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Abstract Each factor theory is characterized by the underlying
assumption that immediately observable and measurable

This paper describes a unifying framework for five behavior results from sensations arising from t_herﬁq;ion
highly influential but disparate theories (the five between the general environment of the organismuicy
factors) of natural learning and behavioral action its body) and its sense organs. o .
selection. These theories are normally considered  The issue under debate was the principles by which that
independently, with their own experimental procedures interaction was to be characterized. In itself, exgges
and results. The framework builds on a structure of behavior gives little indication of which, indeed, ifya of
connection typeS, propagation rules and |earning ru|esl these theories best describes the internal actil@ctiem
which are used in combination to integrate results from Mechanism that gives rise to the observable behavior
each theory into a whole. Exemp|ar experimenta| The task, then, is to provide a minimal descriptiorheft
procedures will be used to discuss the areas of genuinePrinciples underlying the mechanisms involved that
difference, and to identify areas where there is aperl ~ recognizes natural diversity, yet covers the range of
and where apparently disparate findings have a phenom_ena observed: This paper identifies where these
common source. The paper focuses on predictive or Mechanisms clearly differ, and where they are apparentl
anticipatory properties inherent in these action different, but can be explained as manifestations ofgles
selection and learning theories, and uses the Dynamic type of mechanism, and how these differences may be
Expectancy Model and its Computer implementation resolved into a Slngle, structured framework. Given the

SRS/E as a mechanism to conduct this discussion. range and diversity between individual animals and species,
there is a fine balance to be struck between highlgifipe
1 Introduction quantitative, descriptions, trivially refuted due to this

. . . . .. .__hatural variation - and untestable generality. This paper
The overall aim of this paper is to provide a un'fy'ngatempts such a balance

d_escr|pt|on to encompass and combme. five qlassmal and The five factor approach described here substantially
lhlghly |anL_1|_ehnt|aI theorr:esf_of r;atural z;cno.n Selsmﬁnig extends, details and revises the approach to anticipatory
earning. These are the five factor t eotpzes. ae learning and behavioral action selection introduced in
dominant place in theorizing during the“20entury and  wjigowski, 2003]. The approach will be developed in the
was ;upported by a wealth of met_|culously gathere ght of the Dynamic Expectancy Model(DEM)
experimental data, but there has been little or nongttéo [Witkowski, 1998, 2000, 2003] and its actual (C++)

provi_((jje a sinr?le fr.arr?e.work with which to rationally .omnter implementation SRS/E. The analysis in thismpape
consicer how they might interact. will be performed mainly at the level of the five tiac

The problem, in part, arises from the fact that thesg,gqries each of which is itself a digest of manynestar
theories have been treated as largely competitivémes o, harimental procedures. The paper will call on specific

with considerable animosity being generated betweep,,.oqyres where necessary, and illustrate issues with
proponents O.f the differing approaches, or, more often, Ayerence to the DEM and its implementation.
tacit isolationism between the different schoolthought. Section 2 provides a thumbnail sketch of each of thee fiv

Such isolationism is surprising, as it clear that irdiial ¢ o theories. Comprehensive descriptions of the fiv

animals will demonstrate_ a w_hole range of behavior_ heories can be found in any textbook of natural learnin
phenomena, each of which might be most satisfactoril eory (e.g. [Bower and Hilgard, 1981]). Section 3

described by one or another of the approaches, largely,gigers the interface between animal and its emvient,
depending on the circumstances the animal finds itself in 4 how issues of behavioral motivation might be

is also very apparent that no single approach explains allyyressed. Sections 4, 5 and 6 respectively build the
animal action selection behavior. arguments for the structural, behavioral and learning



components of the combined approach. Section @nds approach both inspired and continues to be a
reconstructs the factor theories in the light of ¢hesfundamental technique of problem solving and planning for
component parts, and emphasizes the role of the actiartificial intelligence ([Russell and Norvig, 1995], for

selection policy map, which may be either static orinstance). The Dynamic Expectancy Model (DEM)
dynamic. Section 8 describes an arbitration mechanisiiwitkowski, 1998; 2000; 2003] and the Anticipatory

between these policy maps, leading to final actiorClassifier System (ACS) model [Stoltzmaeh al, 2000]

expression. represent recent three-part cognitive models.
A fifth theoretical position, broadly characterizedtbyg
2 The Five Factor Theories termassociationisnfe.g. [Hebb, 1949]), concerns the direct

The first of the five factor theories takes the fooh associability and anticipation of stimuli following reyed

Stimulus-Response (S-R) Behaviorismhich holds  that pairing of activations. While of greater significanneother
action (the ‘response”) selection is determined by th@spects of animal modeling, this approach does not girectl

current sensory condition (the “stimulus”). Although tfirs incorporate an action component, and discussion ofllit wi

proposed in the final years of the™entury [Thorndike, be restricted here to a minor supporting role in themct

1898], the approach continues to find contemporary suppoFFIeCtion problem.

in the work of [Brooks, 1991; Bryson, 2000; and Maes, .
1991]. This behavior is not defined by degree. Thé Sense, Action and Valence
stimulus-response unit could be as apparently simple asFaor largely historical reasons sensations are wicgdgrred
low-level reflex, such as the blink of an eye in reggoto a to asstimuli in this body of literature and the actions or
puff of air. Alternatively, behavioral repertories of behaviors generated a®sponses This is not entirely
considerable complexity can be postulated from essentialkatisfactory, as it largely fails to capture the ramje
reactive models [Tyrrell, 1993; Tinbergen, 1951]. Suchinterpretations required by the five theories taken twget
behaviors are generally considered to be innate (gatigti Consequently, this paper will refer to the sense-derived
determined) to the individual. Learning in the behavioris component as sensory signaturer Sign and denote such
regime is reward based, strengthening or weakening thevents by the symbol S, sub-scripts will be used to
connection between stimulus and response. It may kbdifferentiate Signs were necessary. The philosophically
conjectured that not all such behaviors will be amknth  neutral termsense datamight also be employed for this
learning at the same rate, if at all. purpose (e.g. [Austin, 1962]). In the SRS/E model, S =

The second factor theorglassical conditioningwas  {0,1}.
proposed by Ivan Paviov (1849-1936) following Equally, the term “response” seems pejorative, and the
observations that some innate reflexes can be assdci more neutral termAction will be preferred, similarly
with an otherwise neutral stimulus by repeated pairingabbreviated to A. Each Action will have associateth
which will in turn elicit the reflex action. The prab@e is  an action cost ac, (in SRS/E, by definitionac > 1)
highly repeatable and is easily demonstrated acrossl@ wiindicating the time, effort or resource required to penfir
range of reflexes and species, and has been extensively Any Action may also be assigned an activation level,
modeled both mathematically and by implementation (e.gdetermined according to the rules presented later. Once
[Vogel et al.,, 2004], for recent review). activated, an Action becomes a candidatesf@ressionin

The third theorypperantor instrumental conditioning  which the Action is performed by the animal and may be
proposed by B.F. Skinner (1904-1990), who argued thasbserved or measured directly.
actions were not “elicited” by impinging sensory coratis, A Sign will be defined as a conjunction of detectable
but “emitted” by the animal in anticipation of a dedire conditions (or their negations, acting as inhibitory
reward outcome. The effect is also highly repeatablerundeonditions), typically drawn directly from the sensAsy
appropriate conditions, and it is clear that, given aablét Sign where all the conditions currently hold is saiché¢o
source of reward, an animal's (or indeed, a person’sjctive A Sign may be activated by some very specific set of
behavior can be modified (“shaped”) at will by judicious detected sensory conditions, or be active under a wittera
application of this principle. Whilst enormously influieit  of conditions, corresponding to highly differentiated or
in its time, only a relatively small number of compute generalized sensing.
models follow this approach (e.g. [Saksktaal, 1997], or Any Sign that is anticipated, but not active, is termed
Schmajuk [1994] implementing Mowrer’'s [1956] “two- sub-active Sub-activation is a distinct condition from full
factor” theory, incorporating both classical and operanactivation. It is important to distinguish the two, the
conditioning effects.) prediction of a Sign event is not equivalent to the adctua

The fourth theory, the “cognitive” model, proposed byevent, and they have different propagation properties.
E.C. Tolman [1932] describes a three-part basic cognitive Additionally, any Sign may assume a levelvalence
unit, which establishes the expectation or anticipatiba  (after [Tolman, 1932]), the extent to which that Sign has
specific stimulus following, and contingent on, an actiongoal like properties, indicating that it may give the
taken in the immediate context of another stimulus. Thappearance of driving or motivating the animal to dilcte
context stimulus and action provide the means to aclaieveaction selection behavior. Valence may be posityeal
desired and anticipated stimulus, the end. Tolmar@ans-  seeking or rewarding) or negative (initiating avoidance



behaviors or being aversive). A greater valence vaille between the sense and action parts. The (optional)Szign

be taken as more motivating, or rewarding, than ardess@ostulated as a mechanism for reinforcement learnimg), a

one. Some Signs will hold valence directly, some vias not required where learning across the connection

propagation to other Signs holding valence. (updatingw) is not observed. The conjunctive connective
As with activation and sub-activation, the valence an symbol ‘1T’ should be read as “co-incident with”.

sub-valence properties may also be propagated between In keeping with standard behaviorist modelimgwill

Signs under the conditions described in section 5. A Sigstand to indicate the strength,weight of the connection.

that is the direct source of valence is deesmitsfiedonce  This weight value will find application in selecting besm

it has become active, and it and the propagated chaibef candidate connections, and in considering reinforcement

valenced Signs will revert to their normal, unvalenctate learning. Traditionally, the strength of the stimulusl an

(unless there are multiple sources of direct valence). habituation mechanism for the action would also be
_ postulated ([Hull, 1943], for a comprehensive discussion of
4 The Forms of Connection these and related issues). Specifically the strength or

The anticipatory stance proposes that the principatteft likelihood of the response action will be modulated kg th
the five target theories can be adequately explained Byfrength of the stimulus Sign.
adopting a combination of three connection types, aatl th4 1 Explicitly Anticipatory Connection Types

their underlying function is to provide a temporally . i ,
predictive link between different Sign and Action Connection typeC2 notates a link between two Signs, and

components. While noting that the model described Isere jndicates that Sign;Santicipates or predicts the occurrence
highly abstracted, its biologically inspired backgroundof Sign $ within the specific time ranget in the future.
grounds it in the notion that, in nature, these alstimcs ~ This is indicated by the right facing arrow in the link
represent physical neural connections between pattseof Symbol “=”. The link has acorroboration value c,
animal’s nervous system and brain. These links, and su@psociated with it, indicating the reliability of that
properties as sub-activation and valence, represeffediction, based on continuing prior observation. A gene
conjectures (from experimental observation) about th&orroboration value update rule will be considered in

function of the brain that may be corroborated ontesf by ~ Section 6.1. _ _
further investigation. Thevalence valugv, of S is a function of the current

With the exception of a connection of ty@l, the Vvalue of the valence value ob,Sand is hence associated

abstract link types proposed below are bi-directionalwith the left facing part of the link. Where the vatue is
Propagation effects across these links are asymmatri, near zero, the link is essentially symmetricp&edicts $as
these properties are discussed in section 5. much as & predicts & This is the classical Hebbian
This is not intended to imply that there are “bi- formulation. Wheret is greater than zero (negative times
directional neurons”, only that the structures thatstwret ~ have no interpretation in this context), the linkassidered
these linking elements have a complexity suited to thle ta asymmetric. The assertion that[8edicts $is no indicator
Where the animal does not possess a link or typelofdim  that S also predicts S As the relationship between the two
the basis of its genetic makeup) it will be congenitallySigns is not necessarily causal, the animal may hatd b
incapable of displaying a corresponding class of actiofypotheses simultaneously and independently, as separate
selection behavior or learning. Of course, thereraamy  C2 connections.
other possible connection formats between arbitrary TheC3 connection differs fronC2 by the addition of an
combinations of Signs and Actions; but it will be arguedinstrumental Action on the left hand side. The predictb

that these are sufficient to explain the principal pragedf Sz is now contingent on the simultaneous activationotii b

the five factor theorems. S: and the action A. The interpretation of the corrakion
, w value ¢ and the temporal offsétand ranger remain the
Connection type C1 (SA)  § "w: (ALS) same. The transfer of valengeto S needs to now be a
Connection type C2 (SS): S “*Suw S function_ of both $ and the apti_on cc_Js_t of A. This
connection can be read as “the Signs&nticipated at time
Connection type C3 (SAS) (S UA) "Su S t in the future as a consequence of performing the aétion

in the context of 3. Equally, it may serve as an
instrumental operator: “to achieve & timex in the future,
achieve g at timex-t, and perform action A”. Such links
also take the form of independent hypotheses, givingaise
ispecific predictions that may be corroborated.

While connections of typ&1l have only an implicit
anticipatory role, connection typ€2 andC3 are both to be
interpreted as making explicit anticipatory predictions.

The typeC1l connection (“SA”) is a rendition of the
standard S-R behaviorist mechanism, with a forwarg on
link from an antecedent sensory condition initiating &b .
least predisposing the animal to initiate) the actignag 5 The Forms of Propagation
represented by the link>". This symbol should definitely The five “rules of propagation” presented in this section
not be associated with logical implication, its intetation  encapsulate the operations on the three connectios type
is causal not truth preserving. The symbalill indicate  with regard to the five factor theories. The rules roefji)
temporal delay (with rangett”), which may be introduced when an Action becomes a candidate for expression, (ii)



when a Sign will become sub-activated, (iii) when apossible future events, analogous to the more convehtion
prediction will be made, and (iv) when a Sign will beeom notion of a memory of past events. Under this fornmaorat
valenced by propagation. predictions are created as a result of full activatibthe

In the semi-formal notation adopted below active(),Sign and actual expression of the Action, and are therefo
sub_active(), expressed(), valenced() and sub_valenced(pn-propagating. Predictions are made in response to direct
may be treated as predicate tests on the appropriatetgropesense and action and are employed in the corroboration
of the Sign or Action. Thus active(Swnill be asserted if the process (section 6.1). This process is distinct from sub-
Sign denoted by Ss active. The disjunction(™ should be  activation, which is propagating, but non-corroborating.
read conventionally as either or both, the conjunctia’ RuleP4 indicates the spread of valence backwards along
should be interpreted as in section 4. On the right higled s chains of anticipatory links. The sub_valence() proiess
of the rule, activate(), predict() and sub_valence() shoal shown in different forms for th€2 (SS) andC3 (SAS)
taken as “internal actions”, operations taken to chahge links, reflecting the discountingd) process mentioned

state or status of the item(s) indicated. earlier. As an exemplar, in the SRS/E model valence is
: P transferred from Sto § across th€3 link according to the
Rule P1Direct Activation: ; : :
F(L)Jreanycir?SCA) ﬁn“kla on generic formulationv(S;) :=v(S,) * (c/ad(A)). By learning
if (active(a)’Dsub active(9) rule L2 andL3 (section 6.1) 0 < < 1, and agc(A) = 1.0

(by definition), therefore/(S;) < v(S;). Valence propagates

th tivate(A . . ) . : ;
en activate(An) preferentially across high confidence links with “eagi/&.

Rule P2 Sign Anticipation: lower cost value) Actions. Transfer is straightfordvand

For anyC2 (SS) link, . has proved robust in operation in the DEM and SRS/E.
if (active(§) [ sub_active(§) Rule P5 indicates the activation of any Action A where
then sub_activeep the antecedent Sign & both active and valenced. As with

Rule P3 Prediction: rule P1, many Actions may be affected. The one associated

For anyC2 (SS) link, with the highest overall;Sralence value is selected.
if(active(S)) The choice process by which the various activated
then predict(§ t£T) Actions give rise to the action to be selected foerbv

For anyC3 (SAS) link, expression is the subject of section 8. For a simpleo8HR
if(active(S) O expressed(A)) (rule P1) system, this might be summarized as selecting the
then predict(§ t+1) action associated with the highest weight value, butethe

must be a balance between the actions activated &P tul
and those by5. Note here that the valence valigefers

to the valence value of the Sign holding direct valditoe
top-goa), whose value has been propagated to the SAS
link, not that of either Sor S of the C3 (SAS) link in
question.

Rule P4 Valence transfer:

For anyC2 (SS) link,
if(valenced(9) O sub_valencedg)
then sub_valence(S(\(S,), d))

For anyC3 (SAS) link,
if(valenced(9) O sub_valencedg)
then sub_valence(S(\(S,), ¢, ac(A)))

Rule P5 Valenced activation:
For anyC3 (SAS) link,

6 The Forms of Learning

This section describes the conditions under which legrn
. . will take place. In the anticipatory action selectimodel
Lféz::}u;gé%ﬁ)ﬂg(z%_valenced@ prese_nt_ed, the net effect of learning is to modifyAbgons
o or activities to be expressed (and so the observabbeviue
Rule P1 expresses the standard S-R behaviorist rulesf the animal) in response to a particular Sign. Ed¢heo
Only in the simplest of animals would the activatidith®  fiye factor theories takes a particular stance ométare of
action A lead to the direct overt expression of theoaabr learning.
activity. As there is no assumption that Signs are nliytua | the first,reward based learningearning is taken to
exclusive, many actions may become candidates fafe a consequence of the animal encountering a valenced
expression. The simplest strategy involves selecting &tyation following an action — one that is charasteias
‘winner” based on the weightings and putting that actionygyantageous/disadvantageous and thus interpreted as
forward to the effector system for external expression. “rewarding” (or not) to the animal. This is frequently
Rule P2 allows for the propagation of sub-activation. referred to as reinforcement learning. There are de wi
The effect is instantaneous, notifying and allowing thgange of reinforcement learning methods, so a generic
animal to modify its action selection strategy imméalia approach will be adopted here.
in anticipation of a possible future event. Evidencenfro In the secondanticipatory learning “reward” is derived
second order classical conditioning studies would suggegfom the success or otherwise of the individual predistio
that sub-activation propagates poorly (i.e. is heavilynade by the propagation rules given in section 5. In one
discounted). sense, the use of link typ®@3, as described here, can be

to be recorded. This calls for a limited form of meynof



hold. In theCL1 link, the role of anticipation in the learning update rules is to maintain a form of “running average”

process is implicit but is made explicit in t88 type link. more strongly reflecting recent outcomes, with older
Learning rule L1 (the reinforcement rule): outcomes becoming successively discounted (tending to
For anyC1 (SA) link zero contribution). The greater the valuesuohnd 3, the.
if (active(A) O (valence($) O sub_valence(s)) more aggressively recent events are tracked. The particul
then update, o) settings of these values are specific to the individoahal.

Where no prediction was made by a rufe,remains
hnchanged regardless of the occurrence of Tis is
. . ; : consistent with the notion that a rule is only resiale for
provides valence, then the connection weighwill be o icting an event under the exact conditions it defines.
updated asymptotically by some factar Several well The key issue here is that anticipatory learning is
established weight update strategies are available, such & erytime Every prediction made, regardless of its cause,
Watkins’ Q-learning and Sutton’stemporal differences jniiates learning. Learning is independent of valenced
(TD) method, see [Sutton and Barto, 1998] fpr review. INayard (this is the phenomenon détent learning
each the net effect is to increase or decreasekiithbod  \wjitkowski, 1998], [Thistlethwaite, 1951]). Anticipatory
that the link in question will be selected for expression  |ins are measured relative to their predictive abilitgt
the future. their usefulness. Correct anticipation is its own mela
L ; Such anticipatory reward is generated locally to @2eor
6.1 Methods of Ant|C|pat-ory Learning ) i C3 link, ar?d isyindependegt of all others){ Further, if
A central tenet of the anticipatory stance describethis  cjrcumstances change, each link adjusts automaticagto
paper is that certain connective links in the model mak%revailing circumstances based on recent predictive
explicit predictions wher! z_ictivateq. Recall that pmpag‘_it.ioexperience. Anticipation may also be combined with
rule P3 creates explicit predictions about specific,\glence, to preferentially focus the learning process o
detectable, events that are anticipated to occur ifuthee, Signs that have, or have had, valence (e.gvétience Level
within a specific range of times (denoted tr). The  pre-Biastechnique [Witkowski, 1998]).
ability to form predictions has a profound impact on the \here an event is unpredicted by any link, this is taken
animal's choice for learning strategies. This sectiongs a cue to establish a new link between the unpredicted
considers the role played by the ability to make thos@yent (as § and some recent recently active event &S

This is a generic form of the standard reinforcemen
rule. If the action is associated with any sensathoet

predictions. timet, ruleL4. Where aC3 link is created some expressed

Learning rule L2 (anticipatory corroboration) : Action A contemporary with the new & also implicated.

For any C2 O C3) link Again the choice of how many new links are formed, and
if(predicted(S, -t+1) O active(3)) the range of values farandt are specific to the individual
then updatey o) animal. Without anya-priori indication as to which new

links might be effective, higher learning rates can be
achieved by forming many links, and then allowing leagni
rulesL2 andL3 separate the effective from the ineffective.
The key issue here is that link learning may be invoked
everytime a novel or unpredicted Sign is detected. Legrnin

Learning rule L3 (anticipatory dis-corroboration):
For any C2 0 C3) link,

if(predicted($, -t£1) O -active(3))

then updatey, B)

Learning rule L4 (anticipatory link formation) : may proceed frontabula rasa and is rapid while much is
if(-predicted(S)). novel. In a restricted environment, link learning slthw as
then create_SAS_link(SA,, S, t, T) more is predicted, but resume if circumstances change.
or create_SS_link(SS,, t, 1) No rule for link removal is considered here, but hasbee

anticipatory learning, and are applicable to lghandC3 [ZOQO] consider_s the rationale for retaining links eveerwh
link types. Three conditions are significant, where ah€ir corroboration values fall to very low valueased on
prediction has been made, and the predicted event did occglfidence  from — behavioral  extinction  experiments
at the expected time (learning rule2). The link is [Blackman, 1974].
considered corroborated and is strengthened. Where _a . .
prediction is made, but the event does not occur (legrnin/  EXplaining the Five Factors
rule L3), the link is considered dis-corroborated andThijs section returns to the action selection fathaories
weakened. Lastly, where an event occurs, but it was nejutlined in section 2, and will discuss them in turn imie
predicted at all (learning rulet). of the link types, propagation rules and learning rules
The SRS/E computer implementation employs theyresented and discussed in sections 4, 5 and 6. As
simple but robust, effective and ubiquitous update cuke  previously indicated, each theory supports and is supported
ct+a (1<), where (< a < 1) forL2, and the generic update by an (often substantial) body of experimental evidebhat,
rulec :=c-B(c), where (0 B < 1), is again simple, effective that each theory in turn fails to capture and explain the
and robust forL3. Both update functions are asymptotic overall range of action selection behaviors displdyedny
towards 1.0 and zero respectively. The net effect afethe particular animal or species. The conceptually simpler



approaches are covered by single links and rules, otheusing the standard procedurs: iow evokes the CR. This
require a combination of forms, and yet others perhapss as indicated by the propagation of sub-activatioRZn

require re-interpretation in the light of this formudmti Overall, the classical condition reflex has littlepact
) o on the functioning of the policy map of which its refis a
7.1 Stimulus-Response Behaviorism part. Indeed the conditioned reflex, while widespread and

S-R Behaviorism holds that all, or the majorityaifserved undeniable, could be thought of as something of a curiosity
and intelligent behavior can be ascribed to an inma&e, in learning terms (B.F. Skinner reportedly held thiswie
programmed, pairing of sense data driven stimuli and preédowever, it provides direct, if not unequivocal, evidefoce
defined actions. several of the rule types presented in this paper.

7.1.1 Static Policy Maps 7.3 Operant Conditioning

With no embellishments, S-R behaviorism is reduced t@perant conditioning shapes the overt behavior of anan
connection type Cl and propagation typePl The by pairing the actions it takes to the delivery of nelvdhe
underlying assumption that all these strategies adopt is &xperimenter need only wait for the desired action aed th
tailor the behavior of the organism, such that thas at  present the reward directly. This is typified by Bkinner
one point sufficiently change the organism or itsbox apparatus, in which the subject animal (typically a
environment such that the next stage in any complekungry rat) is trained to press a lever to obtain deligéa
sequence of actions becomes indicated. We may reffeisto food pellet reward. We interpret this link as an anticipa
as astatic policy mapThe DEM records these connectionsone. The action anticipates the sensory conditiondffo
in a list, effectively ordered by the weight parameter  which, as the rat is hungry, holds valence. Furtheg, th
Recall that the weighting valuez may be modified by experimenter might present the food only when the acsion
reinforcement learning [Sutton and Barto, 1998]. taken in some circumstances, not others. The animal’s
Given a sufficient set of these reactive behavitis, behavior becomeshapedo those particular circumstances.
overall effect can be to generate exceptionally robusThese are the conditions for t88 connection type. This is
behavioral strategies, apparently goal seeking, in that t equivalent to Catania’s [1988] notion of an operdmee-
actually independent elements of sense, action and actysart contingencyof “stimulus - response - consequence”.
outcome combinations, inexorably leads to food, or wvate  The association between lever;)(Spressing (A) and
or shelter, or a mate [Bryson, 2000; Maes, 1991; Tinbergefipod (S) is established as@3 (SAS) link byL4. When the
1951; Tyrrell, 1993]. action is preformed in anticipation of,,Sthe link is
Such strategies can appear remarkably persistent, anghintained, or not, by2 andL3 according to the outcome
when unsuccessful, persistently inept. Any apparendf the prediction madeP@). While food ($) retains
anticipatory ability in a fixed S-R strategy is nottbe part valence, and the rat is at the lever, the rat wilsprthe
of the individual, but rather a property of the speciea as lever P5), and in the absence of any alternative, continue to
whole. With sufficient natural diversity in this group do so. Action selection is now firmly contingent oottb
strategy, it can be robust against moderate changésin tencountered Sign and prevailing valence.
environment, at the expense of any individuals not stited Due to valence transferP4) such contingencies

the changed conditions. propagate. Were the rat to be in the box, but not detiee,
. L and some movementyAwould take to rat from its current
7.2 Classical Conditioning location $ to the lever § then theC3 contingency

Reactive behaviorism relies only on the direct agtiof the  (Sc0Ay) 5 S would provide propagated valence toabid

Sign § to activate A, this is thenconditioned response result in A, being activated for expression. Once the rat is
(UR) to theunconditioned stimulu@JS): the innate reflex. satiated, the propagation of valence collapses and the
As reflexes are typically unconditionally expressed (i.eexpression of these behaviors will cease. This teansf
have high values ofy) the US invariably evokes the UR. valence may be used to create long chains of behaviors
RuleP1 allows for sub-activation of the, Sign. Therefore, (such as in preparing animals for film performances) by
if an anticipatoryC2 connection is established between abuilding the sequence back one step at a time.

Sign, say g and the US Sign;Sthen activation of Swill Propagation ruleP4 also allows for secondary or
sub-activate § and in turn evoke A, theonditioned derived reinforcemengffects ([Bower and Hilgard, 1981],
respons€gCR). p.184), in which normally non-reinforcin@2 links may be

Note the anticipatory nature of the CS/US pairing [Bart paired with (or even chained from) an innately valence
and Sutton, 1982], where the CS must precede the US byoae.
short delay (typically <1s). The degree to which then@s
evoke CR depends on the history of anticipatory pairifigs o/ -4 Tolman’s Expectancy Model
Sx and &, and is dynamic according to that history, byCatania’s [1988] description of the operant three-part
learning rulesL2 and L3, the rates depending on the contingency, described in the light of this formulatiooks
function ofa andp. If the link between CS and US is to be suspiciously like Tolman’s [1938ign-Gestalt Expectangy
created dynamically, then learning rilé is invoked. The an explicitly anticipatory three-part Sign-Action-Signe(i
higher order conditioning procedure allows a second C3) link. Skinner, as a staunch “old-school” behaviorist
neutral Sign (§) to be conditioned to the existing CS)XS  would definitely not have approved! Where the Skinner box



investigates the properties of the individ@8 link, which  and G still valenced, but B now blocked, the DPM will st
may be explored in detail under a variety of differentindicate a path via B (the blockage is undiscovered)gecent
schedules, Tolman’s work primarily used mazes. Rats, iAs the intended (up) action to B now fails, the DPM@lt
particular, learn mazes easily, recognize locatioaslile to prefer the apparently longer path via A, and the
and are soon motivated to run mazes to food or watenwh observable behavior of the animat will abruptly chaage
hungry or thirsty. Mazes are also convenientnew DPM is constructed and a new path is preferred, right.
experimentally, as they may be created with any desired

pattern or complexity.

Choice points and other locations in the maze may b
represented as Signs (a rat may only be in one locatio
once, though it may be mistaken as to which one), an o —
traversal between them as identifiable Actions. fver T R e N N
location-move-location transition may be represeiateen Figure 1: Rapid changes in the Dynamic Policy Map
anticipatoryC3 connection. Recall that these links are only
hypotheses - errors, or imposed changes to the maze &e Combining Static and Dynamic Policy Maps
accommodated by the learning rule L3 andL4. For any animal that displays all the forms of action

_Itis now easy to see that, placed in a maze, thean  gejection, it becomes essential to integrate thectsffof
will learn the structure as a numberG8 connections with ;1 ote behaviour, the static policy map, and the valenc
or without (i._e. latently) the presence of valence&warq. driven dynamic policy map. The dynamic policy map is
Novel I_ocat|_ons encountered by “’?‘”dom (or gL_"ded)cransient, and must interleave with the largely permane
exploration invokelL4, and the confidence value is  gatic policy map. The valence value of the originairee
updated each time a Iocat|on_ Is revisited, Lidy or L3. . (v from section 5, the top-goal) is (numerically) equated t
Once encountered, food may impart valence to a Iocano%ec1 connection weight valuesy. While v’ > active(),

(by P4). actions are selected only from the DPM. If at anynpoi
7.4.1 Dynamic Policy Maps active(n) > v’, DPM.seqution is suspended, and actions are
taken from the static policy. Once completed or abardione
control reverts to the DPM.

This allows for high-priority activities, such as prextat
avoidance, to invariably take precedence over goal-sgekin
activities. As the valence of the goal task increaties
chance of it being interrupted in this way decreaseer Af

If at any time a location becomes directly or indiec
linked to a source of valence (i.e. food to a hungry thi$
valence will propagate across all t88 (and indeedC2)
links to establish @ynamic policy magDPM). This takes
the form of a graph of all reachable Signs. In SR8I&is
considered as form of a modified breadth first seanch, i

which each Sian node is assianed the highest propa atag interruption from static actions, valenced actalecion
gn n . ar ghest propagati sumes, The DPM must be reconstructed, as the animal’s
valence value. Again this generic process, as implemente

in SRS/E, is computationally fast and robust in openatio Situation will have been changed, and the static atioay

J s ) .also have given rise to learned changes — a case of
Once created, each Sign implicated in the DPM i verytime learning.

associated with a single Action from the appropriage : . " .
. : ) Static policy maps may also be partitioned. Tinburgen
link, the one on the highest value valence path, aites [1951] proposed the use of hierarchidahate Releaser

valence value, indicating its rank in the policy map. Given Mechanisms(IRM) to achieve this. In each case, the

this one to one,_ordered mapping, an action may bammc.releasing enabler should take its place in the statikimg,
from the DPM in a manner exactly analogous to a static

olicy man. In this respect. the behavior chaininar with all its subsidiary SR connections simultaneously
policy map. ; pect, griepe enabled, but then individually ranked within that grouping.
described in section 7.3 looks to be no more than amptt

to manipulate the naturally constructed dynamic policy toSeIeCtlon may then proceed as for the Dynamic PM'W
prefer one chain of actions to all the others example. _Note f[hat in the DEM valence setting 'S“"%‘h
The dynamic policy map must be recom.puted each timg> 2 static policy map activity, a type of Action. this .
there is a change in valence or any learning evémsta 80nte>§t the IRM rgleasmg e_naplers start o IQOk’ n
place (i.e. almost everytime). Sometimes this hgte I evolutionary terms, like the beginnings of valenced stem
effect on the observable behavior, but sometimes ehas :
dramatic and immediate effect, with the animal revey #is 9 Summary and Conclusions
path or adopting some completely new activity. This paper has presented a high-level view of the action
Figure 1 illustrates this (from [Witkowski, 2000]). The selection properties of five central theories of abraand
animat (circle) is in a grid maze, and each square remies learning. Each of these theories holds that actioes a
a location Sign, and the arrows indicate the currerityol Sselected on the basis of prevailing sensory conditibhey
action in that square. The animat was allowed to exphare do not agree on how this occurs, yet it is clearitiraty be
maze shown on the left completely by selecting randondlemonstrated experimentally that each theory accounts fo
actions, but without any source of valence (i.e. gpn only a part of an individual animal’s behavioral repeeto
When G is given valence, the animat builds a DPM an@nd that what the experimenter sees is at least [iarlyo
takes the shortest path via B. With the animat retuitaés,  the design of their experiments. The paper has developed a



set of five propagation rules and four learning strategiefCatania, 1988] Catania, A.C. The Operant Behaviorism of
over three connection types to encapsulate and uniégthe B.F. Skinner, in: Catania, A.C. and Harnad, S. (etlkg
otherwise apparently disparate approaches. Selection of BehavipCambridge University Press, pages 3-
This has lead to the notion of different types of polic 8, 1988 o _

map operating within the animal, from static to dynamic[Hebb, 1949] Hebb, D.Grhe Organization of Behaviodohn
and how they may be combined to exhibit apparently Wiley& Sons, 1949 _ _
different behavioral phenomena under the variety oH‘jal\lbplleg‘g’gm"':’"’Crc(:)-ﬂsp”lng"ges of Behavior New York:
circumstances the animal may encounter, in naturéeor t ) ury- ' . .
laboratory. The Dynamic Expectancy Model has beergMgzsl;éclt%?]l]iya;ﬁ' i.rt'i?‘\ic?;lttocn;;gt)ul:iig‘ha:zltsmcfg:]fBegswor
S{:g&gﬁgnas an implemented (SRS/E) framework for this Simulation of Adaptive Behavior (SAB)ages 238-246,

h . be d hi . has lai 1991
Much remains to be done. This overview paper has a'g\/lowrer, 1956] Mowrer, O.H. Two-factor Learning Theory
a ground plan, but the devil remains in the detail. Ther

: h Reconsidered, with Special Reference to Secondary
exists a truly vast back catalogue of experimental data fro  Reinforcement and the Concept of Hatfsychological

the last 100 years of investigations that might be itedisn Review63:114-128, 1956

the light of this framework. Two substantive questiongRussell and Norvig, 1995] Russell, S. and NorvigA#ficial
remain: (i) whether the links, propagation and learniigsr Intelligence: A Modern ApproagciPrentice Hall, 1995.
presented sufficiently describe the five factor theprend  [Saksidaet al, 1997] Saksida, L.M., Raymond, S.M. and
(i) whether, even taken together as a whole, thefietor Touretzky, D.S. Shaping Robot Behavior Using Principles
theories are sufficient to explain all animal behavior from Instrumental ConditioningRobotics and Autonomous

On the first, the theories are based on these expatstne ~ Systems22-3/4:231-249, 1997
and much falls into place as a consequence. On thedsecofSchmajuk, 1994] Schmajuk, N.A. Behavioral Dynamics of
it seems unlikely - as evolutionary pressure has lead to Escape and Avoidance: A Neural Network Approagf,
incredibly diverse behavior patterns and mechanisms. Int. Conf. on Simulation of Adaptive Behavior (SAB-3)
Identifying these experimentally observed exceptions will _P2ges 118-127, 1994
serve to refine the multi-factor approach presentedjiga  [Stoltzmann et al, 2000] Stolzmann, W., Butz, M.V.,
in time to a better, more encompassing, solution. Hoffmann, J.  and Goldberg, D.E. First ﬁ%ognmve
Even though one can observe classical and operant gap?b'“t'eé n Ith_e An?c’&pdatory CE‘SE'f'e_r Syssf , Int
conditioning, and means-ends behavior in humans, it is zg;_ég%n 20'8161 ation o aptive Behavior (SAB{fges
ak_)undantly cllear than even ta_ken together the f'v.rmCt JSutton and Barto, 1998] Sutton, R.S. and Barto, A.G.
fail to explain human behavior to a very considerabl

! X Reinforcement Learning: An Introductio@ambridge, MA:
extent. It is vastly apparent that human (and possiblgrot MIT Press. 1998

primate) activities are not solely, or even predomilyan [Thistlethwaite, 1951] Thistlethwaite, D. A Critical Review of
driven directly by immediately prevailing and observable | atent Learning and Related Experimersychological
circumstances. However, one might see these five Bulletin, 48-2:97-129, 1951

mechanisms as both a foundation for, and a bridge &o, tTinbergen, 1951] Tinbergen, Nhe Study of InstincOxford:
evolutionary development of higher-level cognitive Clarendon Press, 1951

functions. [Thorndike, 1898] Thorndike, E.L. Animal Intelligence: An
Experimental Study of the Associative Processes in
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