any learning event takes 
place (i.e. almost everytime). Sometimes this has little 
effect on the observable behavior, but sometimes has a 
dramatic and immediate effect, with the animal reversing its 
path or adopting some completely new activity.  

Figure 1 illustrates this (from [Witkowski, 2000]). The 
animat (circle) is in a grid maze, and each square represents 
a location Sign, and the arrows indicate the current policy 
action in that square. The animat was allowed to explore the 
maze shown on the left completely by selecting random 
actions, but without any source of valence (i.e. latently). 
When G is given valence, the animat builds a DPM and 
takes the shortest path via B. With the animat returned to S, 

and G still valenced, but B now blocked, the DPM will still 
indicate a path via B (the blockage is undiscovered), center. 
As the intended (up) action to B now fails, the DPM alters 
to prefer the apparently longer path via A, and the 
observable behavior of the animat will abruptly change as a 
new DPM is constructed and a new path is preferred, right.    

 

   
Figure 1: Rapid changes in the Dynamic Policy Map 

8   Combining Static and Dynamic Policy Maps 
For any animal that displays all the forms of action 
selection, it becomes essential to integrate the effects of 
innate behaviour, the static policy map, and the valence 
driven dynamic policy map. The dynamic policy map is 
transient, and must interleave with the largely permanent 
static policy map. The valence value of the original source 
(v’ from section 5, the top-goal) is (numerically) equated to 
the C1 connection weight values, w. While v’ ≥ active(w), 
actions are selected only from the DPM. If at any point 
active(w) > v’, DPM selection is suspended, and actions are 
taken from the static policy. Once completed or abandoned, 
control reverts to the DPM.  

This allows for high-priority activities, such as predator 
avoidance, to invariably take precedence over goal-seeking 
activities. As the valence of the goal task increases, the 
chance of it being interrupted in this way decreases. After 
an interruption from static actions, valenced action selection 
resumes, The DPM must be reconstructed, as the animal’s 
situation will have been changed, and the static actions may 
also have given rise to learned changes – a case of 
everytime learning. 

Static policy maps may also be partitioned. Tinburgen 
[1951] proposed the use of hierarchical Innate Releaser 
Mechanisms (IRM) to achieve this. In each case, the 
releasing enabler should take its place in the static ranking, 
with all its subsidiary SR connections simultaneously 
enabled, but then individually ranked within that grouping. 
Selection may then proceed as for the Dynamic Policy Map 
example. Note that in the DEM, valence setting is reserved 
as a static policy map activity, a type of Action. In this 
context the IRM releasing enablers start to look, in 
evolutionary terms, like the beginnings of valenced items. 

9   Summary and Conclusions 
This paper has presented a high-level view of the action 

selection properties of five central theories of behavior and 
learning. Each of these theories holds that actions are 
selected on the basis of prevailing sensory conditions. They 
do not agree on how this occurs, yet it is clear that it may be 
demonstrated experimentally that each theory accounts for 
only a part of an individual animal’s behavioral repertoire, 
and that what the experimenter sees is at least partly due to 
the design of their experiments. The paper has developed a 



set of five propagation rules and four learning strategies 
over three connection types to encapsulate and unify these 
otherwise apparently disparate approaches.  

This has lead to the notion of different types of policy 
map operating within the animal, from static to dynamic, 
and how they may be combined to exhibit apparently 
different behavioral phenomena under the variety of 
circumstances the animal may encounter, in nature or the 
laboratory. The Dynamic Expectancy Model has been 
employed as an implemented (SRS/E) framework for this 
discussion. 

Much remains to be done. This overview paper has laid 
a ground plan, but the devil remains in the detail. There 
exists a truly vast back catalogue of experimental data from 
the last 100 years of investigations that might be revisited in 
the light of this framework. Two substantive questions 
remain: (i) whether the links, propagation and learning rules 
presented sufficiently describe the five factor theories, and 
(ii) whether, even taken together as a whole, the five factor 
theories are sufficient to explain all animal behavior.  

On the first, the theories are based on these experiments, 
and much falls into place as a consequence. On the second, 
it seems unlikely - as evolutionary pressure has lead to 
incredibly diverse behavior patterns and mechanisms. 
Identifying these experimentally observed exceptions will 
serve to refine the multi-factor approach presented, leading 
in time to a better, more encompassing, solution.  

Even though one can observe classical and operant 
conditioning, and means-ends behavior in humans, it is 
abundantly clear than even taken together the five factors 
fail to explain human behavior to a very considerable 
extent. It is vastly apparent that human (and possibly other 
primate) activities are not solely, or even predominantly, 
driven directly by immediately prevailing and observable 
circumstances. However, one might see these five 
mechanisms as both a foundation for, and a bridge to, the 
evolutionary development of higher-level cognitive 
functions.  
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