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Abstract 
This paper describes a logical approach to embodied 
perception and reasoning in the context of Cognitive 
Robotics that use feature clouds to encode an explicit 3D 
description of bodies of arbitrary structural complexity. We 
extend and apply the principles of abductive perception in 
order to provide robots with an explicit, flexible, and 
scalable three-dimensional representation of the world for 
object recognition, localisation and general task execution 
planning. We show how feature clouds require neither a 
complex logically formulated geometrical-based description 
of the intended modelled domain; nor are they necessarily 
tied to any particular type of feature-detector. Feature 
clouds provide the means to (i) unify and encode qualitative, 
quantitative and numerical information as to the position 
and orientation of objects in space; (ii) encode viewpoint 
and resolution dependent information; and (iii) when 
embedded within a hypothetico-deductive reasoning 
framework, provide the means to integrate psychophysical 
and other domain-independent constraints. 

1 Introductionc

This paper describes a logical approach to embodied 
perception and reasoning in the context of Cognitive 
Robotics that use feature clouds to encode an explicit 3D 
description of bodies of arbitrary structural complexity. We 
extend and apply the principles of abductive perception 
developed by Shanahan [2002, 2005; Shanahan and 
Randell, 2004] in order to provide robots with an explicit, 
flexible, and scalable three-dimensional representation of 
the world for object recognition, localisation and general 
task execution planning. We show how feature clouds 
require neither a complex logically formulated 
geometrical-based description of the intended modelled 
domain [Shanahan, 2004; Randell, 2005]; nor are they 
necessarily tied to any particular type of feature-detector. 
Feature clouds provide the means to (i) unify and encode 
qualitative, quantitative and numerical information as to 
the position and orientation of objects in space; (ii) encode 
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viewpoint and resolution dependent information; and (iii) 
when embedded within a general abductive-driven 
hypothetico-deductive reasoning framework, provide the 
means to integrate low-level psychophysical-based cues 
and domain-independent constraints.  
 It is not our intention to create a specific computer 
vision algorithm, but rather to develop theoretical 
underpinnings and to establish a formal framework to 
describe processes of perception, to which detailed 
algorithms and techniques as used in computer vision and 
computer graphics may later be incorporated. This 
framework presupposes that the robot exists in a three 
dimensional world, with objects that conform to various 
commonsense notions of physical existence, which may 
include occupancy of volumetric space, having opacity and 
rigidity and being solid, in the sense that distinct objects do 
not volumetrically overlap. These assumptions will be 
taken as holding here. As long as incoming sensor data 
satisfies these working assumptions, the underlying model 
can be interpreted in terms of physical embodiment, 
whether or not the model is implemented on a physical 
robot. In this respect, we use a Webots™ robot simulator 
[Cyberbotics, 2006], providing two-dimensional images of 
three-dimensional objects arranged around a virtual robot. 
The Webots™ simulator provides a useful prototyping 
environment in anticipation of implementing the 
representation and methodology used here on real-world 
robots with machine vision sensors.  
 The remainder of the paper proceeds as follows. In 
section 2 we present an overview of abductive perception 
and establish a scenario for the formalism that will be 
developed later in the paper. Section 3 details the notion of 
a feature cloud and how variations in the effect of objects 
on the detector apparatus under differing viewpoints and 
conditions is managed. Section 4 establishes the formalism 
used in the remainder of the paper. Section 5 describes the 
essential constraints between objects. Section 6 considers 
the role of spatial relationships between objects. Section 7 
considers the management of evidential support for the 
hypothetico-deductive framework. Section 8 develops a 
simple worked example to illustrate the points made. 



2 Abductive Perception an Overview  
The abductive treatment of perception developed here is a 
variation and extension of that presented in [Shanahan, 
1996 and 1997]. There we have a background theory Σ 
comprising a set of logical formulae that describe the effect 
of a robot’s actions on the world, and a set of formulae that 
describe the effect of the world on the robot’s sensors. 
Then, given a description, Γ, derived from the robot’s 
sensor data, the abductive task is to generate a consistent 
set of explanations, Δ, such that Σ ∧ Δ |= Γ.  
 Abduction does not necessarily guarantee a single 
solution in the construction of Δ. In [Shanahan, 2002, 
2005; and Shanahan and Randell, 2004] this is addressed 
by rank-ordering competing hypotheses in terms of their 
assigned explanatory values and selecting those with the 
highest explanatory content. The explanatory value reflects 
the extent to which the sensor data evidence presented in Γ 
supports any particular interpretation of an object derived 
from the background theory. While we use a similarly 
defined explanatory value measure, we also introduce two 
additional measures, distinctiveness value and rank order. 
Unlike the single a posteriori explanatory value used by 
Shanahan, we explicitly factor out these three measures, 
and use all three separately in the perceptual process. Thus 
the distinctiveness value defined on feature types can be 
compared to the task of measuring the salience of features 
that appears in other machine-vision based research (e.g. 
[Itti and Koch, 2001]). These additional measures guide the 
hypothesis generation process discussed later. 
 Key to this process is the deployment of “detectors”, 
devices that make these assertions into Γ when the specific 
conditions they are tuned to occur. In the scenario we 
describe here, these detectors are assumed to be derived 
from low-level vision processing operations. Such 
operation might include line finding or edge detection 
routines, or, more usefully, the detector will respond to 
some distinctive, though not necessarily a unique, property 
of the physical object being observed (see the work of 
[Lowe, 2004] and [Schmid and Mohr, 1997] for recent 
advances in this area). Detected features must be reliably 
localizable onto the image plane (as indicated in figure 1), 
but need not be invariant on rotation or scale. It is our 
intention to allow a wide range of detector types to be 
assimilated within the logical framework described. We 
recognise that objects in the world may give rise to 
different effects on the detectors under differing 
circumstances, such as when viewed from different 
distances or from varying angles. We refer to these 
variations as the appearances of a feature. 
 Each different appearance associated with a detector is 
assigned a Type and a location on the image plane, which 
will serve to identify the source of each Γ assertion within 
the system. The ability of detectors to respond 
differentially to different features is central to this process, 
and we define various measures to quantify and exploit 
such variation. It may be noted that some features, such as 
line segments, are common to many objects, and, as such, 
provide little discriminatory evidence. Low-level features 

may be composited into compound features, which 
typically increases their discriminatory power.  
 The new abductive strategy for processing sensor data 
proceeds as follows and is illustrated in figure 1. Firstly, 
distinctive elements of Γ are matched to object descriptions 
in Σ to generate a set of candidate hypotheses in Δ that may 
explain the sensor data. In this respect individual sensor 
data items may be said to afford (by analogy with [Gibson, 
1979]) their own explanation. Based on this partial 
evidence, each inferred host-object is hypothesised to 
occupy a specific place in the space about the robot. Then 
using deduction coupled with the manipulation of 3D 
linear-transforms (as prediction) the ramifications of this 
projection are expanded. The feature cloud is used to 
determine the expectations of other features associated 
with the hypothesised object(s) in question. The sensor 
data is then re-consulted to refine the explanatory value by 
determining the extent to which each hypothesis is 
supported by the observed data. On the basis of this, 
hypotheses with low explanatory value are rejected (and 
sensor data items they would have explained are released, 
though still in need of an explanation). The process is 
repeated until all the sensor data elements of Γ have a 
coherent explanation, and where all the ground hypotheses 
in Δ satisfy all the constraints applicable to the domain.  
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Figure 1: The main perceptual cycle 

 
 The background theory Σ has two parts. First we factor 
out the generic object descriptions which are ultimately 
encoded as feature clouds (denoted by Σo), and secondly, 
we factor out a set of domain-independent constraints 
which both restrict and determine how and whether 
hypotheses can coexist in Δ (denoted by Σc). First amongst 
these is the commonsense belief that two volumetric bodies 
may abut but not overlap (i.e. they may not share a volume 
in common). Δ is similarly partitioned, first into sentences 
describing many alternative hypothesised models (Δh), and 
Δi, the single model representing the stable interpretation 
of the scene, which may then be used for planning, 
problem solving or other tasks. 
 A cognitive agent cannot deny or disprove sensor data, it 
can only interpret it in a manner consistent with the use it 
intends to make of the data. It follows from this, that the 



abductive process leads to three primary outcomes when 
interpreting sensor data: (i) to accept the interpretation 
based on the prevailing model, (ii) to reject or ignore the 
interpretation as, for example, stemming from sensor noise, 
or arising from inconsistency with the assumed domain 
model or (iii) update the existing domain model to 
accommodate the new previously unassimilated sensor 
data (Σo). This paper will concern itself only with the first 
case, where a description exists in Σo and an interpretation 
may be placed on the incoming data consistent with that 
description. 

3 Feature Clouds  
A feature cloud is a data structure that encodes a 
heterogeneous and spatially distributed set of sensor-
detected features and may be contrasted to other model-
based representations in visual perception-based 
applications such as generalised cylinders [Marr, 1982], 
symgeons [Pirri, 2005, for instance], or superquadrics 
[Chella et al, 2000]. Each feature is individually mapped to 
a position vector and local coordinate system. The cloud is 
partitioned into subsets of features that are pre-assigned to 
a set of inferred, volumetric regions. The whole takes on 
the form of a hierarchically organised tree-structure where 
the subdivision of a host body into sub-parts proceeds until 
all their named features and their viewpoint-dependent 
appearances eventually appear as terminal leaf-nodes.  
 Each feature cloud is represented by sets of vector 
pencils; where each pencil comprises a set of straight-line 
segments intersecting at a single point. Pencils mapping 
features to their appearances are interpreted as lines of 
sight fanning out into space. As each viewpoint also acts as 
the origin of another vector pencil whose end-points 
potentially locate a set of features, the overall geometrical 
form of an object with its set of features and their 
viewpoint indexed manifold appearances can be likened to 
a stellated polyhedron with the vertices mapping to the 
view points.  
 

 
Figure 2: A scene view 

 
 Figure 2 shows a pair of towers being imaged from a 
viewpoint with the projected image plane of the camera 

shown straddling between the two. The white image plane 
area shows the locations at which various feature points 
arise, which are used to populate Γ (see also figure 5a). 
 Figure 3 shows the feature clouds of the towers, 
excluding the vector pencils associated with the relative, 
viewpoint-dependent information.  

 
Figure 3: feature cloud representation of the towers 

 
 Figure 4 illustrates the effect of appearances of features. 
A single feature (for instance, the corner of the larger cube) 
appears differently from alternate viewpoints, and each is 
assigned a separate appearance type. Large cones in figure 
4 arranged radially from features represent the range for a 
given series of detectors. These take the form of lobes. The 
small cones indicate individual appearances of detected 
features (as projected onto a notional image plane) from 
specific viewpoints.  
 Note that it is the properties of the detector that 
determine the angular and positional range of the 
appearance type. The scope of detectors (and hence 
appearances) may overlap, may be ambiguous - in that 
distinct features may give rise to the same appearance. 
Features may not be detected at all from some viewpoints, 
either because the detectors are not sensitive to it, or by 
virtue of self-occlusion.   
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Figure 4: Appearances of features from different 
viewpoints. 

 
 Feature clouds unify and extend point clouds [Linsen, 
2001] and aspect graphs [Koenderink and van Doorn, 
1979; Shiffenbauer, 2001] in several ways. Firstly, unlike 
the point cloud, a feature cloud directly encodes sensor 
extracted features rather than simple surface points. 



Secondly, the feature cloud encodes structural part-whole 
relationships between the component object parts of the 
inferred host bodies. Thirdly, unlike point clouds and 
classical (infinite resolution) aspect graphs, feature clouds 
directly encode viewpoint and sensor resolution dependent 
information. Finally, the feature cloud encodes information 
from which the relative distinctiveness of its feature types 
can be computed. 

4   The Formalism 
We assume general predicate logic with equality and 
classical set-theory, and extend this to allow reified terms, 
and (possibly empty) lists i.e. [x1,...,xn] to appear in 
formulae. Vector variables: v0, v1,...,vn, are specifically 
singled out, and these are denoted in the text by the use of 
underscores. Greek letters (both lower and upper case) are 
reserved for meta-logical predicate variables, individual 
wffs, and sets of sentences. The context in which they 
appear will make this distinction clear. Where numbers, 
standard arithmetical and other mathematical operators 
appear in formulae, we will assume that have their usual 
meanings. We will further assume that in the implemented 
theory, the mathematical evaluation of functions runs 
concurrently with term-unification. 

4.1 Objects, features and appearances 
The primitive formal ontology ranges over bodies (which 
we call objects), surfaces, features, appearances, points and 
vectors, each of which are denoted by disjoint sets. Objects 
include 3D volumetric solids (e.g. solid polyhedra), 
features are localizable surface discontinuities (e.g. from 
edges or vertices of polyhedra), while appearances cover 
the 2D projected images of these in relation to an assumed 
viewpoint.  
 We use a simple generic data structure represented by 
the schema: Φ(x0,v0,Type0,[x1,...,xn]), that respectively 
maps an individual x0, to its position vector v0, sortal 
Type0, and list of component parts [x1,…,xn], and where 
Φ∈{Object,Feature,Appearance}. Within the formalism 
the schema is used to encode a hierarchical structure with 
objects mapping to surface features, and with these 
mapping to a set of their viewpoint dependent appearances. 
At the descriptive level of features the structure encodes a 
viewpoint independent description of objects, and 
extending to their viewpoint-dependent appearances is 
where interpreted logical formulae are grounded in sensor 
data. 
 Axiom (A1) encodes the hierarchical decomposition 
between objects and their features, and between features 
and their appearances. Given an object, this is decomposed 
into object parts, or features; features are further 
decomposed into feature parts (compound features) or 
appearances, and appearances into sub-appearances or the 
empty list as a terminal node: 

 (A1) Φ(x0,v0,Type0,[x1,...,xn]) →  
 Ψ1(x1,v1,Type1,[...]) &...& Ψn(xn,vn,Typen,[...]), 

where: 
  if Φ=Object, then 
  ∀i i=1 to n: Ψi=Object or, 
   ∀i i=1 to n: Ψi=Feature, and  
 if Φ=Feature, then 
  ∀i i=1 to n: Ψi=Feature, or 
   ∀i i=1 to n:Ψi=Appearance,  
 else, ∀i i=1 to n: Φ=Ψi=Appearance 

We will allow the overloading of the predicate symbols 
Object/4, Feature/4 and Appearance/4, and define their 
monadic counterparts; to this end we add the following 
definition schema, which serves to provide a compact 
description of this form: 

 (D1) Φ(x0) ≡def.  
 ∃ v0,Type0,[x1,...,xn] Φ(x0,v0,Type0,[x1,...,xn])  
where:  
 Φ∈{Object,Feature,Appearance} 

The hierarchical structure is mirrored in spatial 
relationships between vectors where: vector(v1,v2) maps 
vector v1 to vector v2; vector/2 is axiomatised to be 
irreflexive and transitive (and by implication, is 
asymmetrical): 

 (A2) [Φ(x0,v0,Type0,[x1,...,xn]) &  
 Ψ1(x1,v1,Type1,[...]) &…&Ψn(xn,vn,Typen,[...])] → 
  vector(v1,v0) &…& vector(vn,v0) 

Vectors locate the centroid (notional position) of any 
object, feature or appearance (v1 … vn) with respect to the 
centroid of its supervenient feature or object (v0), or of a 
viewpoint (actual or notional) in space. Using this scheme 
the position of any sub-part of an object may be 
determined relative to any other subpart by straightforward 
vector summation. Every logical operation between objects 
and their parts implies a corresponding vector operation. 
This is key to hypothetico-deductive framework outlined 
previously. 
 Vectors are cached out as tuples. These tuples encode 
the position of a point in 3-space and an assumed local 
coordinate system. The representation of vectors need not 
unduly concern us here as we are describing the logical 
properties of the theory. The important point is that the 
vectors allow us to reconstruct the position, scale and pose 
of a hypothesised 3D surface feature or object from an 
arbitrary (matched) set of sensor-detected features. 
 Where, individuals appear as terminal nodes in the tree 
structure, we define these as atoms; normally these take the 
form of appearances: 

(D2) Atom(x) ≡def. Φ(x,v,type0,[]),  
where:  
 Φ∈{Object,Feature,Appearance} 
i.e. x is an atom if it has no sub-parts 

We also define objects that form no component-part of any 
other object, which we call maximal objects. The 
underlying intuition is to interpret these as commonsense 
categories of individuated macroscopic objects, such as 
tables and chairs, while ruling out gerrymandered mixtures 



such as a table top and chair-leg as a similarly conceived 
unitary object: 

 (D3) MaxObject(x) ≡def.  
 ¬∃y,v,Type, [...,x,...][Object(y,v,Type,[...,x,...])] 
i.e. x is a maximal object if it forms no sub-part of another 
object. 
 
We recognise that the commonsense notion of maximal 
object can change with context and scale (granularity), but 
will assume here that the choice becomes fixed by virtue of 
the definitions placed in Σo. 
 The mereological connection is intentional. It also 
explains our adoption of the mereological part-whole 
relation P(x,y) used to definine overlap O(x,y,), and other 
classical mereological relations, for example: PP(x,y) 
(“proper-part”) and DR(x,y) (“is discrete from”) – see, for 
example [Randell et al, 1992]. We will assume this 
extension and embed these concepts into our existing 
framework, thus: 

 (A3) Φ(x0,v1,Type0,[x1,...,xn]) →  
 [∀xi∈ [x1,…,xn] Ψ(xi,vi,Typei,[…]) → PP(xi,x0)] 

where:  
 if Φ=Object, then  
  Ψ∈{Object,Feature} 
  else: Φ=Ψ=Feature 
i.e. if x0 is an object or feature, then every sub-part of x0 is 
also a proper part. 

Each object, feature and appearance is assigned a sortal 
predicate denoted by “Type0” in the general schema: 
Φ(x0,v0,Type0,[x1,...,xn]). These predicates are 
distinguished from other monadic predicates used in the 
theory, e.g. Opaque(x). Sortals are universals that provide a 
principle for distinguishing, counting and reidentifying 
particulars [Lacey, 1976]. In addition to these monadic 
predicates, we also use a set of relations, e.g. 
TotallyOccludes(x,y,v) all of which appear in either ∑ or Δ 
depending on whether or not a hypothesised set of 
individual objects are generated. 

4.2 Surfaces 
Surfaces are not explicitly represented in the feature cloud, 
but are factored out and treated separately. We model 
physical surfaces as a Deluanay triangulation of an 
arbitrary topology manifold surface in 3D space. Solids 
consequently take the form of polyhedra whose faces are 
ultimately decomposed into a finite set of triangles, which 
we call facets. This allows the entire surface of a solid and 
any part of that surface to be delineated by a set of edge 
connected planar facets whose vertices map to features. 
The surface of a solid and a facet is represented thus: 
Surface(surface(x),BoundingSurface,[f1,…,fn]), where 
given the function map(<f1,…,fn>) = <v1,…,vn>, n≥4, v1 
to vn are a set of non-coplanar points; and 
Surface(x,Facet,[f1,f2,f3]), where map(<f1,f2,f3>)= 
<v1,v2,v3>, and v1 to v3 denote three non-collinear points. 
In our modeling domain, all our surfaces are assumed to be 

opaque. Straddling in between our primitive facets and 
entire surfaces of individual modelled solids, are faces of 
reconstructed solids which are defined as maximal convex 
planar polygons: Surface(x,Face,[f1,…,fn]) where given 
the function map(<f1,…,fn>) = <v1,…,vn>, n≥4, v1 to vn 
are a set of coplanar points. 
 The difficulty of automatically reconstructing surfaces 
from point clouds is well known. Reconstructed surfaces 
should not only be topologically equivalent to the sampled 
surface, they should also provide a close geometrical 
approximation. To get a close approximation to the 
physical surface of an arbitrary shaped solid when using a 
point cloud, the sampling often needs to be dense, with the 
result that the number of facets generated are large.  

5   Constraints 
Σc contains our constraints. These include geometric and 
commonsense information about the everyday world: for 
example, that objects such as chairs and tables do not 
volumetrically overlap, and that any opaque body or 
surface seen from a viewpoint, necessarily occludes a 
similar surface or body lying behind it. Constraints are 
exploited by: (i) pruning arbitrary juxtapositions of 
features and hypothesised bodies, and (ii) providing a 
principled means for constructing new generic objects 
when sensor data cannot be assimilated into Σ. Also 
included here are two example axioms that show how the 
physical property of opacity is handled and embedded into 
our logical framework: 

 (A4)  ∀x1,x2 [[MaxObject(x1) & MaxObject(x2)  
 &¬(x1=x2)] → DR(x1,x2)] 
i.e. distinct maximal objects are discrete. In this model, 
physical objects occupy individual spaces, and as a 
consequence do not intersect each other.  

 (D4) Opaque(x1)≡def.  
 ∀x1,x2,v1,v2,Type1,Type2,..,v0[[Φ1(x1,v1,Type1,[…])& 
   Φ2(x1,v2,Type2[…]) & Behind(x2,x1,v0)] → 
   ¬Detected(x2,v0)]  

where:  
 Φ=Object, Φ2∈{Object,Feature} 
i.e. x is opaque if from each viewpoint v, whatever is 
behind x is not visible. 

(A5) ∀x0 [Opaque(x0) ↔ Opaque(surface(x0))] 
i.e. an object is opaque if its surface is opaque 

 (A6) ∀x0 [Opaque(surface(x0)) →  
 ∀y[P(y,surface(x0)) → Opaque(y)]] 
i.e. if the surface of an object is opaque, then every part of 
the object’s surface is opaque  

While not developed here, we also assume other temporal 
and geometric constraints, e.g. that at any point in time, 
and for every robot (one robot in this particular case) 
exactly one robot viewpoint exists. This has the direct 
consequence (from the underlying geometry assumed) that 
only one appearance of a detected feature is presented in 



the image. In the case of stereo vision, however, the 
viewpoint is interpreted as the fusion of the paired images 
into a single, notional viewpoint. 

6    Spatial Relations 
Related to these geometrical and psychophysical 
constraints are a set of spatial occlusion relations (c.f. 
Randell et al. [2001], Randell and Witkowski [2002]) of 
which total occlusion and partial occlusion are given here: 

 (D5) TotallyOccludes(x,y,v0) ≡def.  
 Opaque(x) & Object(x,…)& Object(y,…)& 
  ∀z[[Feature(z,…)& Object(y,…,[…,z,…]) & 
    Expected(z,v0) & Behind(z,x,v0)] → 
    ¬Detected(z,v0)] 

 (D6) PartiallyOccludes(x,y,v) ≡def. 
  Occludes(x,y,v) & ¬TotallyOccludes(x,y,v)& 
 ¬Occludes(y,x,v) 

The predicate Behind/3 is an object-level primitive relation 
whose truth-value is computed using information directly 
encoded in our hypothesised 3D model. 

7    Measuring Uncertainty and Evidential 
Support 

We will also require meta-level definitions governing what 
it is for a feature to be expected (to be visible) and 
detected: 

 (D7) Expected(x,v0)≡def. Feature(x,…) & 
   ¬∃yTotallyOccludes(y,x,v0)], 
 where: {Feature(x,…),¬∃yTotallyOccludes(y,x,v0)}⊆ Δh 
i.e. feature x is expected from viewpoint v0, if no object 
occludes it 

 (D8) Detected(x,v0) ≡def. Feature(x,…,[…,y,…]) & 
 Appearance(y,v0,Type,[…]),  
where: Feature(x,…,[…,y,…])∈Δh, and 
Appearance(y,v0,Type,[…])∈Γ 
i.e. feature x  is detected from viewpoint v0 if an 
appearance of x is registered in Γ. 

D7 indicates that feature is expected if it has been 
hypothesised into Δh and is not occluded by anything from 
the actual current viewpoint. D8 indicates that such a 
feature has been matched to a specific appearance in the 
incoming data, Γ. These predicates are used to define four 
exhaustive cases, which are directly applied to the task of 
confirming, verifying and refuting hypotheses:  

(i) Expected(x,v)&Detected(x,v): strong positive 
support, no new explanation required;  

(ii) Expected(x,v)&¬Detected(x,v): weak negative 
support, new explanation required;  

(iii) ¬Expected(x,v)&Detected(x,v): novel event, 
new explanation required, and  

(iv) ¬Expected(x,v)&¬Detected(x,v): weak positive 
support, no new explanation required. 

 
In the particular case where (iii) occurs, detected features 
can give rise to several alternative causal explanations, 
namely: (a) the result of sensor noise, (b) image processing 
errors, or (c) arising from physical features of imaged 
bodies, but whose object types do not appear in Σo. The 
distinction between these cases is handled as follows. Only 
when an interpreted feature is causally explained by a 
physical feature that has a specific location and pose in 
space, and whose constancy is verified by changing the 
relative position of the viewpoint and matching this against 
the model, do we treat this as a physical feature needing to 
be assimilated into Σo. This level of constancy typically 
fails in case of sensor noise, and where image processing 
errors arise.  

7.1  Mapping hypothesised objects to sensor data  
As our theory encodes both mathematical and logical 
information we use a two-pronged attack to find an optimal 
(or equal best) explanation for our sensor data by: (i) 
evaluating alternative (logical) models that satisfy our 
axioms, and (ii) solving a geometrical correspondence 
problem between features identified in a 2D image and 
those features represented in a 3D model.  
 In the former case, the correspondence is determined 
symbolically using the inferential map between objects, 
features, and their appearances directly encoded as feature 
clouds; while in the latter case, the correspondence reduces 
to a well known and much studied topic in 
photogrammetry and computer vision [e.g. Haralick et al., 
1994; DeMenthon and Davis, 1995; Horaud et al., 1997; 
Hu and Wu, 2002; David et al., 2004]. While no unique 
analytical solution exists, for n≥3 registration points, it is 
known that at most four solutions exist. We argue that this 
low upper-bound result (when combined with the 
hypothetico-deductive framework used here) does not 
make the computational task of generating (and filtering 
out alternative hypotheses) significantly less tractable. 
 Of the many algorithms that have been developed to 
solve this geometrical correspondence problem, POSIT 
[Dementhon and Davis, 1995] and SoftPOSIT [David et 
al., 2004] are of particular note. For example, POSIT 
assumes a match of ≥4 non coplanar registration points and 
that their relative geometry is known. This requirement is 
relaxed in SoftPOST. In terms of robustness to noise (i.e. 
clutter) and speed, implementations of POSIT claim real-
time performance [Dementhon and Davis, 1995]. See also 
[Horaud et al., 1997; Hu and Wu, 2002] for real-time 
vision, simulated and robotics applications. These results 
assume a geometry predicated on points; but in our case 
additional constraints are applied, for example those 
supplied by viewpoint and sensor (resolution) dependent 
information. We now define the various measures that 
permit this mapping to be determined. 



7.2 Distinctiveness, rank order and explanatory 
measures 
Following Shanahan [2002, 2005] and Poole [1992, 1993, 
1998] we assign numerical measures (and probabilities) to 
logical formulae. This is handled in two complementary 
ways: (i) where the probability space is identified with the 
number of possible term substitutions between a target 
expression and that encoded in our generic object-language 
descriptions; and (ii) classically, as possible worlds, where 
each world is a model or assignment of values for variables 
for our axioms and interpreted sensor data. 
 We use three information measures: (i) the 
distinctiveness value dv(F) of a feature type, (ii) the rank-
ordering rank(O) of an object type with respect to 
incoming sensor data, and (iii) the explanatory value 
ev(x,v), of an individual hypothesised object given 
available sensor evidence.  

7.2.1 Distinctiveness. First, we define the distinctiveness 
of a feature of type F. By convention the value of the 
probability of α, defined as P(α), lies between 0 and 1.  
 Let S(Φ)={fi|Feature(fi,v,Φ,[...])∈Σo}, and S={fi| 
Feature(fi,…)∈Σo}, Let |S| denote the cardinality of set S. 
Then: 

dv(F) = 1 -  |S(F)|                         P(dv(F))=1- dv(F) 
                  |S| 

The dv(F) value is an a priori measure, and is based 
entirely on the informational content of features encoded in 
Σo. We do not index appearances as these presuppose a 
viewpoint-dependent description of features1; though other 
arguments for indexing appearances can be provided.2

 
7.2.2 Rank Order. Rank order is used to determine which 
objects defined in Σo are likely to be present in the scene 
based on the evidence presented by the incoming sensor 
data stream. Where before the dv(F) value was calculated 
solely on a priori information; now we measure the degree 
to which our object descriptions match incoming sensor 
data.  
Definition: {t1/v1,...,tn/vn} is a substitution where every vi 
is a variable, and every ti is a term different from vi, and 
where no two elements of the set have the same variable 
after the stroke symbol. If P(v1,...,vn) is a wff, and 
θ={t1/v1,...,tn/vn}, then P(v1,...,vn)θ=P(t1,...,tn) [Chang 
and Lee, 1973.] 

Definition: Given a substitution θ  and a Type, θ is a legal 
substitution with respect to Type if: (i) There is no t/v1∈θ, 
and t/v2∈θ s.t. v1≠v2, and, (ii) it is not the case that 
Feature(f,…,[…,ai,…])∈Σo, Feature(f,…,[…,aj,…])∈Σo, 
                                                 
1 This serves to make the measure indifferent to the imaging 
system used, where the focal length and field of view of view is 
inextricably tied to the detection or not of objects and their 
corresponding features. 
2 For example, establishing the salience of features for the 
purposes of tracking objects.  

Appearance(ai,…)∈Σo, Appearance(aj,…)∈Σo, 
Appearance(a1,…)∈Γ and Appearance(a2,…)∈Γ, a1≠a2, 
a1/ai∈θ, a2/aj∈θ, and ai≠aj. 

Definition: A valuation v, of Type0 with respect to a legal 
substitution θ,  v(Type,θ) is defined as follows:  

v(Type0,θ) =  
 Σ  |{fi}|× dv(Φ): [Feature(fi,v1,Φ,…)& Ω ] 
 Σ  |{fj}|× dv(Ψ): [Feature(fj,v2,Ψ,…)& Ξ ] 

where:Σ, Γ  entails: 
Ω ≡ [[[Object(x0,v0,Type0,[…,fi,…]) & 
   Feature(fi,v1, Φ,…)] → 
  Appearance(ak,…)] & 
  [Appearance(a1,…) = 
   Appearance(ak,…)θ ]] 
Ξ ≡  [Object(x0,v0,Type0,[…,fj,…])→ 
    Feature(fj,v2,Ψ,…)], 

where: Appearance(a1,…)∈Γ, and where: 
{Object(x0,v0,Type0,[…,fi,…]), 
Object(x0,v0,Type0,[…,fj,…]), Feature(fi,v1, Φ,…), 
Feature(fj,v2,Ψ,…)],Appearance(ak,…)}⊆ Σo 

Definition: The rank order of Type; rank(x,Type) is 
defined as the maximal valuation v(Type,θ), s.t. there is no 
θ1, s.t v(y,Type,θ1)> v(x,Type,θ). 

A careful examination of possible substitutions between 
formulae used in the rank order shows that each ground 
expression in Γ that is mapped to an expression in Σo is 
restricted so that distinct appearances {a1,a2,...,an} are 
mapped to distinct  features {f1,f2,...,fn} in Δh.  
 No explicit viewpoint variable appears in the function 
rank(Type), even though a notional viewpoint of the robot 
is assumed and encoded in the appearance descriptions. 
This is because the pose estimate of an object is not tested 
until the explanatory value is calculated.  
 The rank order assigns a partial ordering of object types 
in the light of interpreted incoming sensor data and is used 
to determine the order in which the explanatory value of 
hypothesised objects is computed. It serves as a heuristic, 
to generate a “best-guess” causal explanation as to what 
the evidence supports. For this reason, the cognitive and 
computational role of the rank order can be likened to a 
model of attention as visual efficiency [Khadhouri and 
Demiris, 2005]. 
 With rank ordering of all object types computed, the task 
remains to map clusters of detected features to individual 
hypothesised, host objects. Here the dv(F) values of the 
features of an assumed individual object as its bearer are 
consulted, and those with the greatest distinctiveness value 
preferentially selected. Sets of four of such features, whose 
appearances map to detected features in the image plane 
are selected and are cyclically passed to POSIT to compute 
the positional vector of the assumed host object that has 
these matched features. It at this stage in the computational 
process, an hypothesised object and its computed position 
vector relative to the assumed viewpoint, is used to 
calculate that object’s explanatory value.  



 
7.2.3 Explanatory Value. The role of the explanatory 
value closely follows that described in [Shanahan 2002; 
Shanahan and Randell, 2004]. In our case we measure the 
degree to which an hypothesised (maximal) object x seen 
from a viewpoint is explained by and predicts currently 
available sensor data: The explanatory value ev(x,v) is 
defined as follows: where the range of ev(x,v0) lies 
between +1.0 (‘corroboration’) and –1.0 (‘refutation’); 
respectively between 1 and 0 for P(ev(x,v0)): 

ev(x0,v0)=(A+B)-(C+D)/(A+B+C+D) 

A= [Σ |{fi}| × dv(Φ): [Feature(fi,…, Φ,…) & 
 Expected(fi,v0) & Detected(fi,v0)] 
B= [Σ |{fi}| × dv(Φ): [Feature(fi,…, Φ,…) & 
 ¬Expected(fi,v0) & ¬Detected(fi,v0)] 
C= [Σ |{fi}| × dv(Φ): [Feature(fi,…, Φ,…) & 
 Expected(fi,v0) & ¬Detected(fi,v0)] 
D= [Σ |{fi}| × dv(Φ): [Feature(fi,…, Φ,…) & 
 ¬Expected(fi,v0) & Detected(fi,v0)],  

where, Σ,Δ entails:  
 [[MaxObject(x0,…) & Feature(fi,v1,Φ,…)] → 
   Appearance(…,v0,…)], 

and where a set of ground substitutions {θ i,θ j,θ k...} exist 
such that {MaxObject(x0,…)θ i, Feature(fi,…,Φ,…)θ j, 
Appearance(…,v0,…)θ k}⊆Δh 

P(ev(x,v0))= (ev(x,v0)+1) / 2  

We now show how these mathematical and logical 
constructs are to be used with an illustrative worked 
example. 

8   A simple worked example 
This section develops a minimal motivating example to 
illustrate how the formalism developed in the previous 

section may be used to process a set of appearance terms in 
Γ. We assume a very simple world in which only solid, 
opaque towers. Tower T1 is a solid comprising a cuboid 
with a wedge-shaped top, tower T2 is a cuboid with a 
pyramidal shaped top. Figure 5a shows the robot’s view of 
the scene shown in figure 2. We also assume we have a set 
of implemented apex and corner detectors ( , ), and 
detectors that identify surface patches ( ). Each symbol 
( , , ) indicates the vector position on the image plane 
of the corresponding detector centre. The object outlines 
are shown to assist the reader, they do not form part of Γ.  
 We now begin the process of matching features to our 
object types. First we use the distinctiveness value to pre-
bias the search for features of a given type. This is used to 
order individual hypothesised object types as possible 
candidates that explain our incoming interpreted sensor 
data. Suppose, for the purposes of this example, that T2 
has the highest rank order value, so this model is selected 
first. The search proceeds by selecting four non-coplanar 
points (required by POSIT) in our hypothesised 3D model 
and pairing these to four features in the image. The type of 
the feature appearance in the Σo model must match that of 
the appearance type in Γ. Equally the appearance vectors 
of the four selected features must converge to a single 
viewpoint, or the set will be inconsistent.  
 With the 2D-3D point-point registrations made, the 
reconstructed 3D pose of the hypothesised object is 
determined, and the hypothesised object instantiated into 
Δh. This is used (via a set of linear transforms produced by 
POSIT) to reconstruct, and hence predict, the position of 
all the features as they would appear in the 2D image, by 
simple projection. In each case, the explanatory value for 
the complete projected model (in Δh) compared to the 
sensor data (Γ) is computed. 
 Figure 5b illustrates the effects of a mismatch of image 
to model points. Figure 5c illustrates the effect of a correct 
match. In figure 5b, three of the model points are matched 
“correctly”, the fourth is mismatched to an image point of 
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Figure 5: The robot’s view of the world, showing the Γ field (a) and selected steps in the analysis (b-d) 
 

Table 1: Feature Types for each calculation, and resulting explanatory value 
 T2 distorted T2 correct projection T1 correct projection T2 re-considered 
 E∧D E∧¬D ¬E∧¬D ¬E∧D E∧D E∧¬D ¬E∧¬D ¬E∧D E∧D E∧¬D ¬E∧¬D ¬E∧D E∧D E∧¬D ¬E∧¬D ¬E∧D 
A  pex 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
Corner  0 6 1 2 4 2 2 0 7 0 0 0 4 0 2 0
O  ther 1 16 12 16 9 4 16 2 27 0 23 0 9 0 16 2
ev() -0.51 0.58 1.0 0.94 



the same type, but actually from an adjacent object, as 
indicated by the arrows. The pose of the resultant model is 
clearly distorted and the predicted points may be compared 
to the sensor data. The dotted line (figure 5b) indicates the 
area of the projected model within which evidential 
support will be gathered.  
 In fig.5 circles represent feature points that are expected 
to be visible, and squares places where projected feature 
points are expected not to be visible, by virtue of self-
occlusion. This sets up the conditions to evaluate evidential 
support for the hypothesised object as defined by 
combinations of definitions D7 and D8 described in section 
7. Table 1 shows the image features and model points 
meeting each of the four support criteria. These evaluate to 
an explanatory value of –0.51. At this level of dis-
confirmatory support the hypothesis is abandoned and a 
new match made (fig. 5c). The new predictions match well 
enough (+0.58) to accept the hypothesis pending further 
investigation.  
 In the next step the remaining distinctive features in Γ 
are used to hypothesise another model (figure 5d). With the 
match shown the model of Tower A gives rise to an 
explanation for the remaining sensor data features in Γ (ev 
= +1.0) and so Σ ∧ Δ |= Γ. As a side effect, and as Tower A 
partially occludes Tower B, this now provides further 
explanation as to the incomplete match for Tower B. By 
removing the previously unexplained missing elements in 
the Expected & ¬Detected category the explanatory value 
of Tower B can be upgraded to +0.94.  
 In the background, the set of global constraints prune out 
potential models, e.g. ruling out models where maximal 
objects overlap, but also several object poses by properties 
predicted as arising from occlusion. In the latter case we 
can also see that given a Jointly Exhaustive and Pairwise 
Disjoint (JEPD) set of spatial occlusion relations, each 
spatial relation predicts different explanatory value ranges 
for the occluding and occluded objects. This then provides 
the abductive basis to infer our top-level relational 
descriptions of our objects in space.  

9 Conclusions and Future Work 
In terms of model matching, we now see the flexibility and 
power of the representation. The logical description 
provides the syntactic and semantic basis for abductively 
inferring host bodies using sparse information. Running 
concurrently with this, we also have the 3D geometrical 
manipulation of feature clouds, 3D model matching using 
2D views, and a set of constraints arising from viewpoint-
dependent properties of our implemented feature detectors. 
Taken as a whole, the two-pronged attack generates a set 
of target explanatory hypotheses (Popper’s bold 
conjectures) supporting a high degree of potential 
falsifiability.  
 It should be remembered that a logical formulation of 
perception does not of itself solve the underlying problems 
encountered in practical visual processing. Rather it 
provides a formal framework with which to abstract critical 

factors in the perceptual process, as well as acting as a 
specification for logic based programming solutions.  
 Our approach models visual perception as a combination 
of bottom-up, sense driven, and top-down, expectation 
driven processes, and as such accords well with a 
substantial body of empirical and experimental data from 
visual psychophysics (e.g. [Rock, 1981]); and from 
neurophysiological evidence of a two way flow of 
information (e.g. [Lee and Mumford, 2003]). The approach 
is also closely related to that of active perception 
[Aloimonos et al., 1987; Ballard, 1991] and has potential 
applications to sensor fusion using multiple sensor 
modalities [Hall and Llinas, 2001].  
 The work presented here has a strong connection with 
the formal modelling of attention and granularity. In the 
former case attention brings to the fore resource allocation 
issues, and previously discussed salience and 
distinctiveness measures; while granularity directly relates 
to sensor dependent information, such as scale information 
and the resolution of detected features as a function of the 
viewing distance, focal length and pixel-array of the 
camera sensor used.  
 We also define a panoramic description of the domain as 
seen from the assumed robot’s viewpoint (Δp) but which 
maintains previously assimilated information, but not 
currently in the robot’s visual field. This structure 
maintains an abstraction of the juxtaposition of objects in 
the robot’s immediate environment relative to its 
viewpoint. This has the effect of allowing the robot to 
reason about objects and their relationships with itself and 
each other, although they are outside the current field of 
view. Further, the panorama may be transformed according 
to anticipated or actual movements of the robot, to 
populate Δh with immediately verifiable hypotheses.  
 The weighting supplied distinctiveness measure does not 
take into account the number of actual instances of objects 
that occur in Δ, and thus one modification to this measure 
would to define dv(F) on Δ, and default to the Σ values 
only when no information as to the number of detected 
objects arises, for example, during an initialisation routine.  
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