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Abstract

The use of composition tables for efficiently
representing and reasoning with jointly
exhaustive pairwise digoint sets of dyadic
relations, is now well established in the Al
literature. Whether typicaly built from axiomatic
theories or from a gebraic structures, most tables
are built with a single theory in mind. We
concentrate uponaxiomatic theories for building
these tables, and show how by fadoring out
related, but distinct formal theories (ead capable
of generating a composition table), large
composition tables are eaily constructed. This
approach cortrasts with the general difficulty of
extrading out these tables where a parsimonious
ontology and minimal number of primitives are
used. We il lustrate this with the @nstruction o a
non-trivial 20x20 composition table from two
sub-theories supporting a 6x6 and 88 table. The
ontologica and representational ramificaionsfor
general theory building and the value of
composition tables are discussed.

1 INTRODUCTION

The use of composition tables for efficiently representing
and reasoning with Jointly Exhaustive and Pairwise
Digoint (JEPD) sets of n-ary relations, is now well
established in Al literature. Composition tables reduce
consistency chedcing of generated sets of grourd
instances of JEPD relations, to simple table look-up
operations (Cohn, 1997). Whether typicdly built from
axiomatic theories (e.g. Bennett, 1994 Randell, et al.,
1992) or algebraic structures (e.g. Egenhafer, 19%), most
tables are built with a single theory in mind. But
extrading these tables can sometimes be difficult,
particularly in the case of the former approach, where a

parsimonious ontology and minimal number of primitives
are used. In this paper we use aiomatic theories as our
base, but (by developing a technique first described by
Galton (Galton, 1994)) show how by facdoring out related,
but distinct formal theories (eat capable of generating a
composition table) large @wmposition tables are easily
constructed. We illustrate this approach with the
construction of a nontrivial 20x20 composition table
from two sub-theories respedively suppating a 6x6 and
8x8 table.

In sedion 2 we introduce @mposition tables in the light
of axiomatic theories, from which they can be derived. In
sedion 3, the general method of building larger tablesis
described, and the forma corredness of the method
given. In sedion 4 we present an example target
axiomatic theory to which the method is applied; factor
out two embedded sub-theories, then show how the
composition table is generated. Sedion 5 gives a program
outline that diredly implements the method to synthesise
composition tables. Sedion 6 discusses conceptual
neighbourhoads, defining the valid transitions between
sets of JEPD relations. Sedion 7 presents an aternative
axiomatisation for a generic set of ocdusion relations.
Sedion 8 describes a program suite, incorporating a
resolution based theorem prover, which we used: (i) to
cross ched these results, and (ii) as a generic tod to
asdst in the task of theory-building itself. Finally we
discussthe ontologicd and representational ramifications
for general theory building and the value of compaosition
tables.

2 COMPOSITION TABLES

An nxn composition table takes a set n of mutualy
exhaustive and pair wise digoint (JEPD) relations, and
for each pair of relations Ry(x,y) and Rx(y,2), gives Rs(x,2)
as the set of all possible R relations, implied by R, and
R.. In general Rs will be adisjunction o entries; with the
additional requirement that R; is the minima set of
instancesimplied by R; and R..



Composition tables are illustrated in Figures, 2, 3 and 6.
Figure 6 gives the full compasition table for the 20 JEPD
relations of the Region Ocdusion Calculus ROC-20
(Randell, et al., 2001), which we discuss below. This
cdculus is used to model ocdusion relations between
arbitrary shaped badies from a given viewpaint. Figures 2
and 3 show the mmposition tables for two related sub-
theories RCC-8 and ROC-6. If R,(A,B) and Ry(B,C) hald,
where R; is the spedfied relation along a row, and R,
spedfied down a column, the respedive cél entry at the
intersedion encodes the cmplete set of vaues for
Rs(A,C). In general, eat entry for the table enbodes a
model, and in the cae where the table has been generated
from an axiomatic theory, a theorem of the underlying
logic. While these tables can be extraded using model
buil ding and theorem proving techniques, the extradionis
not necessarily straightforward. For example, difficulties
working with the spatial theory RCC, led to a challenge
for automated theorem provers, and motivated a tractable
solution by respedively encoding sub-theories of RCC
into intuitionistic logic (Bennett, 1994). This has led
some to pusue dternative dgebraic methods using the
“n-intersecion” method to fador out these compositions
(Egenhafer, 1994; Egenhdier et al., 1994) andin asimilar
vein where composition tables are mmpletely eli minated
(El-Geresy and Abdelmoty, 1996).

Methods for generating compasition tables currently fall
into two main approaches: (i) the use of axiomatic
theories, model-generation and theorem proving, and (ii)
the use of algebraic structures and the intersection
method Either approach hasits own particular merits. In
the case of the aiomatic gpproadh, the underlying
ontology is highlighted and the reasoning about the
domain can be gplied not only to the entries of the table,
but also to ather wff that, as theorems, are not necessarily
emboded in the table. For example, reasoning just using
the composition table for ROC-20 (to be described) is not
sufficient to prove dl the existential condtions entailed
by the axiomatic theory, if completeness of the underlying
theory is to be adieved. That is to say, given a model,
we nedl to ask ourselves what set of truths are provable
within our formal system. By contrast, the dgebraic
approach using the intersedion method gains on the
computational side. We ague that the method first
discussed by Gaton (1994 provides a pradicd
aternative gproach. While an axiomatic goproach to
model building is used, thisis applied to sub-theories and
their compaosition tables, where the larger theory and
asciated composition table is generated as a direct
consequence.

Next we discussthe general method d large mmpasition
table cnstruction, then we give an example using the
theory ROC-20 that embeds two sub-theories RCC-8 and
ROC-6.

3 GENERATING LARGE COMPOSITION
TABLES

In his paper “Lines of Sight”, Galton (1994 describes a
method where by taking two independent formal theories,
their composition tables, and a target set of relations
constructible from these, alarge compositiontable can be
built. Itisbased onthe assumptionthat ead entry of the
target composition table is defined in terms of the dired
product of the two simpler sets of relations. We
reformulate this result, by stating that given a target
formal theory, one can build a mmposition table
providing we have: (i) a set of JEPD definitions for the
target theory, and for ead sub-theory, (ii) a set of JEPD
relations, and a composition table, and (iii) a set of
constraint axioms that map predicaes and functions
defined in the target theory to predicates and functions in
both sub-theories.

Let W and X denote two sub-theories of the target theory
®, where JEPD¥, JEPD* and JEPD? are respedively
their JEPD sets of relations, and where Rn®(xy) O
JEPD?; similarly: Rn¥(xy) O JEPD* and Rn*(xy) O
JEPD*. We dso asauime the existence of a function ¢
expressble in @, that maps between ® and W. To crede
the larger compaosition table we wish to establish ead Rg
relation set for (i), asuming (ii) to (iv) shown below,
where schemas (i), (i) and (iii) respedively encode the
composition tables for theories ®, W, and 2, and where
(iv) holds for ead defined Rn®(x,y) relation.

() R°(xY) & R(Y,2) F R®(x,2)100...0Rs"(X,2)n
(i) R (xY) & R¥(y,2) F R¥(x2)1 [O..0R"(X,2) n
(iii) Ri*(xY) & R(y,2)  Re*(x,2)1 [1..ORs(x,2)
(iv) Rn(xy) « [Rn*(xy) & Rn*(@(x),@y))]

The method for generating the full, larger, composition
table for @ isasfollows:

Stepl: Using (iv), ead single Rn® entry is lit into its
two constituent relations: Rn*and Rn”.

Step2: Using the composition tables encoded in (ii) and
(iii); for eah ordered pair <R,"R,"> of Rn* and Rn*
relations, we generate two Rs” and Rs” sets, that together
comprise dl the posdble relations (as decompasitions)
that can be formed.

Step 3: The third step simply re-builds the set of R;®
entries from the generated set of R;* and Rs” relations.
However, typicdly, not al combinations formed by
taking one dement from ead R;” and R set will have a
model. This is guaranteed by ensuring that ead R;* and
Rs* combination satisfies the mapping axioms
(incorporating ¢ of the theory. This leaves us with a
maximal generated set of named Rn® relations that



populate the arrespondng R; cdl in the cmpaosition
table.

The mrrednessof the method is easily shown:

Step 1: The translation from Rn®(x,y) to its Rn*(x,y) and
Rn*(¢(X),@(y)) constituents, is true by definition, i.e.
Rn?(x,y) =def. Rn*(xy) & Rn*(¢x), @AY))-

Step 2: The two composition tables for W and %,
encoding the theorems of ® guaranteethat that eah R;
set of diguncts, is both a logicd consequence of R, and
Ry, and exhaustively enumerates all the possble generated
cases.

Step 3: The sounchessof seleding only the Rn*(x,y) and
RN (@X),@y)) relation pirs if Rn®(xy), follows
immediately from the definitions and mapping axioms of
the theory.

The gplicaion o steps 1-3 show that for eah R, and
R,? pair, the result set R;” is both sound (i.e. is implied
by the theory) and (by exhaustively generating all
possble new R;”relations) is complete. QED.

We now develop ou first-order theory to illustrate the
general method.

4 ROC-20 AND RCC-8-THE EXEMPLAR
THEORIES

Our universe of discourse includes bodes, regions and
points, all forming pairwise disjoint sets. A set of sorts
and asorted logic allowing ad hac polymorphic functions
and predicaes to be handled, is assumed.

The notation and conventions used is as follows:. type
a(tl,.., ): m+1 means function symbol aiswell sorted
when its argument sorts are r1,.., n with t+1 as the
result sort, and type a(71,.., Tn) means predicate a is well
sorted when defined on argument sorts 71,.., Tn. AXioms,
definitions and theorems are respectively indicaed as
follows: (Al,.,An), (D1,..,Dn), and (T1,..,Tn). Where
axiom/definitional schemas are used, the numbering in the
parentheses reflects the number of objed-level axioms
and cefinitions generated.

We anbed the mereo-topdogicd theory RCC-8 (Randell,
et al., 1992) into our theory, ROC-20. The same primitive
dyadic relation C/2: ‘C(x,y)’ read as “X is conneded with
y” is used. All the relations defined in RCC-8 are used,
and al cary their usua realings: DC/2 (disconneded),
P/2 (part), EQ/2 (equal), O/2 (overlaps), DR/2 (discrete)
PO/2 (partia overlap), EC/2 (external connedion), PP/2
(proper part), TPP/2 (tangential proper part), NTPP/2
(nontangential proper part). PI/2, PPI/2, TPPI/2 and
NTPPI/2 are the inverse relations for P/2, PP/2, TPP/2
and NTPP/2, respedively. Eight of these relations are

%g\éably JEPD, and are hereinafter referred to as JEPD

Axioms for C/2 and definitions for the dyadic relations of
RCC-8 are asfollows:

(A1) OxC(xX)
(A2) OxCy [C(xy) - C(y:x)] )
(A3) LW [02[C(zX) « C(zy)] — EQ(XY)]

(D1) DC(x,y) =def. =C(x,y)
(D2) P(xy) =def. z[C(zX) - C(zY)]
(D3) EQ(x,y) =def. P(x,y) & P(y,X)
(D4) O(xy) =def. [Z[P(z,X) & P(z,y)]
(D5) DR(x,y) =def. =O(x,y)
(D6) PO(x,y) =def. O(x,y) & =P(xy) & =P(y,X)
(D7) EC(xy)=def. C(x,y) & =O(xy)
(D8) PP(x,y)=def. P(xy) & =P(y,x)
(D9) TPP(xy) =def. PP(x,y) &
[#[EC(z,X) & EC(zY)]
(D10) NTPP(x,y) =def. PP(x,y) &
= [Z[EC(zX) & EC(zy)]
etc.

type @(Region,Region); where @ [J
{C,DC,P,EQ,0,DR,PO,EC,PP,TPP,NTPP,PI,PPI,
TPPI,NTPPI}

Asaumed bu not given here, is an axiom in RCC-8 that
guarantees every region hes a nontangential proper part
(A3), and a set of axioms (A4-A9) introducing Bodlean
functions for the sum, complement, product, difference of
regions, the universal spatial region; and an axiom that
introduces the sort Null enabling partial functions to be
handled — see(Randell, et al., 1992) for more details.

4.1 MAPPING FUNCTIONSAND AXIOMS

ROC-20 uses RCC-8 to model the spatial relationship
between bodes, volumes, and their corresponding images
with respect to a viewpoint. The formal distinction is
maintained by introducing two functions: ‘region(x)’ read
as “the region accupied by x” and ‘image(x,v)’ read as
“the image of x with resped to viewpoint v’. The
function: regior/1, maps a body to the volume of spaceit
occupies, and image/2 maps abody and a viewpoint to its
image; i.e. the region defined by the set of projeded half-
lines originating a the viewpoint and interseding the
body, so forming part of the surfaceof a sphere of infinite
radius centred onthe viewpoint. A set of axiomsading as

IStrictly spesking axiom (A3) is immediate consequence of
definitions (D2) and (D3), but is added here simply to clarify the
relationship between the rdations C/2 and EQ/2.



a set of spatial constraints between bodies, a given
viewpaint, and their correspondng images are given™:

(A11-A15) [Ox[y [ @(region(x),region(y)) —
[ [ @(image(x,v),image(y,v))]]

type region(Body): Region®

type image(Body,Point): Region

type @(Region,Region) where:
® J{C,0,P,NTPP,EQ}*

4.2 OCCLUSION

For the ocdusion part of the theory, a second primitive
relation: ‘TotallyOccludes(x,y,v)’, read as “x totaly
ocdudes y with resped to viewpoint v’, is introduced.
Totally Ocdudes/3 is axiomatised to be transitive. Severd
other axioms are used to embed RCC-8 into this theory,
making Totall yOccludes/3 additionally asymmetricd and
irreflexive.

The intended geometric meaning of total ocdusion is as
follows. Let ling(pl,p2,p3) mean that points p1, p2and p3
fall on a straight line with p2 strictly between p1 and p3.
Then, x totally occludesy from v iff for every point piny,
there eists apoint g in x such that line(v,q,p), and there
areno pointsp’iny, and q’in x, such that line(v,p’,q"). An
objed x can totaly ocdude an oljed y even if x itself is
totally ocduded by ancther objed.

Axiom A16 (below) states that if x totally ocdudesy, x
totally ocdudes any part of y; and Al7 if x totaly
ocdudes y no part of y totally ocdudes part of x. A17
excludes cases of total ocdusion where part of the
ocduding wraps ‘behind’ the ocduded oljed. Thisisan
example of mutual occlusion, and which is defined below
in definition (D17). A18 states that if x totally ocdudesyy,
the image of x subtends the image of y. Note that A18 is
not a biconditional because the P/2 relation (defined on
images here) is indifferent to various factors including
relative distance and overlap between ocduding bodesin
the asumed model. Spatial identity of regionsin terms of

2 Although ot developed here, the distinction made between
bodies and regions enables one to define the notion of freespace
and model spatial occupancy — see(Shanahan, 1996).

3 Sortal declarations given here are not as restricted as they
could be, for example we could declare: type region(Body):
3DRegion, and type image(Body,Point): 2DRegion, where
2DRegion and 3DRegion are (digoint) subsorts of the sort
Region.

4 The set of predicae constants used here (and in the set of
axioms for ROC-20 that appear in this paper) differs from that
presented in (Randell et al., 2001) where redundancy in the
origina set of axioms has been addressed. The exception is the
removal of axiom (A13) in that paper, for which counter-
examples have been found. We wish to thank Antony Galton for
bringing our attention to this.

co-locdion still applies, but is restricted to the
dimensionality of the regions being modelled.

(A16) [x[yLjz[ N [[ TotallyOcdudes(x,y,v) &
TotallyOccludes(y,zVv)] -
Totall yOccludes(x,z,v)]
(A17) Ox[yCh [TotallyOcdudes(x,y,v) —
Ozu[[ P(region(z),region(x)) &
P(region(u),region(y))] -
= Totall yOccludes(u,z,v)]]
(A18) [Ix[y[l[TotallyOcdudes(x,y,v) —
P(image(y,v),image(x,v))]

type TotallyOcd udes(Body,Body,Point)

Total ocdusion between distinct bodes implies ocdusion
(T2), which in turn implies region overlap between their
corresponding images (T2). Moreover, we can aso show
that if x totally ocdudesy, x totally occludes every part of
y (T3) and that from every viewpoint, body x has two
parts (y and 2) such that the one part (y) totally ocdudes
the other part (z). This can be interpreted in a 3D model
to mean that bodies have depth (T4):

(T1) O] Totall yOccludes(x,y,v) —
Ocdudes(x,y,V)]

(T2) Oy [Ocdudes(x,y,v) —
O(image(x,v),image(y,v))]

(T3) X[y Totall yOccludes(x,y,v) —

[z[P(region(z),region(x))] —
TotallyOcdudes(x,z,v)]

(T4) O[Oy Oz P(region(y),region(x)) &
P(region(z),region(x)) &
Totall yOccludes(x,y,v)]

A refined set of ocdusion relations is defined including
wed&k ocdusion, and partiad and mutual ocdusion.
‘Ocdudes(x,y,v)’ isrea as “x ocdudes y from viewpoint
v’ and means from v that some part of x totally ocdudes
some part of y. Ocdudes/3 in contrast to O/2 is non-
symmetrical. Other more spedfic ocdusion relations are
defined and then mapped to their RCC-8 analogues. For
completeness (not listed here) inverse relations are given
for Ocdudes/3, Totall yOccludes/3 and
PartiallyOcdudes/3 (D18-D20); learing the null case:
NonOcdudes/3, where no acdusion arises. The six
relations: NonOcdudes/3, MutuallyOcdudes/3; and
TotallyOccludes/3, PartiallyOcdudes/3, and their
inverses also form another JEPD set - JEPD™°“®. For
more detail s e(Randell et al., 2001).

(D15) Ocdudes(x,y,v) =def.
[Z[U] P(region(z),region(x)) &
P(region(u),region(y)) &
TotallyOccludes(z,u,v)]



(D16) PartiallyOcdudes(x,y,v) =def.
Ocdudes(x,y,v) &
= Totall yOccludes(x,y,v) &
=Ocdudes(y,x,v)
(D17) MutuallyOcdudes(x,y,v) =def.
Ocdudes(x,y,v) & Occludes(y,x,v)
(D21) NonOcdudes(x,y,v) =def.
- Ocdudes(x,y,V) & =Ocdudes(y,x,v)

(A19) Lx[ly[M NonOcdudes(x,y,v) —
DR(image(x,v),image(y,v))]

(A20) X[y [N PartiallyOcdudes(x,y,v) —
[ PO(image(x,v),image(y,v)) [J
PP(image(x,v),image(y,v))]]

(A21) [N MutualyOcdudes(x,y,v) —
O(image(x,v),image(y,v))

type @(Body,Body,Point); where @ [ {Ocdudes,
PartiallyOcdudes, Mutuall yOcdudes, NonOcdudes, ...}

Finally, a total set of 20 JEPD relations, JEPD™“% s
defined using more spedfic instances on the P/2 relation.
These ae generated using the following definitional
schemas, and areill ustrated with a graphica model shown
in Figure 1. This aso provides akey to the 5x4 matrices
that popuate the all entries for the 20x20 compaosition
table illustrated in Figure 6. In each case afilled/unfilled
square, respedively indicaes a model/no model. This
then completes the development of the basic theory that is
sufficient for our purposes here.

(D22-D33) ®W(x,y,v) =def.

P(x,y.v) & Himage(x,v),image(y,v))
(D34-D41) XW™(x,y,v) =def.

X(y.xv) & Himage(y,v),image(x,v))

type @Y (Body,Body,Point)
type X ¥ *(Body,Body,Point)
type @(Body,Body,Point)
type X (Body,Body,Point)
type W (Region,Region)

where if:

@ = NonOccludes, then ¥ [ {DC,EC}

@ = PartiallyOcdudes, then ¥ [7{PO,TPP,NTPP}

@ = TotallyOcdudes, then ¥ [7{EQ,TPPI,NTPPI}

@ = MutuallyOcdudes, then ¥ [J{PO,EQ,TPP,NTPP}

and where if:
X = PartiallyOcdudes, then ¥ [{PO,TPP,NTPP}

X = TotallyOcdudes, then ¥ [J{EQ,TPPI,NTPPI}
X = MutuallyOcdudes, then W [J{TPP,NTPP}

NonOccludesDC NonOccludeseC PartiallyOccludesPO  PartiallyOccludesTPP
(NODC) (NOEC) (POPO) (POTPP)

o

PartiallyOccludesNTPP  TotallyOccludesEQ — TotallyOccludesTPA  TotallyOccludesNTPA

(PONTPP (TOEQ) (TOTPR) (TONTPR)
MutuallyOcdudesPO  MutuallyOcdudesTPP MutuallyOcdudesNTPP  PartiallyOccludesPO2
(MOPO) (MOTPP (MONTPP (POPO-1)

PartiallyOccludesTPP (PONTPR1) TotallyOccludesEQ? (TOTPA-1)
(POTPR1) PartiallyOccludesNTPP! (TOEQ-1) TotallyOccludesTPRA-1

TotallyOccludesNTPRL (MOTPR-1)
(TONTPA-1) MutuallyOcd udesTPP*

MutuallyOcdudesNTPP!
(MONTPR-1)

(MOEQ)
MutuallyOcd udesEQ

Figure 1: Graphicd model for the ROC-20relations.

5 GENERATING THE 20X20
COMPOSITION TABLE

The method wsed to compute the 20x20 compasition table
exploits that outlined by Gaton. In ou caseit isbased on
the fad that eadh ROC-20relation can be defined in terms
of the dired product of two simpler (i.e. ROC-6 and RCC-
8) sets of relations; the compasition table for the product
set being diredly generated from the compaosition tables
of its fadors. Where RCC-8 considers modes of
connedion between regions, ROC-6 considers generic
ocdusion relationships between bodes with resped to a
viewpoint.

The mmpasition table for ROC-6 is shown in Figure 3,
the relation remes: NO, PO, TO, MO, POl and TOl,
respedively abbreviate: NonOcdudes, PartiallyOcdudes,
TotallyOccludes, MutuallyOcdudes, and the two inverse
relations: PartiallyOcdudes® and TotallyOcdudes™.



DC EC PO TPP TPPI EQ NTPP NTPPI
DC DCEC |[DCEC |DCEC |DCEC  |DC DC DCEC  |DC
POTPP |POTPP |POTPP (PO TPP PO TPP
TPPIEQ [NTPP NTPP NTPP NTPP
NTPP
NTPPI
EC DCEC |[DCEC |DCEC |ECPO |DCEC |EC POTPP |DC
POTPPI [POTPP |POTPP [TPP NTPP
NTPPI_ |TPPIEQ [NTPP NTPP
PO DCEC |DCEC |DCEC |POTPP |DCEC |PO POTPP |DCEC
POTPPI [POTPPI |POTPP [NTPP PO TPPI NTPP PO TPPI
NTPPI  [NTPPI  |TPPIEQ NTPPI NTPPI
NTPP
NTPPI
PP DC DCEC |DCEC |TPP DCEC |TPP NTPP DC EC
POTPP [NTPP PO TPP PO TPPI
NTPP TPPI EQ NTPPI
TPPI DCEC |[ECPO |POTPPI |POTPP |[TPPI TPPI POTPP |NTPPI
POTPPI |TPPI NTPPI  |[TPPIEQ |NTPPI NTPP
NTPPI__ |NTPPI
EQ DC EC PO PP TPPI EQ NTPP NTPPI
NTPP DC DC DCEC  |NTPP DCEC  |NTPP NTPP DC EC
PO TPP PO TPP PO TPP
NTPP NTPP TPPI EQ
NTPP
NTPPI
NTPPI  |DCEC  |POTPPI |POTPPI |POTPPI |NTPPI  [NTPPI  |POTPP |NTPPI
POTPPI |NTPPI  [NTPPI  [NTPPI TPPI EQ
NTPPI NTPP
NTPPI

Figure 2: Compasition table for RCC-8

NO PO POI TO MO TOI
NO NO PO NO PO NO PO NO NO PO NO PO
POITO |POIMO |POIMO POIMO |POI MO
MO TOI |TOI TOI TOI TOI
PO NO PO NO PO NO PO NO PO NO PO PO POI
POITO |POITO |POITO |TO POITO |MOTOI
MO MO MO TOI MO TOI
POI NO PO NO PO NO PO NO PO NO PO POI MO
POITO |POITO |POIMO |POITO |POIMO |TOI
MO MO TOI [TOI MO TOI
TO NO PO PO TO POPOI |TO PO TO PO POI
POITO |MO TO MO MO TO MO
MO TOI
MO NO PO NO PO NO PO NO PO NO PO POI MO
POITO |POITO |POITO |POITO |POITO |TOI
MO MO MO TOI MO MO TOI
TOI NO NO PO NO POl |NO PO NOPO |TOI
POIMO [TOI POITO |POIMO
TOI MO TOI |TOI

Figure 3: Compaosition table for ROC-6

We established the relative consistency and corrednessof
the compaosition table entries for ROC-6 by interpreting
the relations against a graphicd model that satisfied the
axioms of the theory. That is to say a handcrafted model
was generated for eah of the (156) individua R°, R’
and R;® cdll entries. This result was then independently
chedked against the output from a batch program that
used the resolution theorem prover SPASS- requiring a
total of 6° = 216 pdential theorems to chedk (Section 8.
In the cae of RCC-8, the compasition table was taken as
agiven —seeBennett (1994).

5.1 A WORKED EXAMPLE

Let: Rn*%(x,y,v) 0 JEPD"°“?° be an instance of Rn®(x,y)
0 JEPD® similarly let: Rn®(x,y,v) O JEPDR“® be an
instance of Rn*(x,y) 0 JEPD¥ and Rn®(x,y) O JEPD"°“®
of Rn*(x,y) 0 JEPD”. The functionimage/2 substitutes for

@ Therefore, we wish to establish each Rs?° relation set
for (i), assuming (ii) to (iv):

(I) Rlzo(x!yrv) & RZZO(y’er) |_
Rs2(x,z,v)1 [0...OR(X,Z,V)n
(I I) Rle(X,y,V) & R26(yrz’v) |_ %G(X’yrv)l . -D&G(X’er)n
(i) R°(xy) & RX(y,2) F R(%.2):1 [1..0R*(X,2)n
(IV) ano(xry!v) «
[Rn°(xy.v) & Rn®(image(xv),image(y.V))]

where, as before, the schemas (i), (ii) and (iii) respedively
encode the amposition tables for ROC-20 (®), ROC-6
(Wg, and RCC-8 (%), where (iv) holds for ead defined
Rn?(x,y,v) relation. In the cae of ROC-20 and ROC-6
ead JEPD relation isternary, but where the last argument
adsonly as an index term.

In the following example, a cél entry for ROC-20's
composition table is derived and justified against the
theory. The threesteps highlighted mirror those given in
sedion 3. We wish to compute the cél entries for R3,
where:

R1 = R?°= TotallyOccludesTPPI(a,b,v1)
R2 = R,*° = PartiallyOcd udesPO(b,c,v1)

Step 1: Unpadk the dauses using the definitions.

R1 = {TotallyOcdudes(a,b,v1),
TPPI(image(a,b,v1),image(b,c,v1))}
R2 = {PartiallyOcdudes(b,c,v1),
PO(image(b,c,v1),image(b,c,v1))}

Step 2. Compute the composition table entries (atoms
here) for ead paired set of relations:

<TotallyOcdudes(a,b,v), PartiallyOcdudes(b,c,v1)> =
{PartiallyOcdudes(a,c,v1),
TotallyOccludes(a,c,v1),
MutuallyOcdudes(a,c,v1)}

<TPPI(image(a,b,v1),image(b,c,v1)),

PO(image(b,c,v1),image(b,c,v1))> =
{PO(image(a,vl),image(c,vl)),
TPPI(image(a,vl),image(c,vl)),
NTPPI(image(a,vl),image(c,vl))}

Step 3: Take the aossproduct between bah sets of
generated atoms, and rebuild those satisfying the
definitions and any other constraints arising from the
underlying theory:

(A22) [Ox[OyCv [TotallyOcdudes(x,y,v) —
P(image(y,v),image(x,v))]

rules out:



{TotallyOcdudes(a,c,v1),PO(image(a,vl),image(c,v1))},
owing to the theorem:
Xl [PI(xY) « [EQ(XY) O TPPI(xy) O NTPPL(xW)I] ,

(A24) OxOyMV PartiallyOcd udes(x,y,v) —
[PO(image(x,v),image(y,v)) [J
PP(image(x,v).image(y,v))] ]

rules out:

{PartiallyOcdudes(a,c,v1), TPPI(image(a,v1l),image(c,vl))},
{PartiallyOccludes(a,c,v1),NTPPI(image(a,vl),image(c,v1))},

owing to the theorem:
OxCly [PP(XY) « [TPP(Xy) [0 NTPP(x,y)]]

(A25) [XCy[M MutuallyOcdudes(x,y,v) —
[PO(image(x,v),image(y,v)) [1
P(image(x,v),image(y,v)) [J
Pl (image(x,v),image(y,v))]]

no cases ruled out.

Hence: R3 = {PartiallyOccludesPO(a,c,v,1),
TotallyOccludesTPPI(a,c,v,1),
TotallyOccludesNTPPI(a,c,v, 1),
MutuallyOcdudesPO(a,c,v1),
MutuallyOcdudesTPP*(a,c,v1),
MutuallyOcdudesNTPP(a,c,v1)}

52THE PROGRAM

The full ROC-20 composition table (including the
graphicd output) shown in Figure 6 was automaticaly
generated using a program that implements the method
described in sedion 3. Eadh 5x4 matrix (as the
intersedion d a row and column) encodes a R;*
disunctive entry, for a given R and R pair. A
fill ed/unfilled square respedtively represents a single R;*°
digunction that has a model/no model. The 20x20
composition table results were dso confirmed using the
resolution theorem prover SPASS [http://spassmpi-
sb.mpg.de/] —which is discussed further below.

Lettabi, tab2 andt ab3 ead be threedimensiona arrays
encoding, respedively, the two smaler composition
tables, W (ROC-6) and ~ (RCC-8), and the larger
composition table @ (ROC-20) to be synthesised. Thefirst
and seoond indices seled a cél by row and column, the
third an element in a cdl. The size of ead table will be
si zel, si ze2 andsi ze3.

Let deftab be the table of Rn® entries defining the
constituent pairings between the two smaller theories

(Rn¥ and Rn®). By definition the dimensions of deftab

are[si ze3,2]. From sedion 43 def t ab isinitialised thus:

deftab := {{NO DC}, {NO EC}, {PO PG, {PO TPPF},
{PO, NTPP}, {TO EQ, {TO TPPI}, {TQ NTPPI},
{MO,RPG, {MO, TPP}, {MO NTPP}, {PA, PG,
{PO,TPPI}, {PO,NTPPI}, {TO,EQ, {TO, TPF},
{TO, NTPP}, {MO TPPI}, {MO NTPPI}, {MO EQ};

This correspords to step 1 d sedion 3 (Note the use of
program constants PO and TO to dencte the inverse
relations defined in D34-41)

The psuedo-code for the table synthesis procedure is
given below:

Bui | dTabl eBySynt hesi s(deftab, tabl, tab2, tab3,
sizel, size2, size3)

{
clear(tab3);

for (i :=1 to size3)
{
for (j := 1 to size3)
{
cell1[] := tabl[deftab[i, 1],deftab[j,1]];
cell2[] := tab2[deftab[i, 2],deftab[j,2]];
for (k := 1 to sizel)

{
for(l
{

for (m:=1 to size3)

=1 to size2)

deftab[ m 1] AND
deftab[m 2])

— iy
1

{
tab3[i,j,mM :=1;

The loops (i, j, k and 1) sequentialy generate every
possble ordered pair <R;",R,"> (step 2 of sedion 3). The
innermost loop (m cheds whether eat combination so
generated satisfies the mapping axioms (as encoded in
deftab) and populates the equivalent entry in the large
composition tablet ab3 if itis stisfied (step 3).

6 CONCEPTUAL NEIGHBOURHOODS

An inspedion of the cmmposition tables for ROC-6 and
ROC-20, shows that each R; entry forms a conceptual
neighbourhoad (Freksa, 1992, i.e. each set of elements
forms a nneded subset of relations for ead
correspording neighbourhoad diagram.

A neighbaurhood dagram for ROC-20 reworked as an
envisionment table is given in (Randell et al., 2001), but
this is easily generated from the map between the two
neighbourhood dagrams for JEPDR“® and JEPD™°“® as
follows. Let: R\(x,y,v) O JEPD™“? Rn(xy,v) O



JEPDR®“® and Rn®(x,y) 0 JEPD"°“®; where for eath Rn*°
definition: Rn*(x,y,v) - [Rn®(x,y,v) &
Rn®(image(x,v),image(y,v))]. Then given the pair of
relations: (Ri°(xy,v), R>(xy,V)) a path exists in the
neighbourhood dagram for ROC-20 iff a neighbaurhood
path exists between: (R%(xy), R(xy)) and (R’(xy.v),
RZG(va’V))'

o lpc

EDE|C

@Po
0 A\ o

TPP EQ — — TPPI

RNE

NTPP NTPP

Figure 4: Neighbaurhood dagram for RCC-8
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Figure5: Neighbaurhood dagram for ROC-6

7 ROC-6 AND RCC-5

Given the fad that ROC-6 does not use aty RCC-8
relation greaer than the part-whole relation P/2, a formal
relationship between ROC-6 and the wedker mereo-
topdogicd theory RCC-5 (Bennett, 1994) is naturaly
suggested. However, even though we @n axiomatise
RCC-5, the formal relationship between the two is not a
simple matter of subsumption.

To axiomatise RCC-5, the stronger primitive dyadic
overlap relation O/2 (c.f. C/2 for RCC-8) is used. ‘O(x,y)’
isread as “x overlaps y’, meaning that a regionis dared

in common. Many of the relations named in RCC-8 are
used, and al cary the same realings and sorta
dedarations. P/2 (part), EQ/2 (equa), DR/2 (discrete)
PO/2 (partial overlap), PP/2 (proper part), with the
inverse relations PI/2, and PPI/2. Of these, five (i.e
PO/2, PP/2,EQ/2, PP-1/2, and DR/2} are JEPD.

Axioms for O/2, definitions for the dyadic relations of
RCC-5, and the mapping axioms are now restricted to the
predicaes {O,P,EQ}, which follow those for ROC-20.
The eception is the P/2 relation, which is now defined
diredly in terms of O/2 and nd C/2 as before:

(A1) X O(x,X)
(A2) LxLy[O(xy) ~ O(y.))]
(A3) LXLH Lz[O(zx) - O(zy)] » EQ(x.Y)]

(D2') P(xy) =def. [0z[O(z,X) —» O(z,y)]
etc.

Again mirroring RCC-8, but not reproduced here, is an
axiom in RCC-5 that guarantees every region hes a proper
part, and a set of axioms replicaing the same Boolean
functions used in RCC-8. The only difference between the
axioms used in RCC-8 compared with their analogues in
RCC-5, is that ‘C(x)y) appearing in clauses in the
axiomatisation for RCC-8 is substituted with ‘O(x,y)’;
with the single exception of the complement function
compl(x). This changes from: COxCK[[ C(x,compl(y)) -
ANTPP(XY)] & [O(x,compl(y)) - —P(Xxy)]], to:[Xxy
[O(x,compl(y)) « —P(xy)]. Thischange has an important
formal consequence that is discused below. From here
on, we simply mirror axioms (A16-21), definitions (D15
21), and the mapping axioms described in sedion 41, but
restricted to the set {O,P,EQ} governing the JEPD "°¢®
set of relations, yielding the theory ROC-6.

One caina simply reduce RCC-8, as presented in
(Randell, et al., 1992, to RCC-5 by the simple aldition of
the ‘reduction’ axiom:XLY[C(xy) - O(xy)], (i.e
meaning external connedion ketween regions is not
adlowed in the domain) withou contradiction. The
restriction stems from the complement axiom:

X[ C(x,compl(y)) « =NTPP(x,y)] &
[O(x,compl(y)) « =Pxy)]] .

With C/2 stipulated to be equivalent to O/2, TPP/2 can
never betrue in the domain, and PP/2 becomes equival ent
to NTPP/2; meaning (X[ O(x,compl(X)) o~ =PP(x,X)]
follows. But given [Xx-PP(x,X) is true, ead region
overlaps (i.e. shares a region in common with) its
complement — which leads to the contradiction.



8 THEORY CORROBORATION

In addition to computing the 20x20 entries using the
program described in sedion 52 we dso confirmed the
results against output provided by the resolution theorem
proving program SPASS In bah cases ead of the JEPD
relations were encoded as bitmaps; while in the cae of
the latter, a austomised shell program was developed that
interfacal to the theorem prover functioning as a flexible,
general purpose theory deveopment tool.

First, all the akioms and definitions of ROC-20 were
coded up in SPASS notation. Then the program steps
were & follows. (i) We incrementally checked the aiom
set for possible redundancy, by trying to prove eab
axiom in turn as atheorem. Axiomsin the set that proved
to be redundnt were simply flagged. (i) We
automaticadly generated a set of clauses (in SPASS
notation) encoding the set of JEPDR°“® relations and
tested that they were indeed, jointly exhaustive and
pairwise digoint. These dauses were then appended to
the original axiom set, solely for the purpases of program
efficiency. (iii) A set of (6° = 216) clauses which
encoded pdentia theorems for eath composition table
entry were similarly madine generated and batch
processed, and on completion were again added to the
SPASS axiom set. This completed the run for ROC-6.
For ROC-20 the same steps were repeaed: (iv) first
testing that the set of JEPD"“? relations were JEPD,
and finaly (v) automaticdly constructing ead
compoasition table entry for ROC-20 requiring 20° (8,000)
potential theorems to be chedked. In order to reduce the
overal runtime, the time-out alocaed for the individual
clauses to be proved was weighted in favour of predicted
theorems. This was determined by the results generated
by the * synthesised compasition table generation’ method.

Despite the obvious limitation imposed by the
implemented logic, i.e. using a semi-deddable system
(meaning no pradica distinction can be made between
distinguishing between nontheorems, or theorems not yet
proved) the program nevertheless threw up several
interesting surprises. The first was reveding redundancy
in several ROC-20 axioms that had hitherto escgped ou
attention. This was despite an increasing familiarity we
were building up with the developing theory. This
pruning, in turn, helped us to identify a simpler abstract
graphicd model for the theory. Secondly, after only a
short period into a few program runs, we soon noticed
anomalous results that could na be acourted for in ou
model. On closer inspection the anomaly was quickly
traced to an incorred data entry error in the cmpasition
table for RCC-8. That this appeaed very quickly,
highlighted two things abou this approac: (i) by virtue
of the modular nature of the shell program, the rrection
was easily done, leaving only badkground processing time

for a @mplete program rerun; and (ii) increasing
corfidence in the formal corredness of the developing
theory was gained, as more dauses were incrementally
added withou showing any sign of a problem on the
interpreted ouput. Finaly, it is noteworthy that when
using an ealier set of relations, a simple JEPD test fail ed
to prove the relation set was exhaustive. This pointed to
the edistence of a ‘mising’ node (MOEQ/2) in the
embedding relational lattice and that too strong a model
had been used to interpret the theory; which indeed
proved to be the cae. In eat case the flexibility of the
shell program has proved to be avery useful tod for the
processof theory devel opment.

9 WORKING METHODOLOGY AND
ONTOLOGICAL ISSUES.

This approach described here, gains over the naive
method d generating a large composition table from a
single unified theory in several ways. Firstly, by
fadoring out sub-theories, it clarifies the underlying
ontology, and haw these sub-theories map between eadh
other. Secondly, with the theoreticd and pradicd neel to
compare theories, the moduar approach alows existing
theories to be re-used rather than building yet another
axiomatic theory whase only conredion with an existing
theory may be implicit from the sssumed model and
informal semantics given.

There are two approaches we can take. Top down, we
take asingle theory, identify and factor out subsets of n-
ary JEPD relations, embed these in relational lattices and
extrad out smaller compositions tables for ead. In
contrast, building bottom up, while we can generate the
composition table for the larger theory from two (or
more) sub-theories, the consequence dasses for both will
not be necessarily identicd. While some reasoning tasks
using composition tables are alequate, e.g. satisfiability
cheking of sets of atomic propasitions, not al are.
Clealy, compasition tables (encoding a set of universal
axioms) cannat cgpture dl the existential conditions of the
underlying theory; but neither do they encode dl the
universal relational properties of the defined predicates.
For example, the set of universal axioms used to define
the composition table for RCC-8 and those encoding their
JEPD properties, is not sufficient to prove the symmetry
of therelations C/2 and O/2.

10 CONCLUSIONSAND FUTURE WORK

An open guestion remains about how much of the éove
method can be aitomated. Currently, we hand-build ou
target set of defined JEPD relations, but it is certainly
possble to machine generate these given a weser JEPD
superset of defined relations, and then for ead pair of



relations from that set, automaticaly cheding
subsumption and pairwise digoint relationships.
Currently we use a customised implementation d the
resolution refutation program SPASS that takes an
existing axiomatic theory, and automaticdly builds and
chedks lemmas (spedficaly JEPD and composition table
information) and redundancy of the aioms used. This
concentrates edfically upon the task of building, as
opposed to implementing and using such theories in an
applied damain, eg. using ROC-20 in a rea-world
Cognitive Robatics programme.

One promising approach arises smply from being able to
fador out and map between identified sub-theories and
their respedive @mposition tables. This metalogical
structure and decompasition neturally leads into parallel
or hierarchicd search techniques. For example, using
ROC-20, we can map wff defined in ROC-20 (modelling
bodies) to wff defined in RCC-8 (their correspondng
images), restricting the refutation seach to a
hierarchically and increasingly constrained set of RCC-8,
ROC-6 or ROC-20 formulag or alternatively to conduct
thesearchin paralel.

From a theoreticd standpdnt, more work is required to
see &adly what the conceptua neighbourhoad property
gives with resped to the task of showing your axiomatic
theory is both corred and complete, for the intended
domain (c.f. Duentsch et al., 1998).

The method illustrated here, is very general and can be
easily extended to build very large formal theories by
mapping between two or more sub-theories, ead of
which gives rise to a set of JEPD relations and their
asciated composition table. Axioms that map between
predicates and functions between the theories are singled
out, and wsed as (but also serve to partition the theory
into) sub-theories and the map between them.
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