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Abstract.

How can we exped an A-life Agent to lean how to perform tasks when it isnot
told what those tasks are, and it is not provided any indicaion or feedbad asto
its performance? This is at the heat of the unsupervised leaning problem. If
the Agent were @le to lean in this manner, how could spedfic tasks be
communicated to it? This is the Goal setting problem. Having been set a task,
how would the Agent go about choosing things to do that will lea it to perform
those tasks in an orderly manner? This is at the heat of the adion seledion
problem.

1 Introduction

This paper presents an ingenious approad to solving these three d¢osely related
problems, unsupervised leaning, goal setting and adion seledion, for a dassof A-
life Agents. The method presented, the Dynamic Expedancy Model (DEM), builds on
the “sensori-motor” ([9]), “intermediate level cognitive” model ([3]), or “cognitive
adion theory” ([11]) approaches. Eadh uses a threepart representation for
“knowledge” within the Agent — the “Schema”. Such schema are formulated as
“context — adion — outcome” triples. The method presented here overcomes me
significant technicd problems of these ealier models. In particular we present
considerably improved strategies for the aedion d new schema-like objeds and a
robust and flexible mechanism for adion seledion.

This paper builds on the conjedure that the proper interpretation of this triple is
that of an expedation, and that the strength of the connedion between context and
adion, and the outcome should depend orly onthe predictive performance of the unit.
A conventional view would hald that the strength of the connedion should be related
to any goal or task spedfic “desirability” of the outcome. In the DEM these
expedation triples are referred to as p-hypatheses. So cdled becaise eab isa “micro
observation” abou the Agent and its world that can be aeded, verified



(“corroborated”) and used by the DEM. By adopting the predictive view strength
changes can be made internally, and task independently, just by testing whether the
predicted event did or did na occur, independently of reward or reliance on an
external agent to indicate crredness Strength changes can be gplied immediately
the prediction is corroborated, and are dways attributed to the spedfic py-hypothesis
that made the prediction. This leaves the p-hypothesis uncommitted to any particular
goal; leaning is not task direded. In this manner the unsupervised leaning problem
is addressed. Predictionisused in two waysto lean. First to corroborate p-hypotheses
—tactical learning, and seand, by deteding urexpeded events, to trigger the credion
of new p-hypotheses — grategic learning. This ability to lean in the ésence of
motivationis closely related to the latent learning phenomena, ([6], [10]).

From time to time the Agent will be cdled upon to perform certain tasks. By
asciating a degree of motivation to any particular outcome the Agent is sgnalled
that it shoud try and achieve that outcome. In this manner, the goal setting problem is
addres=d.

There may be many possble chaices of context and adion that will | ead to the
desired oucome. The Agent may seled amongst these primarily on the basis of the
corroboration between these comporents. Where no adion may be selected becaise
nore of the required contexts are available, then, as context and oucome are
uniformly represented, the Agent may chain p-hypotheses to form a “policy map” of
options where p-hypothesis contexts match the airrent circumstances. This chaining
process is referred to as spreading activation ([8], [10]) in the DEM. The DEM
provides a uniform measure (the policy value) which allows the Agent to seled
between competing aternatives for seledion. In this manner the adion seledion
problem is addressed.

Action seledion and leaning models based on Reinforcement Leaning ([7], [13],
[16]) propagate the effeds of occasiona reward badkward to rank sense-ad pairings
in the form of a “palicy map” according to iteratively developed estimates of future
reward. Neural networks provide a sensed input to output mapping function which
may be refined by a variety of well known leaning methods ([5], [14]). Genetic
Leaning algorithms rank and refine sets of condition-adion rules acarding to some
“fitness function” (past payoff in the cae of [4]). Clasdfier Systems ([1], [10])
combine the notion of propagating the dfeds of occasiona reward, using a “bucket-
brigade” method, for behavior seledion with a genetic dgorithm approach to creae
new clasdfier seledion elements. Alternatively, adion seledion may be pre-defined,
with nolittl e or no learning component ([2], [8] and [15] for auseful review).

The primary purpose of this paper is to describe and define the Dynamic
Expedancy Model mechanism, and the next sedions provide adescription of the
individual processes that comprise the DEM. Each processis performed orce in an
extended “sense, corroborate, evaluate goals, creae policy map, ad, predict, lean”
cycle. All the adivities of the Agent are encapsulated into this cycle, which repeds ad
infinitum. The paper concludes with a simple, but ill ustrative, example of the DEM in
operation, demonstrating both latent leaning and its ability to respond rapidly to
changing motivations, followed by some discussgon.



2 p-Hypotheses, Signsand Actions - Making Predictions

All working information in the DEM is held in five main “Lists’, the Hypothesis
List, Sign List, Action List, Goal List and the Prediction Listl. During ead cycle the
system tests the sensory apparatus of the Agent and every element of ead list,
modifying List and List elements (and seleds an adion to perform) according to the
processes described next.

All p-hypotheses known to the DEM at any time ae retained in the Hypothesis
List (abbreviated to ). The form of the p-hypaothesis (i Wl H) is:

W Y0 - ¢ (egn. 1)

Each prhypothesis oud be read as an expedation of the form “performing the
adion ovin the context of § predicts the occurrence of the condition ¢’ at time t in
the future”. The time t is bradketed by +t, forming a range a times to generalise the
prediction in the temporal domain (t >> 1) and to overcome the effeds of sensor
sampling aliasing. The overall predictive aility for ead rhypothess, the strength of
the predictive conredion “ -” is recorded in a numeric variable, the corroboration
measure (C,).

The ontext (&) and oucome (&) terms in egn. 1 are Sgns drawn from the Sign
List (abbreviated S, thus ¢ 0 S, ° 0 S). Signs both define and detedt situations that
can berecognised by the Model. Signs are derived from, and form the interfaceto the
sensory apparatus available to a physicd Agent. Signs are compound items,
conjunctions of elemental sensory items (“Tokens’). At ead cycle in the execution of
the dgorithm each Sign is either deteded or is absent and so evaluates to active or
inactive for that cycle. All adive Signsfor a g/cle ae held onthe Active Sign List $¥,
asubset of S. The first time aToken is encountered the DEM automaticdly credes a
Sign (containing only that Token) and adds it to the Sign List. New Signs are dso
appended to a working list §. This list drives the structural leaning process
Tokens, Signs and adions have no a-priori meaning to the learning medcanism in the
Model, and may be named arbitrarily to suit experimenter or user.

As a speda case Signs will equate diredly to a “State”, a unique situation
deteded reliably by the Sign. A Sign may also equate to a “partially observed state”
(P.O. State), a unique situation unreliably deteded by the Sign. Equally, a Sign may
just represent a mlledion of sensory conditions avail able to the Agent, from which it
must crege predictions of increasing reliability and repeaability. This notion of
“State” is useful when evaluating the model formally, but it is a poa metaphor for a
redistic agent problem. The latter case dlows Signs to ad as abstradions. Adding
tokens to a Sign makes it more spedfic; deleting them makes it more generally

1 A note on notation. Eadh o the lists is denoted by asingle, upper case, cdli graphic letter
(# (Hypothesis), S (Sign), A (Action), G (Goal) and P (Prediction)). Individual elements are
denoted by lower case letters (h & a; grand p respedively). Sub-sets of lists, and individual
elements that must be identified acoss $eps or cycles are indicated by superscripts (e.g. $¥).
The symbol ‘00’ may be read as “member of”, ‘0’ as “union of”, ‘n’ as “intersedion of” and
‘00 as“concurrently with”. Other symbols are explained asthey are encountered.



applicable. In these drcumstances we would exped the formation of many
“candidate” p-hypotheses to be aeaed, verified and possbly discarded before a
viable Hypothesis List is formed.

Actions, (a; w0 A, the Action List) define the adiviti es the Agent may perform.
Where Signs defined the interfaceto the sensory apparatus, adions conred the DEM
to the Agent’s physicd aduators. Seleded adions are placed orto the A* (adive)
sub-list. Every adion v has asciated with it an action cost. The adion cost

measure indicates the relative dfort that will be required to complete the adion.
Action costs may be expressed in any units (such as elapsed time or energy expended)

that may be determined and consistently applied acdoss all the dements of A. The

adion cost measure will be used in the “cost estimation” process for goa direded
adion seledion. The DEM aso maintains a memory of recent adivations and their

associated timings for both Signs (from $% and adions (from A%). Information held
on these activation traces is used by the structural leaning component to construct
new p-hypotheses.

A prhypothesisis deamed adive (and so placed on ¥ whenever bath its context
Sign (&) and its adion (@) are adive simultaneously, (¢ 0 S* 0 a 0 A%). A new
prediction p is creded and added to the Prediction List P for every instance of an

adivated prhypothesis. Note in particular that this medchanism is invoked for al p-
hypaheses that med these aiteria and that a prediction records threeitems. First the

identity of the Sign predicted (&, ' from the adive p-hypothesis). Second the time
(derived from t, egn. 1, and the current time) that the Sign is predicted to occur and
third the identity of the p-hypahesis that made the prediction (W). Elements of the
Prediction List are adive (and so placel on £* when the time dement recorded

matches the aurrent time within the bounds defined by 1. The presence of adive
predictions drives the mrrobaration process

3 Corroboration - Tactical Learning

For ead adive prediction, the wrroboration measure (C,) of the p-hypothesis
resporsible for the prediction (W) is modified according to:
Cm = Cm + a(l _Cm) (eqn 2)
where the prediction was suiccessul (that is, when ¢ O S*, ¢ being the Sign
recorded at the time of making the prediction), and
C.=C,- B(C,) (eqn. 3)
where the prediction was unsuccessul ($ O S¥). Active predictions are discarded
from P oncethis dep is complete.
The positive reinforcement rate, a (0 < o < 1), defines the rate & which successul

predictions will strengthen C_. Similarly, the extinction rate, B (0< B < 1), defines the
rate & which C_ will be weégkened by failed predictions. Where no prediction was
made the value of C_ remains unchanged. Sequences of successul (or unsuccesgul)



predictions give rise to the famili ar negatively acceerating leaning curve, the values
being normalized such that C_, rises asymptoticdly toward 1.0 (or fallstoward 0.0).

4 p-Hypothesis Acquisition - Structural Learning

Prediction, or rather the failure to predict an event, drives the structural leaning
comporent of the DEM, which is resporsible for forming rew p-hypotheses. The
opportunity to creae new p-hypothesesisindicaed by appeaancefor the first time of
a previousy urknown (“novel”) Sign a by the gpeaance of a known bu
unpredicted (“unexpeded”’) Sign. New, unknown, Signs trigger the creation by
novelty method, recdl that the first occurrence of a previously unknown Sign is
recorded in $™ spedficdly to invoke this leaning method. The appeaance of an
unpredicted, but previously known, Sign invokes the creation by unexpected event
method Unexpeded Signs are detected by comparing the adive Prediction List to the
adive Sign List and applying the method to the unpredicted residue (S*- (P* n S¥).

In either method a new p-hypothesis is constructed from the novel or unpredicted
Signas ‘¢”, and a Sign (§) and adion (@) drawn respedively from the recorded
adivation traceof values in the Sign and Resporse Lists. The timing relationship (t
and hence 1 in egn. 1) is derived from their relative postions in the respedive
memory traces. Note that the structural learning medchanism is independent of the
source of the Signs and adions it will employ. Riolo ([10]) and Shen ([12]) have
described broadly similar strategies for “rule” credion triggered by “surprise” events.

To limit the rate & which new p-hypotheses are aeded the user may spedfy a
learning probability rate, A, which determines the probability with which a new p-
hypahesis will be formed given one of these opportunities to do so. The Dynamic
Expedancy Model aso defines methods for differentiating pertialy effedive p-
hypaheses by making their component Signs more or less pedfic by adding (or
removing) Tokens, and removing ineff edive p-hypotheses. The requirements for such
additional proceses are awnsidered further in [17].

5 TheAction Seledion Mechanism

At ead exeaution cycle the Agent must have some adion to perform. Normally,
the Dynamic Expedancy Model operates in two distinct modes for adion seledion
(1) Goal directed selection, (2) Exploratory selection. Whenever goal direded adion
seledion is €leded, the dgorithm attempts to construct a Dynamic Policy Map
(DPM) from which it may seled an adion. The construction and wse of the DPM is
described later.

Where no goal is %t the system seleds adions in exploratory mode. In the arrent
implementation, exploratory seledion is made on a random basis. Regardless of how
the ation was sleded the leaning mechanism continually monitors the adivities of
the Agent, and corroborates existing p-hypotheses and creaes new ones acording to
the learning strategies described.



Goals - instructions to the system to seled adions with resped to some purpase -
are held on the Goal List (G). Individual goals are drawn from the Sign List. Pladng a
Sign onthe Goal List is a signal to the Agent that it should be motivated to seled
adionsthat cause that Sign to become adivated (i.e. appea on $¥). Each gaal Sign on
Gisasdgned apriority. The goal with the highest priority at any time isreferred to as
the top-goal. Once a goal Sign has been adivated (i.e. it appeas on $¥), it is deemed
satisfied and removed automaticdly from the Goal List. The next highest priority goel
becomes top-goal, or the Goal List becomes empty.

Purposive goals are, by definition, largely domain spedfic - they serve some
purpose. The Dynamic Expedancy Model provides two dstinct routes to setting
goals. (1) Goals may be programmed into or be inherent to the Agent, or (2) they may
be imposed externally by direaly manipulating G. The former route equates diredly
to aur intuitive notion of primary reinforcer. Some things, such as food for a hungry
animal, or water for athirsty one, inherently motivate becaise they are “programmed”
to doso. In amobile roba context the detedion of a“battery low” Sign may cause an
“on_charge” Sign to be placed on the Goal List, passbly with a priority related to the
extent of battery discharge. The latter route provides an experimenter with a method
with which to manipulate the goal-driven behaviour of the Agent diredly.

6 Building the Dynamic Policy Map

Whenever a top-goal is available, the DEM will attempt to create a Dynamic
Policy Map (DPM) to form a sequence of links from every other Signin S to the Sign
currently set as top-goal. The DPM is conveniently represented as a graph where
context Signs asociated with individual p-hypotheses represent the nodes and adions
embedded within individual p-hypotheses the acs. The DPM is creded by a process
of spreading activation from the top-goal. The method used to construct the DPM isa
modified form of the standard breadth-first graph search/construction algorithm. Each
arc has asociated with it a cost estimate, C,, value. This cost estimate is computed
from the given adion cost of a and the C_ (egns. 2 and 3) value defined ealier:

C, — adion_cost(a) / C, (egn. 4)

Consider a situation where C_ is smply p(number of successul predictiongjtotal
predictions made) by a p-hypothesis - the probability that the p-hypothesis predicts
corredly. The wst estimate value C, is then reasonably interpreted as the total
estimated cost for the average number of attempts that must be made with the given
hypahesis to achieve the transition. A similar interpretation may be placeal on the
case for C, shown in egn. 4, with the proviso that the “averages’ are now biased
towards recent experiences.

Each node (Sign) in the graph will aaquire avalence level, v, indicaing the
number of arcs, n, that must be traversed to read the top-goa “node”. The top-goal
has a valence level of zero, the & Sign of any prhypathesis that leads diredly to the

goal (i.e. where ¢’ = top-goal) avalenceleve of 1, and so on. The policy value, P,, of

1 Ly



any node § at level n in the DPM is then expressed as a summation of individual
estimated costs ((C)") by:

v=n

P($) - min(Y (C)) (ean. 5)

v=1

The pdlicy value for eat Sign ¢ implicaed in the DPM is computed by adding

the cost estimate for its transition to the minimum cost of the path to its §” node. If a
lower cost path is encountered the spreading adivationis re-adivated for that node to
minimize path costs at higher valencelevels.

Construction o the Dynamic Policy Map is complete when there are no further p-
hypaheses that can be implicaed, and nofurther path cost minimizaion can occur.
Following construction of the DPM the Agent has an estimate of the total “cost” to
attain the top-goal for every § implicaed in the map. Once DPM construction is
complete, the DEM may simply seled the adion associated with (min(P,(s’ 0 $¥%) in
the p-hypothesis containing that $” and route it to the Agent.

If a arrently adive Sign is included as a noce in the DPM (DPM n §%, the
adion avincluded in the p-hypothesis arc assciated with the Sign noc with the
lowest P, (egn. 5) is sleded. Thisis the adion with the lowest overall estimated cost
to achieve the top-goal. Where there is no intersedion ketween the set of adive Signs
and rodes on the DPM, an exploratory adion is sleded. These new adions will
either (1) read the goal diredly, (2) lea to a situation where a ation seledion from
the DPM may continue, or (3) cause new p-hypotheses to be aeaed, which in turn
expands sope of the DPM. The DPM is recomputed frequently, whenever goals
change, new p-hypotheses are formed or existing ones have undergore sufficient
corroboration to indicae that a diff erent solution path may be preferable.

7 An Example

To illustrate the two essential of the properties of the DEM agorithm,
unsupervised leaning and pdicy map generation, figure 1 shows a simulated robat
learning task for navigation. The robat may recgnize some 74 individual locations on
a grid within the environment. These equate diredly to individual Signs (and, in this
instance, to “states’). The robot is suppied with four adions with which to traverse
between these locaions. These experimental conditions (but not the adual layout)
acairrately refled those described by Sutton ([13]). We note that, in simulation, ead
adion takes 2.66 seands on average. This is used as the adion cost. Initidly the
roba is alowed 2000 exploratory knowledge gathering (randomly seleded) adions.
This is a period of latent leaning, no gaa is st nor any aher form of reward
provided during this period. Neverthelessa Sign List and a crpus of p-hypotheses is
constructed in the Hypothesis List by the novelty and urexpeded event methods, and
subsequently corroborated by the tadicd learning method. Initially bath Lists were
empty. Random exploration is inefficient in this environment, the roba tending to
beoome “trapped” in “rooms” for extended periods, but this number of adions ensures
that every location is visited more than once Ordered exploration techniques can



improve the time to complete the exploration procedure, but otherwise have marginal
impad on the underlying leaning mecdhanism.

Immediately following this period of exploration the Sign deteding locaion “A”
is established as top-goal by the experimenter. The DEM computes the Dynamic
Policy Map cost estimates, which are visualized in Figure 1la. The clumn heights
corresponding to the total cost estimate from that Sigr/locaion (their position) to the
goal. After so much exploration, the task is leant well. The Dynamic Policy Map
corresponds closely to our intuition of a“cost gradient”, flowing from “room” edges,
through “doors’, along the central “corridor” etc. The use of a navigation based
example here alows us to think of the Dynamic Policy Map as a “Cogritive Map”
([11]) in a quite literal sense. In ather agent based applicaions there is no clear
mapping d cost estimate to place ad satisfadory visualizaion is harder to achieve.
Next the Sign deteding locaion “B” is made top-goal, and the DPM immediately
adopts the wost estimate configuration d Figure 1b. Figure 1c shows the DPM cost
estimates when the Sign for locaion “C” is establi shed as top-goal.
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Figure 1: Rabot Task and Dynamic Policy Mapsfor Different Goal L ocations

Not shown in these visualizationsis the adion that is asociated with ead Sign for
eat o the threedifferent Dynamic Policy Maps. In ead case the adion that will be
seleded with the ggent at any particular location represents the first adion on the path
with the lowest total estimated cost. As the goal, and hence the DPM changes, the
adion seleded in resporse to any particular Sign stimulus may therefore change
dramaticdly. The spreading adivation algorithm is fast, the DPM in these examples
being computed in “red-time” (<10mS on a 166MHz Pentium P5 running Linux).
[17] describes an extensive series of investigations using the DEM under a variety of
leaning conditions, imposed uncertainty and varying environments.



8 Discussion

The Dynamic Expedancy Model addresses and urifies threeisaues central to the
construction of a fully autonomous A-life Agent. First, that of true unsupervised
leaning besed on articular properties of the prediction process Seand, the aility to
define motivations that drive the overt behavior of the Agent. Third, a mechanism to
seled adions acording to a uniform measure relative to the Agent’s current state of
knowledge (the Hypothesis List), its current motivations (the top-goal) and the
situation asthe Agent perceivesit (S¥).

The mntribution afforded by this work is not so much in the knowledge that all
the thingsit does are possble, but in the caeful seledion and tight integration of ead
of the parts to produce an Agent controller capable of robust adion seledion
performance ad self-sustaining, self-sufficient leaning. The DEM is distinguished
from the overwhelming majority of leaning readive systems? in its dedsive aloption
of internal prediction to corroborate schema like conredions and away from reliance
on external or task spedfic reward.

The structural learning component of the DEM represents a significant advance
over that used by its (arguably) closest preaursor system, due to Drescher ([3]).
Drescher’s computationally intensive “marginal attribution” schema learning process
is discarded in favor of the use of the leaning by novelty and unexpeded event.
Marginal attribution requires extended periods of exploration to first construct viable
adion —outcome pairs, followed by further periods of exploration to establish and
subsequently extend the context part of the new schemas. In the DEM p-hypotheses
(the schema like objeds) are aeaed as the opportunity arises, but aways from a
combination d events that can occur in the environment (they did occur — and were
stored in the adivation traces.)

This method is also clealy distinct, in its diredness from the mutation and
crosover approadh to structural learning wsed in genetic dgorithms and classfier
systems ([1], [4], [5], [10Q]). Riolo ([10]) describes CFSC2, extending the dassfier
system model with a three part schema like representation, which adopts a forward
chaining approach to deteding possgble future rewards rather than the goal direded
badkward chaining approach used in the DEM.

The Dynamic Policy Map isnat aplan; it isatemporary mapping between sensory
condtions and adions to take. It does nat define apath from start to finish; rather it is
a tharaderization of the Signs known to the system acmrding to an estimated cost
from that Sign to the primary source of motivation, the top-goal. In use, it is smilar to
areadive look-up table: if thisisthe arrent situation, then seled this adion. In this
resped, it is smilar to the palicy map of, say, Watkins' ([16]) or Sutton’'s ([13]) Q-
leaning based algorithms. It is profoundly different in that the policy is computed
(and re-computed) frequently and quickly, relative to a spedfic goal, rather than as an
iteratively formed static palicy estimating future discounted and anonymous rewards.

In comparative tests, [17] using the highly stylized navigation tasks of the type
described in sedion 7, the DEM can show dramatic performance improvements (up to
the order of 40:1) over a onventional Q-leaning algorithm (compared to results
presented in [13]). Thisis due dmost entirely to the fad that the connedion strength
(C,) cen be updated at every step, rather than occesiondly at the end d a long

2 A notable exception keing Tani’s neural network based “prediction leaning” [14] method.



sequence of adions. In more redistic environments other fadors tend to mask these
apparent gains.

The DEM can be seen as an exemplar of Grefenstette’s notion of “Anytime
Leaning’ ([4]). New p-hypotheses can be formed at any pdnt in the Agent's
existence, immediately extending its behavioral repertoire. Corroboration is also an
ongdng processthroughout the Agent’s “lifetime”.

The Dynamic Expedancy Model defines a style of autonomous Agent controll er,
it has been implemented and tested in a range of conditions. It leans autonamously
and hes been foundto be flexible and resporsive to changing conditions. Work on the
Model continues.
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